dbso

Welcome
db4o is the native Java, .NET and Mono open source object database.

This tutorial was written to get you started with db4o as quickly as possible. Before you start, please
make sure that you have downloaded the latest db4o distribution from the db4objects website.

Join the db4o Community

Join the db4o community for help, tips and tricks.

Ask for help in the db4o forums at any time.

And take a look at additional resources on the community website.

If you want to stay informed, subscribe to our db4o blogs

Links

In order to access free developer resources you may want to register on db4o developer website.
Feel free register to the forums http://www.db4o.com/Users/register.aspx.

And here are some further links on developer.db4o.com that you may find useful:

All Downloads

SVN Repository

Community Projects

http://www.db4o.com
http://www.db4o.com
http://developer.db4o.com
http://developer.db4o.com/Forums.aspx
http://developer.db4o.com/Resources.aspx
http://developer.db4o.com/Blogs.aspx
http://developer.db4o.com/
http://www.db4o.com/Users/register.aspx
http://download.db4o.com
https://source.db4o.com/db4o/trunk/
http://developer.db4o.com/ProjectSpaces/default.aspx

Download Contents

The db4o Java distribution comes as one zip file, db40-8.0-java.zip. When you unzip this file, you get

the following directory structure:

1G> dbio
E-E= doc
: Elff_} api
@ index html Javadoc AP documentstion
E-= osgi
@ indewhiml Jarvadoc for osgi
= reference
. B himl
o & index htm Reference documentation
El..:- tutonal
: & o Tutorial zources and samples
..... = dbdo-tutonial pdf PDF tutorial for best searching
-l index himl Irteractive HTML tutorisl
b (8 readme. bl
- 5 antjar Third-party ant library
R | bloat-1.0.jar Third-party bytecode optimization
: ----- | dbdo-[verzion]-all-javaliava-version]jar db4o jar including all classes
..... = dbdo-[version]-bench jar I2 benchmarking tool for dibdo
fe = dbdo-[version]-core-javaliava-version] jar dbdo engine
----- | dbdo-[version]-cs-iavaljava-version]jar dbdo clientfzerver library
i 121 dbdo-[version]-dibdounit-javaliava-version] jar dbdo unit-test library
----- = dbdo-[version]-instrumentation-javalisva-version)jat Instrumentation toolz for dbdo
- | dbdo-[version]-noopt-javaliava-version] jar Mative Guery optimization engine
- = dbdo-[version]-optional-javaliava-version] jar Optional dbdo components
o] dbdo-osgl jar dbdo DG
..... | dbdo-osgitest jar db4o O5G] tests
L5 dbdo-tal-javaljava-version]jar dbdo TA instrumentstion library
L2 dbdo-tools-javaliava-versionljar Biytecode instrumentation tools
E-i= ome OME in=tallation
- sic complete dbdo sources (includes TA framewark)
(g dbdolicense. htm GhU General Public License

Please take a look at all the supplied documentation formats to choose the one that works best for

www.db4o.com

you:

db40-8.0/doc/api/index.html
The API documentation for db4o is supplied as JavaDocs HTML files. While you read through this

tutorial it may be helpful to look into the API documentation occasionally.

db40-8.0/doc/reference/index.html
The reference documentation is a complete compilation for experienced db4o users.

db40-8.0/doc/tutorial/index.html

This is the interactive HTML tutorial. Examples can be run "live" against a db4o database from within
the browser. In order to use the interactive functionality a Java JRE 1.5 or above needs to be installed
and integrated into the browser. Java security settings have to allow applets to be run. If you have

problems using the interactive functionality, please refer to Tutorial Troubleshooting.

db40-8.0/doc/tutorial/db4o-8.0-tutorial.pdf
The PDF version of the tutorial allows best fulltext search capabilities.

www.db4o.com

#Troubleshooting

1. First Glance

Before diving straight into the first source code samples let's get you familiar with some basics.

1.1. The db4o engine
The db4o object database engine consists of one single core jar file. In addition you may want to use

client/server library or optional components. You may also get it all in a single jar "db4o-all":

db40-8.0-core-java5.jar
is built for Java JDK 5 and JDK 6

If you intend to use client/server version of db4o you will additionally need the client/server library :

db40-8.0-cs-java5.jar

Some advanced functionality such as cluster support, platform-specific IO adapters,

statistic tools etc can be added by including the db4o optional library:

db40-8.0-optional-javas.jar

You can also get all of the above in a single jar:

db40-8.0-all-java5.jar

1.2. Installation

If you add one of the above db4o-*.jar files to your CLASSPATH db4o is installed. For beginners it is

recommended to use "db4o-all" library to avoid confusion with the location of certain classes. In case
you work with an integrated development environment like Eclipse you would copy the db4o-*.jar to

the /lib/ folder under your project and add db4o to your project as a library.

1.3. Object Manager Enterprise installation

Object Manager Enterprise (OME) is an object browser for db4o databases. OME installation can be
found in /ome folder of the distribution. The zip file in this folder contains the Eclipse plugin version of
OME.

To install the plugin, you need to have a version of Eclipse >= 3.3 installed. Unzip the file to a folder of
your choice. Then open Eclipse, select 'Help' -> 'Software Updates...' -> 'Available Software' from the
menu. Choose 'Add Site...' -> 'Local..." and select the unzipped folder. Follow the Eclipse Update

Manager instructions for the OME feature from here on.

www.db4o.com

http://www.eclipse.org

The actual menu structure may vary over Eclipse versions. (The above applies to Eclipse 3.4
Ganymede.) When in doubt, please refer to the Eclipse documentation on Software Updates.
Alternatively, you can install the plugin manually by simply copying the contents of the 'plugins' and

'features' folders from the unzipped folder to the corresponding subfolders in the root folder of your
Eclipse installation.

www.db4o.com

1.4. API Overview
Do not forget the API documentation while reading through this tutorial. It provides an organized view
of the API, looking from a java package perspective and you may find related functionality to the

theme you are currently reading up on.

For starters, the java packages com.db4o and com.db4o.query are all that you need to worry about.

com.dbd4o

The com.db4o java package contains almost all of the functionality you will commonly need when using

db4o. Two objects of note are com.db4o.Db4oEmbedded, and the com.db4o.0bjectContainer interface.

The com.db4o.Db4o factory is your starting point. Static methods in this class allow you to open a
database file and create an initial configuration. For client/server environment you will need to use
com.db4o.cs.Db4oClientServer factory class to start a server, or connect to an existing server, but this
will be discussed later , start a server, or connect to an existing server. The most important interface,
and the one that you will be using 99% of the time is

com.db4o.0bjectContainer: This is your db4o database.

- An ObjectContainer can either be a database in single-user mode or a client connection to a db4o
server.

- Every ObjectContainer owns one transaction. All work is transactional. When you open an
ObjectContainer, you are in a transaction, when you commit() or rollback(), the next transaction is
started immediately.

- Every ObjectContainer maintains it's own references to stored and instantiated objects. In doing so, it
manages object identities, and is able to achieve a high level of performance.

- ObjectContainers are intended to be kept open as long as you work against them. When you close an

ObjectContainer, all database references to objects in RAM will be discarded.

com.db4o.ext

In case you wonder why you only see very few methods in an ObjectContainer, here is why: The db4o
interface is supplied in two steps in two java packages, com.db4o and com.db4o.ext for the following
reasons:

- It's easier to get started, because the important methods are emphasized.

- It will be easier for other products to copy the basic db4o interface.

- It is an example of how a lightweight version of db4o could look.

Every com.db4o.0bjectContainer object is also an com.db4o.ext.ExtObjectContainer. You can cast it to

ExtObjectContainer or you can use the method to get to the advanced features.

com.db4o.config

www.db4o.com

#ClientServer

The com.db4o.config java package contains types and classes necessary to configure db4o. The objects

and interfaces within are discussed in the Configuration section.
com.db4o.query
The com.db4o.query java package contains the Predicate class to construct Native Queries. The Native

Query interface is the primary db4o querying interface and should be preferred over the Soda Query
API.

www.db4o.com

#Configuration
#Query

2. First Steps

Let's get started as simple as possible. We are going to demonstrate how to store, retrieve, update and
delete instances of a single class that only contains primitive and String members. In our example this
will be a Formula One (F1) pilot whose attributes are his name and the F1 points he has already gained

this season.

First we create a class to hold our data. It looks like this:

package com db4odoc. f 1. chapterl

public class Pilot {
private String narne;

private int points;
public Pilot(String name,int points) {

t hi s. nanme=nane;

t hi s. poi nt s=poi nts;

public int getPoints() {

return points;

public void addPoi nts(int points) ({

t hi s. poi nt s+=poi nt s;

public String get Name() {

return nane;

public String toString() {

return name+"/" +points;

www.db4o.com

Notice that this class does not contain any db4o-related code.

2.1. Opening the database

To access a db4o database file or create a new one, call Db4oEmbedded.openFile() and provide
Db4oEmbedded.newConfiguration() as a configuration template and the path to your database file as
the second parameter, to obtain an ObjectContainer instance. ObjectContainer represents "The
Database", and will be your primary interface to db4o. Closing the ObjectContainer with the #close()

method will close the database file and release all resources associated with it.

/] accessDb4o

nj ect Cont ai ner db = Db4oEnbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENAME);

try {
/1 do sonething with db4do

} finally {
db. cl ose();

DB4OFILENAME is just a string value representing any filename. If the file with this name already
exists, it will be opened as db4o database, otherwise a new db4o database will be created.

For the following examples we will assume that our environment takes care of opening and closing the
ObjectContainer automagically, and stores the reference in a variable named 'db'.

2.2. Storing objects

To store an object, we simply call #store() on our database, passing any object as a parameter.

[l storeFirstPilot
Pilot pilotl = new Pilot ("M chael Schumacher", 100);

db. store(pilotl);
Systemout.println("Stored " + pilotl);

www.db4o.com

We'll need a second pilot, too.

/1 storeSecondPil ot

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
db. store(pilot2);

Systemout.println("Stored " + pilot2);

2.3. Retrieving objects

The easiest way to see the content of our database is to use Object Manager Enterprise, which will be
introduced in the next chapter . For now let's continue with the API overview and learn how to build
db4o queries.

db4o supplies several different querying systems, Query by Example (QBE), , Native Queries (NQ) and
the SODA Query API (SODA). In this first example we will introduce QBE. Once you are familiar with

storing objects, we encourage you to use Native Queries .

When using Query-By-Example, you create a prototypical object for db4o to use as an example of what
you wish to retrieve. db4o will retrieve all objects of the given type that contain the same (nhon-
default) field values as the example. The results will be returned as an ObjectSet instance. We will use

a convenience method #listResult() to display the contents of our result ObjectSet :

public static void listResult(List<?> result){
Systemout.println(result.size());
for (Object o : result) {

www.db4o.com

#ObjectManagerOverview
#NativeQueries

System out. println(o);

To retrieve all pilots from our database, we provide an 'empty' prototype:

/1 retrieveAllPil ot QBE

Pilot proto = new Pilot(null, 0);

bj ect Set result = db. quer yByExanpl e(proto);
listResult(result);

Note that we specify 0 points, but our results were not constrained to only those Pilots with 0 points; 0
is the default value for int fields.

db4o also supplies a shortcut to retrieve all instances of a class:

[/l retrieveAllPilots

bj ect Set result = db. queryByExanmpl e(Pi | ot. cl ass);
listResult(result);

www.db4o.com

For JDK 5 there also is a generics shortcut, using the query method:

List <Pilot> pilots = db.query(Pilot.class);

To query for a pilot by name:

/1 retrievePil ot ByName

Pilot proto = new Pilot ("M chael Schumacher", 0);
bj ect Set result = db. quer yByExanpl e(proto);
listResult(result);

And to query for Pilots with a specific number of points:

/] retrievePil ot ByExact Poi nts

Pilot proto = new Pilot(null, 100);

bj ect Set result = db. quer yByExanpl e(proto);
listResult(result);

www.db4o.com

Of course there's much more to db4o queries. They will be covered in more depth in later chapters.

2.4. Updating objects

Updating objects is just as easy as storing them. In fact, you use the same #store() method to update
your objects: just call #store() again after modifying any object.

/| updat ePi | ot

bj ect Set result = db
. quer yByExanmpl e(new Pi | ot ("M chael Schumacher", 0));
Pilot found = (Pilot) result.next();
found. addPoi nt s(11);
db. st ore(found);

Systemout.println("Added 11 points for " + found);
retrieveAl |l Pilots(db);

Notice that we query for the object first. This is an importaint point. When you call #store() to modify
a stored object, if the object is not 'known' (having been previously stored or retrieved during the
current session), db4o will insert a new object. db4o does this because it does not automatically match
up objects to be stored, with objects previously stored. It assumes you are inserting a second object
which happens to have the same field values.

To make sure you've updated the pilot, please return to any of the retrieval examples above and run

them again.

2.5. Deleting objects

www.db4o.com

Objects are removed from the database using the #delete() method.

/1 del et eFirstPil ot ByNare

bj ect Set result = db
. quer yByExanmpl e(new Pi |l ot ("M chael Schumacher", 0));
Pilot found = (Pilot) result.next();
db. del et e(f ound) ;
Systemout.println("Deleted " + found);
retrieveAll Pilots(db);

Let's delete the other one, too.

/1 del et eSecondPi | ot ByNarne

bj ect Set result = db
. quer yByExanpl e(new Pi | ot ("Rubens Barrichello", 0));
Pilot found = (Pilot) result.next();
db. del et e(f ound) ;
Systemout.println("Deleted " + found);
retrieveAll Pilots(db);

www.db4o.com

Please check the deletion with the retrieval examples above.

As with updating objects, the object to be deleted has to be 'known' to db4o. It is not sufficient to

provide a prototype object with the same field values.

2.6. Conclusion

That was easy, wasn't it? We have stored, retrieved, updated and deleted objects with a few lines of
code. Now you are probably interested to see how the database looks like. Let's have a look using db4o

graphical tool - Object Manager in the next chapter .

2.7. Full source

package com db4odoc. f 1. chapter1;

i mport java.io.?*;

i mport com db4o. *;
i mport com db4odoc. f1.*;

public class FirstStepsExanpl e extends Util {
final static String DB4OFI LENAME =
Syst em get Property("user. home")

+ "/formnul al. db4o";

public static void main(String[] args) {
new Fi | e(DB4OFI LENAME) . del et e() ;
accessDb4o();
new Fi | e(DB4OFI LENAME) . del et e() ;
nj ect Cont ai ner db = Db4oEnbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENAME);
try {
storeFirstPil ot (db);
st oreSecondPi | ot (db) ;
retrieveAl |l Pilots(db);
retrievePil ot ByNanme(db) ;
retrievePi | ot ByExact Poi nt s(db) ;
updat ePi | ot (db) ;
del et eFi r st Pi | ot ByNane(db) ;

www.db4o.com

#ObjectManagerOverview

del et eSecondPi | ot ByNane(db) ;

} finally {
db. cl ose();

public static void accessDb4do() {
nj ect Cont ai ner db = Db4oEnbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENANME)

try {
/1 do sonething with db4o

} finally {
db. cl ose();

public static void storeFirstPil ot (QbjectContainer db) ({
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
db. store(pilotl);
Systemout.println("Stored " + pilotl);

public static void storeSecondPil ot (Obj ect Cont ai ner db) {
Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
db. store(pil ot 2);
Systemout.println("Stored " + pilot2);

public static void retrieveAll Pil ot QBE(Obj ect Cont ai ner db) {
Pilot proto = new Pilot(null, 0);
nj ect Set result = db. quer yByExanpl e(proto);

listResult(result);

public static void retrieveAllPil ots(ObjectContainer db) {
nj ect Set result = db. queryByExanpl e(Pil ot. cl ass);

listResult(result);

public static void retrievePil ot ByNane(Obj ect Cont ai ner db) {

Pilot proto = new Pilot("M chael Schumacher", 0);

www.db4o.com

publ

publ

publ

publ

nj ect Set result = db. queryByExanpl e(proto);

listResult(result);

ic static void retrievePil ot ByExact Poi nt s(Obj ect Cont ai ner db)

Pilot proto = new Pilot(null, 100);
nj ect Set result = db. quer yByExanpl e(proto);

listResult(result);

ic static void updatePil ot ((ObjectContainer db) ({
njectSet result = db
. quer yByExanpl e(new Pil ot ("M chael Schumacher", 0));
Pilot found = (Pilot) result.next();
f ound. addPoi nt s(11) ;
db. st ore(found);
System out. println("Added 11 points for " + found);
retrieveAl |l Pilots(db);

ic static void del eteFirstPil ot ByName(Cbj ect Cont ai ner db) {
njectSet result = db

. quer yByExanpl e(new Pil ot ("M chael Schumacher", 0));
Pilot found = (Pilot) result.next();
db. del et e(f ound) ;
Systemout.println("Deleted " + found);
retrieveAl |l Pilots(db);

ic static void del et eSecondPi | ot ByNane(Obj ect Cont ai ner db) {
njectSet result = db

. quer yByExanpl e(new Pi |l ot ("Rubens Barrichello", 0));
Pilot found = (Pilot) result.next();
db. del et e(f ound) ;
Systemout.println("Deleted " + found);
retrieveAl |l Pilots(db);

www.db4o.com

www.db4o.com

3. Object Manager Enterprise Overview

If you did not install the Object Manager Enterprise yet, please, return to FirstGlance chapter and
follow the installation instructions there.
Once the Object Manager Enterprise (OME) is installed you can see it in Eclipse by selecting Window-

>0Open Perspective->0ther and choosing "OME". Typically, OME window should look similar to this:

www.db4o.com

#FirstGlance

In the OME perspective you can see:
- OME menu:

Run Window Help
1.l Connect/Disconnect DB

- OME toolbar buttons to access the frequently used functionality fast

- Db4o Browser: window displaying the contents of the open db4o database

- Property Viewer: window displaying the properties of the open database or the properties of the
selected database class

- Build Query: windows allowing to build a query using drag&drop functionality

- Query Results: window to browse the results of the query execution
3.1. Browsing the database

In the previous chapter we've learned how to create a new database and store objects in it. Let's

create a new database and store some objects in it now:

/1 del et eDat abase

new Fi | e(DB4OFI LENAME) . del et e() ;

/|l storePilots

nj ect Cont ai ner db=Db4oEnbedded. openFi | e(Db4oEnbedded
.newConfiguration(), DB4CFI LENAVE);

try {

www.db4o.com

#First

Pilot pilotl=new Pilot("Mchael Schumacher", 100);
db. store(pilotl);

Systemout.println("Stored "+pilotl);

Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
db. store(pilot?2);

Systemout.println("Stored "+pilot?2);

}
finally {

db. cl ose();

Now we can see the resultant database in the Object Manager. Please select OME-
>Connect/Disconnect DB (or use a shortcut button from the toolbar menu) and browse to ome.db4o
file in your user folder. (normally it is c:/Documents and Settings/[user name] on Windows XP/2000,
c:/Users/[user name] on Windows Vista and /home/[user_name] on *nix systems).

Once you've connected you will see a screen similar to this:

The db4o Browser window shows that there is 1 class in the database (Pilot), which contains 2 fields:
name and points. In the Property Viewer you can see more information about the class fields. You can
also change "Is indexed" field and add the index to the database by pressing "Save Index" button.
The filter panel on the top of the view allows easier navigation through the database with lots of
different classes. You can use wildcard searches and benefit from the search history to make the

selection faster.

3.2. Querying
It is easy to retrieve all of the Pilot instances from the database: just right-click the Pilot class in db4o
Browser and select "View All Objects". The list of the Pilot objects will be shown in the Query Result

view:

www.db4o.com

=] o] ||

=l l com.db4odoc. f1.ome.Pilot
..... 0 name

You can see object details in the detailed view below. Try to change any values and use Save button to
persist the changes to the database. You can also use Delete button to delete objects from the
database. For the objects containing field objects you will be prompted to use cascade on delete.

www.db4o.com

| com,db4odoc, fl.ome.Pilot 23]

Save |

More complex queries can be done using Build Query view:

s

l Row Id name paoints
1 Michael Schumacher
2 Rubens Barrichello
53ve| Deletel REﬁ’EShl il | = | 1 of 1 = | o |
Object 2 52 |
Field Value
= com,db4odoc, f1,ome. Pilot (G) com.db4odoc.f1.ome.Pilot
O name Rubens Barrichello
o points
4| | i3

7 =]| 4 padouery £ db QueryResdss|

e [0 = swdnl gie |

l:lm'

I | =

Expression Grolp O

0

E- 8 cpenobdodorfLoma Bt
O [sme

ponts

Faked

| ¥aoe

AddGrocp || Clesr 1|

= =
| d6 pr Wiewer I % —lim
| — . At Lt
:ﬂahﬁupﬂ}:m:fmm]

. of Objects 2.2

Freld | Doatatipe |febndeved ||

rsime [oz by Sty sz

poirits [mt Faia

1]

|| | Ren e

www.db4o.com

Drag "points" field from the db4oBrowser view into the Build Query view, set condition "Greater Than",
put a value "99" and run the query. You can return to the Built Query tab and modify the query later
on again. For example: add "AND" operator, drag "name" field and set the value to "Michael

Schumacher". Re-run the query.

www.db4o.com

When the new query is created, the previous query is stored and can be selected from the history

drop-down:

38 Build Query &3 . @B Query Results| ==

I -]

{{com.db4dodoc. f1.ome.Pilot:points Greater Than 99)) |

Expression Group O
Field Condition Value Operator
Pilot. points Greater T... | 9% AND
Pilot, namea Equal | Michael Schumacher OR

More sophisticated queries can be build by joining grouped constraints using "Add Group" button.
When you are done working with the database in OME, you can close the connection by using OME-

>Connect/Disconnect DB menu command or by using the equivalent button on the toolbar.

In the next chapter we will explore more about db4o querying capabilities. You can continue using
OME while going through the rest of this tutorial. If you are using the interactive version you will find
the database in formulal.db4o file in your user folder. (normally it is c:/Documents and Settings/[user
name] on Windows XP/2000, c:/Users/[user name] on Windows Vista and /home/[user_name] on *nix
systems). Please, remember to disconnect OME before running any of the tutorial examples, as only

one active connection is allowed to the database file.

www.db4o.com

#Query

4. Querying

db4o supplies three querying systems, Query-By-Example (QBE) Native Queries (NQ), and the SODA
API. In the previous chapter, you were briefly introduced to Query By Example(QBE).

Query-By-Example (QBE) is appropriate as a quick start for users who are still acclimating to storing
and retrieving objects with db4o.

Native Queries (NQ) are the main db4o query interface, recommended for general use.

SODA is the underlying internal API. It is provided for backward compatibility and it can be useful for
dynamic generation of queries, where NQ are too strongly typed.

www.db4o.com

4.1. Query by Example (QBE)

When using Query By Example (QBE) you provide db4o with a template object. db4o will return all of
the objects which match all non-default field values. This is done via reflecting all of the fields and
building a query expression where all non-default-value fields are combined with AND expressions.
Here's an example from the previous chapter:

/1 retrievePil ot ByName

Pilot proto = new Pilot("M chael Schumacher", 0);
nj ect Set result = db. quer yByExanpl e(proto);

listResult(result);

Querying this way has some obvious limitations:

- db4o must reflect all members of your example object.

- You cannot perform advanced query expressions. (AND, OR, NOT, etc.)

- You cannot constrain on values like 0 (integers), "" (empty strings), or nulls (reference types)
because they would be interpreted as unconstrained.

- You need to be able to create objects without initialized fields. That means you can not initialize fields
where they are declared. You can not enforce contracts that objects of a class are only allowed in a
well-defined initialized state.

- You need a constructor to create objects without initialized fields.

To get around all of these constraints, db4o provides the Native Query (NQ) system.

www.db4o.com

4._2. Native Queries

Wouldn't it be nice to pose queries in the programming language that you are using? Wouldn't it be
nice if all your query code was 100% typesafe, 100% compile-time checked and 100% refactorable?
Wouldn't it be nice if the full power of object-orientation could be used by calling methods from within
queries? Enter Native Queries.

Native queries are the main db4o query interface and they are the recommended way to query
databases from your application. Because native queries simply use the semantics of your

programming language, they are perfectly standardized and a safe choice for the future.

Native Queries are available for all platforms supported by db4o.

4.2.1. Concept

The concept of native queries is taken from the following two papers:

- Cook/Rosenberger, Native Queries for Persistent Objects, A Design White Paper

- Cook/Rai, Safe Query Objects: Statically Typed Objects as Remotely Executable Queries

4.2.2. Principle

Native Queries provide the ability to run one or more lines of code against all instances of a class.
Native query expressions should return true to mark specific instances as part of the result set. db4o
will attempt to optimize native query expressions and run them against indexes and without
instantiating actual objects, where this is possible.

4.2.3. Simple Example
Let's look at how a simple native query will look like in some of the programming languages and

dialects that db4o supports:

C# .NET

IList <Pilot> pilots = db. Query <Pilot> (del egate(Pilot pilot) {
return pilot.Points == 100;

1)

Java JDK 5

www.db4o.com

http://www.cs.utexas.edu/users/wcook/papers/NativeQueries/NativeQueries8-23-05.pdf
http://www.cs.utexas.edu/users/wcook/papers/SafeQuery05/SafeQueryFinal.pdf

List <Pilot> pilots = db.query(new Predicate<Pilot>() {
public bool ean match(Pilot pilot) {
return pilot.getPoints() == 100;

1)

Public Class PilotHundredPoints
Inherits Predicate
Public Function Match (pilot As Pilot) as Boolean
If pilot.Points = 100 Then
Return True
Else
Return False
End Function
End Class

A side note on the above syntax:
For all dialects without support for generics, Native Queries work by convention. A class that extends
the com.db4o.Predicate class is expected to have a boolean #match() method with one parameter to

describe the class extent:

bool ean mat ch(Pi |l ot candi date);

When using native queries, don't forget that modern integrated development environments (IDEs) can
do all the typing work around the native query expression for you, if you use templates and auto-

completion.

Here is how to configure a Native Query template with Eclipse 3.1:
From the menu, choose Window + Preferences + Java + Editor + Templates + New
As the name type "nq". Make sure that "java" is selected as the context on the right. Paste the

following into the pattern field:

www.db4o.com

List <${extent}> list = db.query(new Predicate <${extent}> () {
publ i ¢ bool ean mat ch(${extent} candi date){

return true,

1)

Now you can create a native query with three keys: n + q + Control-Space.

Similar features are available in most modern IDEs.

4.2.4. Advanced Example
For complex queries, the native syntax is very precise and quick to write. Let's compare to a SODA

query that finds all pilots with a given name or a score within a given range:

/! storePilots

db. store(new Pil ot ("M chael Schumacher", 100));
db. store(new Pil ot ("Rubens Barrichello", 99));

/] retrieveConpl exSODA

Query query=db. query();
query.constrain(Pilot.class);
Query poi nt Query=query. descend(" poi nts");
guery. descend("nanme") . constrai n("Rubens Barrichello")
.or(poi nt Query. constrai n(99).greater()
.and(poi nt Query. constrain(199).smaller()));
bj ect Set resul t =query. execut e();
listResult(result);

www.db4o.com

Here is how the same query will look like with native query syntax, fully accessible to autocompletion,
refactoring and other IDE features, fully checked at compile time:

C# .NET 2.0

IList <Pilot> result = db. Query<Pilot> (del egate(Pilot pilot) {
return pilot.Points > 99
&& pilot.Points < 199
|| pilot.Name == "Rubens Barrichell o";
1)

Java JDK 5

List <Pilot> result = db.query(new Predicate<Pilot>() {
publ i ¢ bool ean match(Pilot pilot) {
return pilot.getPoints() > 99
&& pilot.getPoints() < 199
|| pilot.getNanme().equal s("Rubens Barrichello");

1)

4.2.5. Arbitrary Code
Basically that's all there is to know about native queries to be able to use them efficiently. In principle

you can run arbitrary code as native queries, you just have to be very careful with side effects -
especially those that might affect persistent objects.

Let's run an example that involves some more of the language features available.

/1 retrieveArbitraryCodeNQ

www.db4o.com

final int[] points={1, 100};
Li st<Pi | ot > resul t =db. query(new Predi cate<Pil ot >() {
publ i ¢ bool ean match(Pilot pilot) {
for (int point : points) {
if (pilot.getPoints() == point) {

return true,

}
return pilot.getNane().startsWth("Rubens");

1)
listResult(result);

4.2.6. Native Query Performance

One drawback of native queries has to be pointed out: Under the hood db4o tries to analyze native
queries to convert them to SODA. This is not possible for all queries. For some queries it is very
difficult to analyze the flowgraph. In this case db4o will have to instantiate some of the persistent
objects to actually run the native query code. db4o will try to analyze parts of native query expressions
to keep object instantiation to the minimum.

The development of the native query optimization processor will be an ongoing process in a close
dialog with the db4o community. Feel free to contribute your results and your needs by providing
feedback to our db4o forums(Forums are accessible through free db4o membership).

The current state of the query optimization process is detailed in the chapter on Native Query
Optimization

With the current implementation, all above examples will run optimized, except for the "Arbitrary

Code" example - we are working on it.

4.2.7. Full source

www.db4o.com

http://forums.db4o.com/
http://developer.db4o.com/user/CreateUser.aspx?ReturnUrl=/default.aspx
#NQOptimization
#NQOptimization

package com db4odoc. f 1. chapter1;

i mport com db4o. Db4oEnbedded;

i mport com db4o. Qbj ect Cont ai ner;
i mport com db4o. Obj ect Set ;

i mport com db4o. query. Predi cat e;
i mport com db4o. query. Query;

i mport com db4odoc.f1.Util;

i mport java.util.List;

public class NQExanpl e extends Util {

final static String DB4OFI LENAME =
System get Property("user. homre") + "/formul al. db4o";

public static void main(String[] args) {
nj ect Cont ai ner db=Db4oEnmbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENAME);
try {
storePil ot s(db);
retri eveConpl exSODA(db) ;
retri eveConpl exNQ db) ;
retrieveArbitraryCodeNQ db);
cl ear Dat abase(db) ;
}
finally {
db. cl ose();

public static void storePil ots(ObjectContainer db) {
db. store(new Pil ot ("M chael Schumacher”, 100));
db. store(new Pi |l ot ("Rubens Barrichello", 99));

public static void retrieveConpl exSODA(Obj ect Cont ai ner db) {

Query query=db. query();
qguery.constrai n(Pilot.cl ass);

www.db4o.com

Query poi nt Query=query. descend(" poi nts");
guery. descend("nane"). constrai n("Rubens Barrichell o")
. or (poi nt Query. constrain(99).greater()
.and(poi nt Query. constrai n(199).snmaller()));
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveConpl exNQ Obj ect Cont ai ner db) {
Li st<Pi | ot > resul t =db. query(new Predi cate<Pilot>() {
public bool ean match(Pilot pilot) {
return pilot.getPoints()>99
&& pil ot . get Poi nt s() <199
|| pilot.getName().equal s("Rubens Barrichello");

1)

listResult(result);

public static void retrieveArbitraryCodeNQ Object Contai ner db) ({
final int[] points={1, 100};
Li st<Pi | ot > resul t =db. query(new Predi cate<Pilot>() {
public bool ean match(Pilot pilot) {
for (int point : points) {
if (pilot.getPoints() == point) {

return true;

}
return pilot.getNane().startsWth("Rubens");

1)

listResult(result);

public static void cl ear Dat abase(Obj ect Cont ai ner db) {
nj ect Set resul t =db. quer yByExanpl e(Pi | ot. cl ass);
whil e(result. hasNext ()) {
db. del ete(result. next());

www.db4o.com

www.db4o.com

4.3. SODA Query API

The SODA query API is db4o's low level querying API, allowing direct access to nodes of query graphs.
Since SODA uses strings to identify fields, it is neither perfectly typesafe nor compile-time checked and
it also is quite verbose to write.

For most applications Native Queries will be the better querying interface.

However there can be applications where dynamic generation of queries is required, that's why SODA
is explained here.

4.3.1. Simple queries
Let's see how our familiar QBE queries are expressed with SODA. A new Query object is created

through the #query() method of the ObjectContainer and we can add Constraint instances to it. To find
all Pilot instances, we constrain the query with the Pilot class object.

// retrieveAll Pilots

Query query=db. query();
qguery.constrain(Pilot.class);

bj ect Set resul t =query. execut e();
listResult(result);

Basically, we are exchanging our 'real' prototype for a meta description of the objects we'd like to hunt
down: a query graph made up of query nodes and constraints. A query node is a placeholder for a

candidate object, a constraint decides whether to add or exclude candidates from the result.

Our first simple graph looks like this.

www.db4o.com

#NativeQueries

" O¢——[ctass . pilot |

We're just asking any candidate object (here: any object in the database) to be of type Pilot to
aggregate our result.

To retrieve a pilot by name, we have to further constrain the candidate pilots by descending to their
name field and constraining this with the respective candidate String.

/1 retrievePil ot ByNane

Query query=db. query();
guery.constrain(Pilot.class);

query. descend("nane").constrai n("M chael Schumacher");

bj ect Set resul t =query. execut e();
listResult(result);

What does #descend mean here? Well, just as we did in our 'real' prototypes, we can attach
constraints to child members of our candidates.

name

So a candidate needs to be of type Pilot and have a member named 'name' that is equal to the given
String to be accepted for the result.

www.db4o.com

Note that the class constraint is not required: If we left it out, we would query for all objects that
contain a 'name' member with the given value. In most cases this will not be the desired behavior,
though.

Finding a pilot by exact points is analogous.We just have to cross the Java primitive/object divide.

/] retrievePil ot ByExact Poi nt's

Query query=db. query();
query.constrain(Pilot.class);
query. descend(" poi nts").constrai n(100);

bj ect Set resul t =query. execut e();

listResult(result);

4.3.2. Advanced queries

Now there are occasions when we don't want to query for exact field values, but rather for value
ranges, objects not containing given member values, etc. This functionality is provided by the
Constraint API.

First, let's negate a query to find all pilots who are not Michael Schumacher:

/] retrieveByNegation

Query query=db. query();

query.constrai n(Pilot.cl ass);

query. descend("nane").constrai n("M chael Schumacher").not();
bj ect Set resul t =query. execut e();

listResult(result);

www.db4o.com

Where there is negation, the other boolean operators can't be too far.

/] retrieveByConjunction

Query query=db. query();

qguery.constrain(Pilot.class);

Constrai nt constr=query.descend("nane")
.constrain("M chael Schumacher");

query. descend(" poi nts")

.constrain(99).and(constr);

bj ect Set resul t =query. execut e();
listResult(result);

/] retrieveByDi sjunction

Query query=db. query();

query.constrain(Pilot.class);

Constrai nt constr=query.descend("nane")
.constrain("M chael Schumacher");

query. descend(" poi nts")
.constrain(99).or(constr);

bj ect Set resul t =query. execut e();

listResult(result);

www.db4o.com

We can also constrain to a comparison with a given value.

/] retrieveByConparison

Query query=db. query();
qguery.constrain(Pilot.class);
query. descend(" poi nts")

.constrain(99).greater();

bj ect Set resul t =query. execut e();
listResult(result);

The query API also allows to query for field default values.

/1 retrieveByDefaul t Fi el dval ue

Pi | ot sonebody=new Pi | ot (" Sonebody el se", 0);
db. st or e(sonebody) ;

Query query=db. query();
qguery.constrain(Pilot.class);

query. descend("poi nts").constrain(0);

bj ect Set resul t =query. execut e();
listResult(result);

db. del et e(sonebody) ;

www.db4o.com

It is also possible to have db4o sort the results.

/! retrieveSorted

Query query=db. query();
qguery.constrain(Pilot.class);

query. descend("nane"). order Ascendi ng() ;
bj ect Set resul t =query. execut e();
listResult(result);

query. descend(" nane") . or der Descendi ng() ;

resul t =query. execute();
listResult(result);

All these techniques can be combined arbitrarily, of course. Please try it out. There still may be cases
left where the predefined query API constraints may not be sufficient - don't worry, you can always let
db4o run any arbitrary code that you provide in an Evaluation. Evaluations will be discussed in a later
chapter.

To prepare for the next chapter, let's clear the database.

www.db4o.com

#Evaluations
#Evaluations

/] cl ear Dat abase

nj ect Set resul t =db. quer yByExanpl e(Pi | ot. cl ass);
whil e(result. hasNext()) {
db. del ete(result. next());

OUTPUT:

4.3.3. Conclusion
Now you have been provided with the following alternative approaches to query db4o databases:
Query-By-Example,.? net LINQ, Native Queries, SODA.

Which one is the best to use? Some hints:

- Native queries are targeted to be the primary interface for db4o, so they should be preferred.

- With the current state of the db4o query optimizer there may be queries that will execute faster in
SODA style, so it can be used to tune applications. SODA can also be more convenient for constructing
dynamic queries at runtime.

- Query-By-Example is nice for simple one-liners, but restricted in functionality. If you like this

approach, use it as long as it suits your application's needs.

Of course you can mix these strategies as needed.

We have finished our walkthrough and seen the various ways db4o provides to pose queries. But our
domain model is not complex at all, consisting of one class only. Let's have a look at the way db4o

handles object associations in the next chapter .

4.3.4. Full source

package com db4odoc. f 1. chapter1;

i mport com db4o. *;
i mport com db4o. query. Constrai nt;
i mport com db4o. query. Query;

www.db4o.com

#Structured

i mport com db4odoc. f1.*;

public class QueryExanple extends Uil ({

final static String DB4OFI LENAME =
System get Property("user. home") + "/formul al. db4o"

public static void main(String[] args) {
nj ect Cont ai ner db=Db4oEnmbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENANME)

try {
storeFirstPil ot (db);
st oreSecondPi | ot (db) ;
retrieveAl |l Pilots(db);
retrievePil ot ByNanme(db);
retrievePi | ot ByExact Poi nt s(db) ;
retri eveByNegati on(db);
retri eveByConj uncti on(db);
retrieveByDi sjunction(db);
retri eveByConpari son(db);
retri eveByDef aul t Fi el dVal ue(db);
retrieveSorted(db);
cl ear Dat abase(db) ;

}

finally {
db. cl ose();

public static void storeFirstPil ot (ObjectContainer db) ({
Pilot pilotl=new Pilot ("M chael Schumacher", 100);
db. store(pilotl);
Systemout.println("Stored "+pilotl);

public static void storeSecondPil ot (Obj ect Cont ai ner db) {
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
db. store(pil ot 2);
Systemout.println("Stored "+pilot?2);

www.db4o.com

public static void retrieveAllPil ots(ObjectContainer db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
nj ect Set resul t =query. execute();

listResult(result);

public static void retrievePil ot ByNane(Obj ect Cont ai ner db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("nane"). constrai n("M chael Schumacher");
nj ect Set resul t =query. execute();

listResult(result);

public static void retrievePil ot ByExact Poi nt s(
oj ect Cont ai ner db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("poi nts") . constrain(100);
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveByNegati on(Cbj ect Contai ner db) ({
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("nane"). constrai n("M chael Schumacher"). not ();
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveByConjunction(ObjectContai ner db) {
Query query=db. query();
qguery.constrai n(Pilot.cl ass);
Constrai nt constr=query. descend("nane"
.constrain("M chael Schumacher");
qguery. descend(" poi nts")
.constrain(99).and(constr);

nj ect Set resul t =query. execute();

www.db4o.com

listResult(result);

public static void retrieveByD sjunction(ObjectContai ner db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
Constrai nt constr=query. descend("nane"
.constrain("M chael Schumacher");
qguery. descend(" poi nts")
.constrain(99).or(constr);
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveByConpari son(Cbject Contai ner db) ({
Query query=db. query();
guery.constrai n(Pilot.cl ass);
qguery. descend(" poi nts")
.constrain(99).greater();
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveByDefaultFiel dval ue(
oj ect Cont ai ner db) {
Pi | ot sonebody=new Pi | ot (" Sonebody el se", 0);
db. st or e(sonebody) ;
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("poi nts").constrain(0);
nj ect Set resul t =query. execute();
listResult(result);

db. del et e(sonebody) ;

public static void retrieveSorted(Object Contai ner db) {
Query query=db. query();
qguery.constrai n(Pilot.cl ass);
guery. descend("nane") . order Ascendi ng() ;
nj ect Set resul t =query. execute();

listResult(result);

www.db4o.com

guery. descend("nane"). or der Descendi ng() ;
resul t =query. execut e();

listResult(result);

public static void cl ear Dat abase(Obj ect Cont ai ner db) {
nj ect Set resul t =db. quer yByExanpl e(Pi | ot. cl ass);
whil e(result. hasNext()) {
db. del ete(result. next());

www.db4o.com

5. Structured objects

It's time to extend our business domain with another class and see how db4o handles object

interrelations. Let's give our pilot a vehicle.

package com db4odoc. f 1. chapt er 2;
public class Car {
private String nodel;
private Pilot pilot;
public Car(String nodel) {

t hi s. npdel =npdel ;

this.pilot=null;

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot = pilot;

public String getMdel () {

return nodel ;

public String toString() {

return mdel +"["+pi | ot +|l] ||;

5.1. Storing structured objects

To store a car with its pilot, we just call #store() on our top level object, the car. The pilot will be

www.db4o.com

stored implicitly.

/] storeFirstCar
Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);

carl.setPilot(pilotl);
db. store(carl);

Of course, we need some competition here. This time we explicitly store the pilot before entering the
car - this makes no difference.

/] storeSecondCar

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
db. store(pil ot 2);

Car car2 = new Car("BMWV);

car2.setPil ot (pilot?2);
db. store(car?2);

5.2. Retrieving structured objects

5.2.1. QBE

To retrieve all cars, we simply provide a 'blank' prototype.

/'l retrieveAl |l Cars@BE
Car proto = new Car(null);

nj ect Set result = db. quer yByExanpl e(proto);

listResult(result);

www.db4o.com

We can also query for all pilots, of course.

/1 retrieveAllPilotsQBE

Pilot proto = new Pilot(null, 0);

bj ect Set result = db. quer yByExanpl e(proto);
listResult(result);

Now let's initialize our prototype to specify all cars driven by Rubens Barrichello.

/] retrieveCarByPi | ot QBE

Pilot pilotproto = new Pil ot ("Rubens Barrichello", 0);
Car carproto = new Car(null);
carproto.setPilot(pilotproto);

bj ect Set result = db. quer yByExanpl e(car proto);
listResult(result);

www.db4o.com

What about retrieving a pilot by car? We simply don't need that - if we already know the car, we can
simply access the pilot field directly.

5.2.2. Native Queries

Using native queries with constraints on deep structured objects is straightforward, you can do it just
like you would in plain other code.

Let's constrain our query to only those cars driven by a Pilot with a specific name:

/1 retrieveCarsByPil ot NaneNative

final String pilotNane = "Rubens Barrichello";
Li st<Car> results = db. query(new Predi cat e<Car>() {
public bool ean match(Car car) {

return car.getPilot().getNane().equal s(pil ot Nane);

1)

listResult(results);

5.2.3. SODA Query API

In order to use SODA for querying for a car given its pilot's name we have to descend two levels into
our query.

www.db4o.com

/] retrieveCarByPil ot NameQuery

Query query = db. query();

query. constrain(Car. cl ass);

guery. descend("pilot").descend("name"). constrain("Rubens
Barrichell 0");

bj ect Set result = query. execute();
listResult(result);

We can also constrain the pilot field with a prototype to achieve the same result.

/1 retrieveCarByPil ot Prot oQuery

Query query = db. query();
query. constrain(Car. cl ass);
Pilot proto = new Pilot("Rubens Barrichello", 0);

query. descend("pilot").constrai n(proto);

bj ect Set result = query. execute();
listResult(result);

We have seen that descending into a query provides us with another query. Starting out from a query
root we can descend in multiple directions. In practice this is the same as ascending from one child to

www.db4o.com

a parent and descending to another child. We can conclude that queries turn one-directional references
in our objects into true relations. Here is an example that queries for "a Pilot that is being referenced

by a Car, where the Car model is 'Ferrari'™:

/] retrievePil ot ByCar Model Query

Query carquery = db. query();
carquery. constrai n(Car.cl ass);
carquery. descend("nmodel ").constrain("Ferrari");

Query pilotquery = carquery.descend("pilot");

bj ect Set result = pilotquery. execute();
listResult(result);

5.3. Updating structured objects

To update structured objects in db4o, we simply call #store() on them again.

/| updat eCar

www.db4o.com

Li st<Car> result = db. query(new Predi cate<Car>() {
public bool ean match(Car car) {

return car.get Mdel ().equal s("Ferrari");

1)

Car found = (Car) result.get(0);

found. setPi |l ot (new Pil ot (" Sonebody el se", 0));

db. st ore(found);

result = db. query(new Predi cate<Car>() {
public bool ean match(Car car) {

return car.get Mdel ().equal s("Ferrari");

1)
listResult(result);

Let's modify the pilot, too.

/] updat ePi | ot Si ngl eSessi on

Li st<Car> result = db. query(new Predi cate<Car>() {
public bool ean match(Car car) {

return car.get Mdel ().equal s("Ferrari");

1)

Car found = result.get(0);

found. getPil ot ().addPoi nts(1);

db. st ore(found);

result = db. query(new Predi cate<Car>() {
public bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari");

www.db4o.com

1)
listResult(result);

Nice and easy, isn't it? But wait, there's something evil lurking right behind the corner. Let's see what
happens if we split this task in two separate db4o sessions: In the first we modify our pilot and update
his car:

/| updat ePi | ot Separ at eSessi onsPart 1

Li st<Car> result = db. query(new Predi cat e<Car>() {
public bool ean match(Car car) {

return car.get Mdel ().equal s("Ferrari");

1)

Car found = result.get(0);
found. getPil ot ().addPoi nts(1);
db. st ore(found);

And in the second, we'll double-check our modification:

/| updat ePi | ot Separ at eSessi onsPart 2
Li st<Car> result = db. query(new Predi cate<Car>() {

public bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari");

1)
listResult(result);

www.db4o.com

Looks like we're in trouble: Why did the Pilot's points not change? What's happening here and what can
we do to fix it?

5.3.1. Update depth

Imagine a complex object with many members that have many members themselves. When updating
this object, db4o would have to update all its children, grandchildren, etc. This poses a severe

performance penalty and will not be necessary in most cases - sometimes, however, it will.

So, in our previous update example, we were modifying the Pilot child of a Car object. When we saved
the change, we told db4o to save our Car object and assumed that the modified Pilot would be
updated. But we were modifying and saving in the same manner as we were in the first update
sample, so why did it work before? The first time we made the modification, db4o never actually had to
retrieve the modified Pilot it returned the same one that was still in memory that we modified, but it
never actually updated the database. The fact that we saw the modified value was, in fact, a bug.

Restarting the application would show that the value was unchanged.

To be able to handle this dilemma as flexible as possible, db4o introduces the concept of update depth
to control how deep an object's member tree will be traversed on update. The default update depth for
all objects is 1, meaning that only primitive and String members will be updated, but changes in object

members will not be reflected.

db4o provides means to control update depth with very fine granularity. For our current problem we'll
advise db4o to update the full graph for Car objects by setting #cascadeOnUpdate() for this class

accordingly.

/1 updat ePi | ot Separ at eSessi onsl nmpr ovedPart 1

EnbeddedConfi gurati on config = Db4oEnbedded. newConfi guration();
confi g.conmon() . obj ect C ass(Car. cl ass) . cascadeOnUpdat e(true);

bj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g, DB4OFI LENAME);
Li st<Car> result = db. query(new Predicate<Car>() {

www.db4o.com

public bool ean match(Car car) {

return car.get Mdel ().equal s("Ferrari");

1)

if (result.size() > 0) {
Car found = result.get(0);
found. getPil ot ().addPoints(1);
db. st ore(found);

}
db. cl ose();

/| updat ePi | ot Separ at eSessi ons| npr ovedPart 2

bj ect Cont ai ner db = Db4oEnbedded. openFi | e(Db4oEnbedded
.newConfiguration(), DB4OFI LENAME);

Li st<Car> result = db. query(new Predi cate<Car>() {
public bool ean match(Car car) {

return car.get Mdel ().equal s("Ferrari");

1)
Car car = result.get(0);

listResult(result);
db. cl ose();

This looks much better.

Note that container configuration must be passed when the container is opened.

We'll cover update depth as well as other issues with complex object graphs and the respective db4o

www.db4o.com

configuration options in more detail in a later chapter.

5.4. Deleting structured objects

As we have already seen, we call #delete() on objects to get rid of them.

/! del et eFl at

Li st<Car> result = db. query(new Predi cate<Car>() {
public bool ean match(Car car) {

return car.get Mdel ().equal s("Ferrari");

1)

Car found = result.get(0);

db. del et e(f ound) ;

result = db. queryByExanpl e(new Car (null));
listResult(result);

Fine, the car is gone. What about the pilots?

/1 retrieveAllPilotsQBE

Pilot proto = new Pilot(null, 0);
bj ect Set result = db. quer yByExanpl e(proto);
listResult(result);

www.db4o.com

Ok, this is no real surprise - we don't expect a pilot to vanish when his car is disposed of in real life,
too. But what if we want an object's children to be thrown away on deletion, too?

5.4.1. Recursive deletion

You may already suspect that the problem of recursive deletion (and perhaps its solution, too) is quite
similar to our little update problem, and you're right. Let's configure db4o to delete a car's pilot, too,
when the car is deleted.

/1 del et eDeep

EnbeddedConfi guration config = Db4oEnbedded. newConfi guration();
config.comon(). objectd ass(Car. cl ass).cascadeOnDel et e(true);
Obj ect Cont ai ner db = Db4oEnbedded. openFil e(confi g, DBAOFI LENAME);
Li st<Car> result = db. query(new Predi cate<Car>() {

public bool ean match(Car car) {

return car. get Mbdel (). equal s("BWV);

1)

if (result.size() > 0) {
Car found = result.get(0);
db. del et e(f ound);

}

result = db. query(new Predi cate<Car>() {
public bool ean match(Car car) {

return true,

1)
listResult(result);
db. cl ose();

www.db4o.com

Again: Note that configuration should be passed to the call opening ObjectContainer.

Let's have a look at our pilots again.

/!l retrieveAllPilots

Pilot proto = new Pilot(null, 0);

bj ect Set result = db. quer yByExanpl e(proto);
listResult(result);

5.4.2. Recursive deletion revisited

But wait - what happens if the children of a removed object are still referenced by other objects?

/1 del et eDeepRevi sited

EnbeddedConfi guration config = Db4oEnbedded. newConfi guration();
config.comon(). obj ectd ass(Car. cl ass).cascadeOnDel et e(true);
Obj ect Cont ai ner db = Db4oEnbedded. openFil e(confi g, DBACOFI LENAME);
bj ect Set<Pil ot > result = db. query(new Predicate<Pilot>() {
publ i ¢ bool ean match(Pilot pilot) {
return pilot.getNane().equal s("M chael Schumacher");

1)

if (!result.hasNext()) {
Systemout.println("Pilot not found!'");
db. cl ose();

return;

www.db4o.com

Pilot pilot = (Pilot) result.next();
Car carl
Car car?2
carl.setPilot(pilot);

new Car ("Ferrari");
new Car (" BMN) ;

car2.setPilot(pilot);

db. store(carl);

db. store(car?2);

db. del et e(car 2);

Li st<Car> cars = db. query(new Predi cate<Car>() {
public bool ean match(Car car) {

return true,

1)

|istResult(cars);
db. cl ose();

I/l retrieveAllPilots

Pilot proto = new Pilot(null, 0);
bj ect Set result = db. quer yByExanpl e(proto);

listResult(result);

Houston, we have a problem - and there's no simple solution at hand. Currently db4o does not check
whether objects to be deleted are referenced anywhere else, so please be very careful when using this

feature.

www.db4o.com

Let's clear our database for the next chapter.

/] del et eAll

nj ect Set resul t =db. quer yByExanpl e(new bject());
whil e(result. hasNext()) {
db. del ete(result. next());

5.5. Conclusion

So much for object associations: We can hook into a root object and climb down its reference graph to
specify queries. But what about multi-valued objects like arrays and collections? We will cover this in

the next chapter .

5.6. Full source

package com db4odoc. f 1. chapt er 2;

i mport com db4o. Db4oEnbedded;

i mport com db4o. Qbj ect Cont ai ner;

i mport com db4o. Obj ect Set ;

i mport com db4o. confi g. EnbeddedConfi gurati on;
i mport com db4o. query. Predi cat e;

i mport com db4o. query. Query;

i mport com db4odoc.f1.Util;

i mport java.io.File;

i mport java.util.List;

public class StructuredExanple extends Util {

final static String DB4OFI LENAME =
System get Property("user. homre") + "/formul al. db4o";

www.db4o.com

#Collections

public static void main(String[] args) {
new Fi | e(DB4OFI LENAME) . del et e() ;
nj ect Cont ai ner db = Db4oEnbedded. openFi | e(Db4oEnbedded
. newConfi guration(), DB4OFI LENANME)
storeFirstCar(db);
st or eSecondCar (db) ;
retrieveAl | Car sQBE(db);
retrieveAll Pil ot sQBE(db);
retri eveCar ByPi | ot QBE(db) ;
retri eveCar ByPi | ot NaneQuer y(db);
retrieveCarByPi | ot Prot oQuery(db);
retrievePi | ot ByCar Model Query(db);
updat eCar (db) ;
updat ePi | ot Si ngl eSessi on(db) ;
updat ePi | ot Separ at eSessi onsPart 1(db) ;
db. cl ose();
db = Db4oEnbedded. openFi | e(Db4oEnmbedded
. newConfiguration(), DB4OFI LENANME)
updat ePi | ot Separ at eSessi onsPart 2(db) ;
db. cl ose();
updat ePi | ot Separ at eSessi onsl nprovedPart 1() ;
updat ePi | ot Separ at eSessi onsl nprovedPart 2() ;
db = Db4oEnbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENANME)

del et eFl at (db) ;

db. cl ose();

del et eDeep() ;

del et eDeepRevi sited();

public static void storeFirstCar(ObjectContainer db) {
Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.setPilot(pilotl);
db. store(carl);

public static void storeSecondCar (Obj ect Cont ai ner db) {
Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
db. store(pil ot 2);

www.db4o.com

Car car2 = new Car("BMWV);
car2.setPil ot (pilot?2);
db. store(car?2);

public static void retrieveAl |l Car sQBE(Obj ect Cont ai ner db) ({
Car proto = new Car(null)
nj ect Set result = db. quer yByExanpl e(proto);

listResult(result);

public static void retrieveAll Pil ot sQBE((hj ect Cont ai ner db) {
Pilot proto = new Pilot(null, 0);
nj ect Set result = db. quer yByExanpl e(proto);

listResult(result);

public static void retrieveAllPil ots(ObjectContainer db) {
nj ect Set result = db. queryByExanpl e(Pil ot. cl ass);

listResult(result);

public static void retrieveCarByPi | ot QBE(Obj ect Cont ai ner db) {
Pilot pilotproto = new Pilot("Rubens Barrichello", 0);
Car carproto = new Car(null)
carproto. setPil ot (pilotproto);
nj ect Set result = db. quer yByExanpl e(car proto);

listResult(result);

public static void retrieveCarByPil ot NaneQuer y(Obj ect Cont ai ner
db) {
Query query = db. query();
guery. constrain(Car.cl ass);
qguery. descend("pilot").descend("name"). constrain("Rubens
Barrichell o");
nj ect Set result = query. execute();

listResult(result);

public static void retrieveCarByPil ot Prot oQuery(Cbj ect Cont ai ner

www.db4o.com

db) {
Query query = db. query();
guery. constrai n(Car.cl ass);
Pilot proto = new Pil ot ("Rubens Barrichello", 0);
guery. descend("pilot").constrain(proto);
nj ect Set result = query. execute();

listResult(result);

public static void retrievePil ot ByCar Model Quer y(Qbj ect Cont ai ner
db) {
Query carquery = db. query();
car query. constrai n(Car.cl ass);
car query. descend("nodel ").constrain("Ferrari");
Query pilotquery = carquery.descend("pilot");
nj ect Set resul t

pi | ot query. execut e();

listResult(result);

public static void retrieveAllPilotsNative(QbjectContainer db) {
Li st<Pilot> results = db. query(new Predicate<Pilot>() {
public bool ean match(Pilot pilot) {

return true;

1)

listResult(results);

public static void retrieveAll Cars(ObjectContainer db) ({
nj ect Set results = db. queryByExanpl e(Car. cl ass);

listResult(results);

public static void retrieveCarsByPil ot NameNat i ve(Obj ect Cont ai ner
db) {
final String pilotName = "Rubens Barrichello";
Li st<Car> results = db. query(new Predi cate<Car>() {
public bool ean match(Car car) {

return car.getPilot().getName().equal s(pil ot Nane);

1)

www.db4o.com

listResult(results);

public static void updateCar(Object Contai ner db) {
Li st<Car> result = db. query(new Predicate<Car>() {
public bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)

Car found = (Car) result.get(0);

found. set Pi | ot (new Pi | ot (" Sormrebody el se", 0));

db. st ore(found);

result = db. query(new Predicate<Car>() {
public bool ean match(Car car) {

return car.get Model ().equal s("Ferrari"),

1)

listResult(result);

public static void updatePil ot Si ngl eSessi on(Qbj ect Cont ai ner db) {
Li st<Car> result = db. query(new Predicate<Car>() {
public bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)

Car found = result.get(0);

found. get Pi | ot ().addPoi nts(1);

db. st ore(found);

result = db. query(new Predicate<Car>() {
public bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)

listResult(result);

public static void
updat ePi | ot Separ at eSessi onsPart 1(Obj ect Cont ai ner db) {
Li st<Car> result = db. query(new Predicate<Car>() {

public bool ean match(Car car) {

www.db4o.com

return car.get Mddel ().equal s("Ferrari"),

1)

Car found = result.get(0);
found. get Pi | ot ().addPoi nts(1);
db. st ore(found);

public static void
updat ePi | ot Separ at eSessi onsPart 2(Obj ect Cont ai ner db) {
Li st<Car> result = db. query(new Predicate<Car>() {
public bool ean match(Car car) {

return car.get Model ().equal s("Ferrari"),

1)

listResult(result);

public static void updatePil ot Separ at eSessi onsl nprovedPart 1() {

EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();

confi g. common() . obj ect C ass(Car. cl ass) . cascadeOnUpdat e(true);

nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)

Li st<Car> result = db. query(new Predicate<Car>() {

public bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)

if (result.size() > 0) {
Car found = result.get(0);
found. get Pi | ot ().addPoi nts(1);
db. st ore(found);

}
db. cl ose();

public static void updatePil ot Separ at eSessi onsl nprovedPart 2() {
nj ect Cont ai ner db = Db4oEnbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENANME)

www.db4o.com

Li st<Car> result = db. query(new Predicate<Car>() {
public bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)
Car car = result.get(0);
listResult(result);

db. cl ose();

public static void del et eFl at (Obj ect Cont ai ner db) {
Li st<Car> result = db. query(new Predicate<Car>() {
public bool ean match(Car car) {

return car.get Model ().equal s("Ferrari"),

1)

Car found = result.get(0);

db. del et e(f ound) ;

result = db. queryByExanpl e(new Car(null));

listResult(result);

public static void del eteDeep() {

EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();

confi g. common() . obj ect C ass(Car. cl ass) . cascadeOnDel et e(true);

nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)

Li st<Car> result = db. query(new Predicate<Car>() {

public bool ean match(Car car) {

return car. get Model (). equal s("BMN);

1)

if (result.size() > 0) {
Car found = result.get(0);
db. del et e(f ound);

}

result = db. query(new Predicate<Car>() {
public bool ean match(Car car) {

return true;

www.db4o.com

1)
listResult(result);
db. cl ose();

public static void del et eDeepRevisited() {
EnbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();
confi g. common() . obj ect C ass(Car. cl ass) . cascadeOnDel et e(true);
nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)
bj ect Set<Pil ot > result = db. query(new Predicate<Pilot>() {
public bool ean match(Pilot pilot) ({

return pilot.getNane().equal s("M chael Schumacher");

1)

if (!result.hasNext()) {
Systemout.println("Pilot not found!");
db. cl ose();
return;

}

Pilot pilot = (Pilot) result.next();

Car carl

Car car?2

new Car("Ferrari");

new Car (" BMN) ;

carl.setPilot(pilot);

car2.setPilot(pilot);

db. store(carl);

db. store(car?2);

db. del et e(car 2) ;

Li st<Car> cars = db. query(new Predi cate<Car>() {
public bool ean match(Car car) {

return true;

1)
listResult(cars);
db. cl ose();

www.db4o.com

www.db4o.com

6. Collections and Arrays

We will slowly move towards real-time data processing now by installing sensors to our car and

collecting their output.

package com db4odoc. f 1. chapt er 4;

i mport java.util.*;

public class Sensor Readout {
private doubl e[] val ues;
private Date tine;

private Car car;

publ i c Sensor Readout (doubl e[] val ues, Date tine, Car car) {
t hi s. val ues=val ues;
this.time=tinme;

this.car=car;

public Car getCar() {

return car;

public Date getTinme() {

return tine;

public int getNumVal ues() ({

return val ues. | ength;

publ i c doubl e[] getVal ues(){

return val ues;

publ i c doubl e getVal ue(int idx) {

return val ues[idx];

www.db4o.com

public String toString() {
StringBuffer str=new StringBuffer();
str.append(car.toString())

.append(" : ")
.append(tinme.getTine())
.append(" : ");

for(int idx=0;idx<values.!|ength;idx++) {
i f(idx>0) {

str.append(',"');
}

str.append(val ues[idx]);

}

return str.toString();

A car may produce its current sensor readout when requested and keep a list of readouts collected

during a race.

package com db4odoc. f 1. chapt er 4;

i mport java.util.?*;

public class Car {
private String nodel;
private Pilot pilot;

private List history;

public Car(String nodel) {
t hi s(model , new Arraylist());

public Car(String nodel,List history) {
t hi s. nodel =nodel ;

this.pilot=null;

www.db4o.com

t hi s. hi st ory=hi story;

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot=pilot;

public String getMdel () {

return nodel ;

public List getH story() {

return history;

public void snapshot () {
hi st ory. add(new Sensor Readout (pol | (), new Date(),this));

protected double[] poll() {
int factor=history.size()+1;

return new doubl e[]{0. 1d*factor, 0. 2d*fact or, 0. 3d*factor};

public String toString() {

return nodel +"["+pil ot +"]/"+hi story. si ze();

We will constrain ourselves to rather static data at the moment and add flexibility during the next
chapters.

6.1. Storing

This should be familiar by now.

www.db4o.com

/] storeFirstCar
Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);

carl.setPilot(pilotl);
db. store(carl);

The second car will take two snapshots immediately at startup.

/| storeSecondCar

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car("BMWV);

car2.setPil ot (pilot?2);

car 2. snapshot () ;

car 2. snapshot () ;

db. store(car?2);

6.2. Retrieving

6.2.1. QBE

First let us verify that we indeed have taken snapshots.

/1 retrieveAl | Sensor Readout
Sensor Readout proto = new Sensor Readout (null, null, null);

nj ect Set results = db. queryByExanpl e(proto);

listResult(results);

www.db4o.com

As a prototype for an array, we provide an array of the same type, containing only the values we
expect the result to contain.

/1 retrieveSensor Readout QBE

Sensor Readout proto = new Sensor Readout (new double[] { 0.3, 0.1},
null, null);

bj ect Set results = db. quer yByExanpl e(prot o) ;

listResult(results);

Note that the actual position of the given elements in the prototype array is irrelevant.

To retrieve a car by its stored sensor readouts, we install a history containing the sought-after values.

/1 retrieveCar QBE

Sensor Readout prot oreadout = new Sensor Readout (
new double[] { 0.6, 0.2 }, null, null);

Li st protohistory = new Arraylist();

pr ot ohi st ory. add(pr ot or eadout) ;

Car protocar = new Car(null, protohistory);

Obj ect Set result = db. quer yByExanpl e(prot ocar);

listResult(result);

www.db4o.com

We can also query for the collections themselves, since they are first class objects.

I/l retrieveCollections

bj ect Set result = db. queryByExanpl e(new ArrayList());
listResult(result);

This doesn't work with arrays, though.

/] retrieveArrays

bj ect Set result = db. quer yByExanpl e(new double[] { 0.6, 0.4 });
listResult(result);

6.2.2. Native Queries

www.db4o.com

If we want to use Native Queries to find SensorReadouts with matching values, we simply write this as
if we would check every single instance:

/! retrieveSensor Readout Nati ve

Li st <Sensor Readout > results = db. query(new Predi cat e<Sensor Readout >()

{
publ i ¢ bool ean mat ch(Sensor Readout candi date) {
return Arrays. bi narySear ch(candi dat e. get Val ues(), 0.3) >= 0
&& Arrays. bi narySear ch(candi dat e. get Val ues(), 1.0) >=
0;
}
1)

listResult(results);

And here's how we find Cars with matching readout values:

I/l retrieveCarNative

Li st<Car> results = db. query(new Predi cat e<Car>() {
publ i ¢ bool ean match(Car candi date) ({
Li st history = candi date.getH story();
for (Object aH story : history) {
Sensor Readout readout = (SensorReadout) aHi story;
if (Arrays. bi narySear ch(readout. getValues(), 0.6) >= 0
| | Arrays. bi narySearch(readout. get Val ues(), 0.2)
>= 0)

return true,

www.db4o.com

return false;

1)
listResult(results);

6.2.3. Query API

Handling of arrays and collections is analogous to the previous example. First, lets retrieve only the
SensorReadouts with specific values:

/] retrieveSensor Readout Query

Query query = db. query();

guery. constrai n(Sensor Readout . cl ass) ;

Query val uequery = query. descend("val ues");
val uequery. constrain(0. 3);

val uequery. constrain(0.1);

bj ect Set result = query. execute();
listResult(result);

Then let's get some Cars with matching Readout values:

/] retrieveCarQuery

www.db4o.com

Query query = db. query();

guery. constrain(Car.cl ass);

Query historyquery = query.descend("history");

hi st oryquery. constrai n(Sensor Readout . cl ass) ;

Query val uequery = hi storyquery. descend("val ues");
val uequery. constrain(0. 3);

val uequery. constrain(0.1);

bj ect Set result = query. execute();
listResult(result);

6.3. Updating and deleting

This should be familiar, we just have to remember to take care of the update depth.

/| updat eCar

EnbeddedConfi guration config = Db4oEnbedded. newConfi guration();
config.comon(). obj ectd ass(Car. cl ass).cascadeOnUpdat e(true);
Obj ect Cont ai ner db = Db4oEnbedded. openFil e(confi g, DBACOFI LENAME);
Li st<Car> results = db. query(new Predi cat e<Car>() {

publ i ¢ bool ean match(Car candi date) ({

return true,

1)
if (results.size() > 0) {
Car car = results.get(0);
car. snapshot () ;
db. store(car);
retri eveAl | Sensor Readout Nat i ve(db);

}
db. cl ose();

www.db4o.com

There's nothing special about deleting arrays and collections, too.

Deleting an object from a collection is an update, too, of course.

/1 updat eCol | ection

EnbeddedConfi guration config = Db4oEnbedded. newConfi guration();
config.comon(). obj ectd ass(Car. cl ass).cascadeOnUpdat e(true);
Obj ect Cont ai ner db = Db4oEnbedded. openFil e(confi g, DBACOFI LENAME) ;
bj ect Set <Car > results = db. query(new Predi cate<Car>() {

publ i ¢ bool ean match(Car candi date) ({

return true,

1)
if (results.hasNext()) {
Car car = (Car) results.next();
car.getH story().renmve(0);
db. store(car.getHistory());
results = db. query(new Predi cat e<Car>() {
publ i ¢ bool ean match(Car candi date) ({

return true,

1)
while (results. hasNext()) {
car = results.next();
for (int idx = 0; idx < car.getH story().size(); idx++) {
Systemout.println(car.getH story().get(idx));

www.db4o.com

db. cl ose();

(This example also shows that with db4o it is quite easy to access object internals we were never

meant to see. Please keep this always in mind and be careful.)

We will delete all cars from the database again to prepare for the next chapter.

/1 del eteAll

EnbeddedConfi guration config = Db4oEnbedded. newConfi guration();
config.comon(). objectd ass(Car. cl ass).cascadeOnDel et e(true);
Obj ect Cont ai ner db = Db4oEnbedded. openFil e(confi g, DBACOFI LENAME) ;

Obj ect Set <Car> cars = db. query(new Predi cate<Car>() {
publ i c bool ean match(Car candi date) {

return true,

1)
whil e (cars.hasNext()) {
db. del ete(cars. next());
}
bj ect Set <Sensor Readout > readouts = db
.query(new Predi cat e<Sensor Readout >() {
publ i ¢ bool ean mat ch(Sensor Readout candi date) {

return true,

1)
whi |l e (readouts. hasNext()) {

db. del et e(readout s. next ());

}
db. cl ose();

www.db4o.com

6.4. Conclusion

Ok, collections are just objects. But why did we have to specify the concrete ArrayList type all the way?

Was that necessary? How does db4o handle inheritance? We will cover that in the next chapter.

6.5. Full source

package com db4odoc. f 1. chapt er 4;

i mport com db4o. Db4oEnbedded;

i mport com db4o. Qbj ect Cont ai ner;

i mport com db4o. Obj ect Set ;

i mport com db4o. confi g. EnmbeddedConfi gurati on;
i mport com db4o. query. Predi cat e;

i mport com db4o. query. Query;

i mport com db4odoc.f1.Util;

i mport java.io.File;
i mport java.util.Arraylist;
i mport java.util.Arrays;

i mport java.util.List;

public class Coll ectionsExanpl e extends Uil {
final static String DB4OFI LENAME =
System get Property("user. homre") + "/formul al. db4o";

public static void main(String[] args) {
new Fi | e(DB4OFI LENAME) . del et e() ;
nj ect Cont ai ner db = Db4oEnbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENAME);
try {
storeFirst Car (db);
st or eSecondCar (db) ;
retrieveAl | Sensor Readout (db) ;
retri eveSensor Readout QBE(db) ;
retri eveCar QBE(db);
retrieveCol |l ecti ons(db);

retrieveArrays(db);

www.db4o.com

#Inheritance

retrieveAl | Sensor Readout Nati ve(db);
retri eveSensor Readout Nat i ve(db);
retrieveCarNative(db);

retri eveSensor Readout Query(db);
retrieveCar Query(db);

db. cl ose();

updat eCar () ;

updat eCol | ecti on();

del eteAll ();

} finally {
db. cl ose();

public static void storeFirstCar(ObjectContainer db) {
Car carl = new Car("Ferrari");
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
carl.setPilot(pilotl);
db. store(carl);

public static void storeSecondCar (Obj ect Cont ai ner db) {
Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car("BMNV);
car2.setPil ot (pilot?2);
car 2. snapshot () ;
car 2. snapshot () ;

db. store(car?2);

public static void retrieveAll Sensor Readout (Qbj ect Cont ai ner db) {
Sensor Readout proto = new Sensor Readout (null, null, null)
nj ect Set results = db. quer yByExanpl e(proto);

listResult(results);

public static void retrieveAll Sensor Readout Nati ve(Obj ect Cont ai ner
db) {
Li st <Sensor Readout > results = db. query(new

Pr edi cat e<Sensor Readout >() {

www.db4o.com

publ i c bool ean mat ch(Sensor Readout candi date) {

return true;

1)

listResult(results);

public static void retrieveSensor Readout QBE(Obj ect Cont ai ner db) {
Sensor Readout proto = new Sensor Readout (new double[] { 0.3,
0.1},
null, null);
nj ect Set results = db. queryByExanpl e(proto);

listResult(results);

public static void retrieveSensor Readout Nati ve(Obj ect Cont ai ner
db) {
Li st <Sensor Readout > results = db. query(new
Pr edi cat e<Sensor Readout >() {
publ i c bool ean mat ch(Sensor Readout candi date) {

return Arrays. bi narySear ch(candi dat e. get Val ues(),

0.3) >=0
&& Arrays. bi narySear ch(candi dat e. get Val ues(),
1.0) >= 0;
}
1)

listResult(results);

public static void retrieveCar QBE(Obj ect Cont ai ner db) {
Sensor Readout protoreadout = new Sensor Readout (
new double[] { 0.6, 0.2}, null, null);
Li st protohistory = new ArraylList();
pr ot ohi st ory. add(pr ot or eadout) ;
Car protocar = new Car(null, protohistory);
nj ect Set result = db. quer yByExanpl e(protocar);

listResult(result);

public static void retrieveCarNative(Object Contai ner db) {
Li st<Car> results = db. query(new Predi cate<Car>() {

www.db4o.com

public bool ean match(Car candi date) {
Li st history = candi date. getHi story();
for (Object aH story : history) {
Sensor Readout readout = (SensorReadout) aHi story;
i f (Arrays.bi narySearch(readout. getVal ues(), 0.6)
>= 0
I
Arrays. bi narySear ch(readout . getVal ues(), 0.2) >= 0)
return true;

}

return false;

1)

listResult(results);

public static void retrieveCollections(ObjectContainer db) {
nj ect Set result = db. queryByExanpl e(new ArrayList());

listResult(result);

public static void retrieveArrays(Object Contai ner db) {
nj ect Set result = db. queryByExanpl e(new double[] { 0.6, 0.4
1)

listResult(result);

public static void retrieveSensor Readout Quer y(Obj ect Cont ai ner db)

Query query = db. query();

guery. constrai n(Sensor Readout . cl ass) ;

Query val uequery = query. descend("val ues");
val uequery. constrain(0. 3);

val uequery. constrai n(0.1);

nj ect Set result = query. execute();

listResult(result);

public static void retrieveCarQuery(Obj ect Cont ai ner db) {

Query query = db. query();
guery. constrai n(Car.cl ass);

www.db4o.com

Query historyquery = query.descend("history");

hi st oryquery. constrai n(Sensor Readout . cl ass) ;

Query val uequery = historyquery. descend("val ues");
val uequery. constrain(0. 3);

val uequery. constrain(0.1);

nj ect Set result = query. execute();

listResult(result);

public static void updateCar() {

EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();

confi g. common() . obj ect ass(Car. cl ass) . cascadeOnUpdat e(true);

nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)

Li st<Car> results = db. query(new Predi cate<Car>() {

public bool ean match(Car candi date) {

return true;

1)
if (results.size() > 0) {
Car car = results.get(0);
car. snapshot () ;
db. store(car);
retrieveAl | Sensor Readout Nat i ve(db);

}
db. cl ose();

public static void updateCollection() {

EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();

confi g. common() . obj ect ass(Car. cl ass) . cascadeOnUpdat e(true);

nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)

nj ect Set <Car> results = db. query(new Predi cate<Car>() {

public bool ean match(Car candi date) {

return true;

1)
if (results.hasNext()) {

www.db4o.com

Car car = (Car) results.next();

car.getHi story().renmve(0);

db. store(car.getHistory());

results = db. query(new Predi cate<Car>() {
public bool ean match(Car candi date) {

return true;

1)
while (results. hasNext()) {
car = results. next();
for (int idx = 0; idx < car.getHistory().size();
idx++) {
Systemout. println(car.getH story().get(idx));

}
db. cl ose();

public static void deleteAl () {
EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();
confi g. comon() . obj ect C ass(Car. cl ass) . cascadeOnDel et e(true);
nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)

nj ect Set <Car > cars = db. query(new Predi cat e<Car>() {
public bool ean match(Car candi date) {

return true;

1)
while (cars. hasNext()) {
db. del ete(cars. next());
}
bj ect Set <Sensor Readout > readouts = db
. query(new Predi cat e<Sensor Readout >() {
publ i c bool ean mat ch(Sensor Readout candi date) {

return true;

1)
whil e (readouts. hasNext()) {

www.db4o.com

db. del et e(r eadout s. next ());

}
db. cl ose();

www.db4o.com

7. Inheritance

So far we have always been working with the concrete (i.e. most specific type of an object. What about

subclassing and interfaces?

To explore this, we will differentiate between different kinds of sensors.

package com db4odoc. f 1. chapt er5;

i mport java.util.*;

public class Sensor Readout {
private Date tine;
private Car car;

private String description;

prot ect ed Sensor Readout (Date tine, Car car, String description) {
this.time=tine;
t hi s. car =car;

thi s. descri pti on=descri pti on;

public Car getCar() {

return car;

public Date getTinme() {

return tine;

public String getDescription() {

return description;

}
public String toString() {

return car+" : "+time+" : "+description;

www.db4o.com

package com db4odoc. f 1. chapt er5;
i mport java.util.*;
public class TenperatureSensor Readout extends SensorReadout {
private doubl e tenperature;
publ i c Tenper at ur eSensor Readout (
Date tine, Car car,
String description, double tenperature) ({

super (time, car, description);

t hi s. t emper at ur e=t enper at ur e;

public doubl e get Temperature() {

return tenperature;

public String toString() {

return super.toString()+" tenp : "+temnperature;

package com db4odoc. f 1. chapt er5;

i mport java.util.?*;

public class PressureSensor Readout extends SensorReadout {

private doubl e pressure;

publ i c PressureSensor Readout (

Date tine, Car car,

String description, double pressure) {

www.db4o.com

super (time, car, description);

t hi s. pressure=pressure;

public doubl e getPressure() {

return pressure,

public String toString() {

return super.toString()+" pressure : "+pressure;

Our car's snapshot mechanism is changed accordingly.

package com db4odoc. f 1. chapt er5;

i mport java.util.?*;

public class Car {
private String nodel;
private Pilot pilot;

private List history;

public Car(String nodel) {
t hi s. nodel =nodel ;
this.pilot=null;

t hi s. hi story=new ArraylList();

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot=pilot;

www.db4o.com

public String getMdel () {

return nodel ;

public SensorReadout[] getHi story() {
return (Sensor Readout[])hi story.toArray(new

Sensor Readout [hi story. size()]);

}

public void snapshot () {
hi st ory. add(new Tenper at ur eSensor Readout (
new Date(),this,"oil",poll Q| Tenperature()));
hi st ory. add(new Tenper at ur eSensor Readout (
new Date(),this,"water", pol | Wat er Tenperature()));
hi st ory. add(new PressureSensor Readout (

new Date(),this,"oil",poll Gl Pressure()));

prot ected double poll G| Tenperature() {

return 0.1*hi story.size();

prot ect ed doubl e pol | Wat er Tenperature() {

return 0.2*history.size();

prot ected double poll G| Pressure() {

return 0.3*history.size();

public String toString() {

return nodel +"["+pil ot +"]/"+hi story. size();

7.1. Storing

Our setup code has not changed at all, just the internal workings of a snapshot.

www.db4o.com

/! storeFirstCar

Car carl=new Car("Ferrari");
Pilot pilotl=new Pilot("Mchael Schumacher", 100);
carl.setPilot(pilotl);

db. store(carl);

/! storeSecondCar

Pil ot pilot2=new Pilot("Rubens Barrichello", 99);
Car car2=new Car ("BWV);

car2.setPilot(pilot2);

car 2. snapshot () ;

car 2. snapshot () ;

db. store(car?2);

7.2. Retrieving

db4o will provide us with all objects of the given type. To collect all instances of a given class, no
matter whether they are subclass members or direct instances, we just provide a corresponding

prototype.

/1 retrieveTenperat ur eReadout sQBE

Sensor Readout pr ot o=

new Tenper at ur eSensor Readout (nul |, nul |, nul |, 0. 0);
bj ect Set resul t =db. quer yByExanpl e(pr ot 0) ;
listResult(result);

www.db4o.com

/'l retrieveAl | Sensor Readout sQBE

Sensor Readout prot o=new Sensor Readout (nul |, nul |, null);
bj ect Set resul t =db. quer yByExanpl e(pr ot 0) ;
listResult(result);

This is one more situation where QBE might not be applicable: What if the given type is an interface or

an abstract class? Well, there's a little trick to keep in mind: Class objects receive special handling with
QBE.

www.db4o.com

/1 retrieveAl | Sensor Readout sQBEAl t ernati ve

bj ect Set resul t =db. quer yByExanpl e(Sensor Readout . cl ass) ;
listResult(result);

And of course there's our SODA API:

/] retrieveAl |l Sensor Readout sQuery

Query query=db. query();

guery. constrai n(Sensor Readout . cl ass) ;
bj ect Set resul t =query. execut e();
listResult(result);

www.db4o.com

7.3. Updating and deleting

is just the same for all objects, no matter where they are situated in the inheritance tree.

Just like we retrieved all objects from the database above, we can delete all stored objects to prepare
for the next chapter.

/1 del eteAll
bj ect Set resul t =db. quer yByExanpl e(new Obj ect ());

whi |l e(resul t.hasNext()) {
db. del ete(result.next());

7.4. Conclusion
Now we have covered all basic OO features and the way they are handled by db4o. We will complete
the first part of our db4o walkthrough in the next chapter by looking at deep object graphs, including

recursive structures.

7.5. Full source

www.db4o.com

#Deep

package com db4odoc. f 1. chapt er5;

i mport java.io.*;

i mport com db4o. *;
i mport com db4o. query. *;
i mport com db4odoc. f1.*;

public class InheritanceExanple extends Uil ({

final static String DB4OFI LENAME =
System get Property("user. homre") + "/formul al. db4o";

public static void main(String[] args) {
new Fi | e(DB4OFI LENAME) . del et e() ;
nj ect Cont ai ner db=Db4oEnmbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENAME);

try {
storeFirst Car(db);
st or eSecondCar (db) ;
retri eveTenper at ur eReadout sQBE(db) ;
retrieveAl | Sensor Readout sQBE(db) ;
retrieveAl | Sensor Readout sSQBEAI t er nati ve(db);
retrieveAl | Sensor Readout sQuery(db);
retrieveAl | Obj ect sQBE(db);

}

finally {
db. cl ose();

public static void storeFirstCar(ObjectContainer db) {
Car carl=new Car("Ferrari");
Pilot pilotl=new Pilot ("M chael Schumacher", 100);
carl.setPilot(pilotl);
db. store(carl);

www.db4o.com

public static void storeSecondCar (Obj ect Cont ai ner db) {
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
Car car2=new Car ("BMV);
car2.setPil ot (pilot?2);
car 2. snapshot () ;
car 2. snapshot () ;

db. store(car?2);

public static void retrieveAl |l Sensor Readout s QBE(
oj ect Cont ai ner db) {
Sensor Readout prot o=new Sensor Readout (nul |, nul |, nul |')
nj ect Set resul t =db. quer yByExanpl e(proto) ;

listResult(result);

public static void retrieveTenperat ur eReadout s QBE(
oj ect Cont ai ner db) {
Sensor Readout proto=
new Tenper at ur eSensor Readout (nul |, nul |, nul I, 0. 0);
nj ect Set resul t =db. quer yByExanpl e(proto) ;

listResult(result);

public static void retrieveAl |l Sensor Readout SQBEAI t er nati ve(
oj ect Cont ai ner db) {
nj ect Set resul t =db. quer yByExanpl e(Sensor Readout . cl ass) ;

listResult(result);

public static void retrieveAl |l Sensor Readout sQuer y(
oj ect Cont ai ner db) {
Query query=db. query();
guery. constrai n(Sensor Readout . cl ass) ;
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveAl |l Cbj ect sQBE(Obj ect Cont ai ner db)
nj ect Set resul t =db. quer yByExanpl e(new bject());

listResult(result);

www.db4o.com

www.db4o.com

8. Deep graphs

We have already seen how db4o handles object associations, but our running example is still quite flat
and simple, compared to real-world domain models. In particular we haven't seen how db4o behaves
in the presence of recursive structures. We will emulate such a structure by replacing our history list
with a linked list implicitely provided by the SensorReadout class.

package com db4odoc. f 1. chapt er 6;

i mport java.util.*;

public class Sensor Readout {
private Date tine;
private Car car;
private String description;

private Sensor Readout next;

prot ect ed Sensor Readout (Date tine, Car car, String description) {
this.time=tine;
t hi s. car =car;
thi s. descri pti on=descri pti on;

t hi s. next=nul | ;

public Car getCar() {

return car;

public Date getTinme() {

return tine;

public String getDescription() {

return description;

publ i c Sensor Readout getNext () {

return next;

www.db4o.com

public void append(Sensor Readout readout) ({
i f(next==null) {

next =r eadout ;

}
el se {

next . append(readout);
}

public int countEl ements() {

return (next==null ? 1 : next.countEl ements()+1);

public String toString() {

return car+" : "+time+" : "+description;

Our car only maintains an association to a 'head' sensor readout now.

package com db4odoc. f 1. chapt er 6;

i mport java.util.?*;

public class Car {
private String nodel;
private Pilot pilot;

private Sensor Readout history;

public Car(String nodel) {
t hi s. nodel =nodel ;
this.pilot=null;

t hi s. hi story=null;

www.db4o.com

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot=pilot;

public String getMdel () {

return nodel ;

publ i c Sensor Readout getHi story() ({

return history;

public void snapshot () {
appendToH st ory(new Tenper at ur eSensor Readout (
new Date(),this,"oil",poll Q| Tenperature()));
appendToH st ory(new Tenper at ur eSensor Readout (
new Date(),this,"water", pol | Wat er Tenperature()));
appendToH st ory(new PressureSensor Readout (

new Date(),this,"oil",poll Gl Pressure()));

prot ected double poll G| Tenperature() {

return 0.1*count Hi st oryEl enent s();

prot ect ed doubl e pol | Wat er Tenperature() {

return 0.2*count Hi storyEl enents();

prot ected double poll G| Pressure() {

return 0. 3*count Hi storyEl enents();

public String toString() {

return nodel +"["+pil ot +"]/" +count Hi st or yEl ement s() ;

www.db4o.com

private int countHi storyEl ements() {

return (history==null ? 0 : history.countEl enents());

private void appendToH st ory(Sensor Readout readout) ({
i f(history==null) {
hi st ory=r eadout ;

}

el se {

hi st ory. append(readout);

8.1. Storing and updating

No surprises here.

/] storeCar

Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);
car.setPilot(pilot);

db. store(car);

Now we would like to build a sensor readout chain. We already know about the update depth trap, so
we configure this first.

/1 takeManySnapshot s

EnbeddedConfi gurati on config = Db4oEnbedded. newConfi guration();
confi g. common() . obj ect ass(Car. cl ass) . cascadeOnUpdat e(true);

nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g, DB4OFI LENAME) ;
nj ect Set result = db. queryByExanpl e(Car. cl ass);

www.db4o.com

if (result.hasNext()) {
Car car = (Car) result.next();

for (int i =0; i <5; i++) {
car. snapshot () ;
}
db. store(car);
}
db. cl ose();

8.2. Retrieving

Now that we have a sufficiently deep structure, we'll retrieve it from the database and traverse it.

First let's verify that we indeed have taken lots of snapshots.

/1 retrieveAll Snapshots

bj ect Set result = db. quer yByExanpl e(Sensor Readout . cl ass) ;
while (result.hasNext()) {

Systemout.println(result.next());

www.db4o.com

All these readouts belong to one linked list, so we should be able to access them all by just traversing

our list structure.

/] retrieveSnapshot sSequentially

bj ect Set result = db. quer yByExanpl e(Car. cl ass);
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout != null) {
System out. println(readout);

readout = readout. get Next();

www.db4o.com

Ouch! What's happening here?

8.2.1. Activation depth

Deja vu - this is just the other side of the update depth issue.

db4o cannot track when you are traversing references from objects retrieved from the database. So it
would always have to return 'complete' object graphs on retrieval - in the worst case this would boil

down to pulling the whole database content into memory for a single query.

This is absolutely undesirable in most situations, so db4o provides a mechanism to give the client fine-
grained control over how much he wants to pull out of the database when asking for an object. This

mechanism is called activation depth and works quite similar to our familiar update depth.

The default activation depth for any object is 5, so our example above runs into nulls after traversing 5

references.

We can dynamically ask objects to activate their member references. This allows us to retrieve each

single sensor readout in the list from the database just as needed.

/] retrieveSnapshot sSequenti al |l yl nproved

bj ect Set result = db. quer yByExanpl e(Car. cl ass);
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout !'= null) {
db. activate(readout, 1);
System out. println(readout);

readout = readout. get Next();

www.db4o.com

Note that 'cut' references may also influence the behavior of your objects: in this case the length of the
list is calculated dynamically, and therefor constrained by activation depth.

Instead of dynamically activating subgraph elements, you can configure activation depth statically, too.
We can tell our SensorReadout class objects to cascade activation automatically, for example.

www.db4o.com

/'l retrieveSnapshot sSequenti al | yCascade

EnbeddedConfi guration config = Db4oEnbedded. newConfi guration();
config.common() . obj ect O ass(Tenper at ur eSensor Readout . cl ass) . cascadeOn
Acti vat e(

true);
Obj ect Cont ai ner db = Db4oEnbedded. openFil e(confi g, DBACOFI LENAME) ;

bj ect Set result = db. quer yByExanpl e(Car. cl ass);
if (result.hasNext()) {
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout !'= null) {
System out. println(readout);

readout = readout. get Next();

}
db. cl ose();

You have to be very careful, though. Activation issues are tricky. Db4o provides a wide range of
configuration features to control activation depth at a very fine-grained level. You'll find those triggers
in com.db4o.config.Configuration and the associated ObjectClass and ObjectField classes.

www.db4o.com

Don't forget to clean up the database.

/] del et eAll

nj ect Set resul t =db. quer yByExanpl e(new bject());
whil e(result. hasNext()) {
db. del ete(result. next());

8.3. Conclusion

Now we should have the tools at hand to work with arbitrarily complex object graphs. But so far we
have only been working forward, hoping that the changes we apply to our precious data pool are
correct. What if we have to roll back to a previous state due to some failure? In the next chapter we

will introduce the db4o transaction concept.

8.4. Full source

package com db4odoc. f 1. chapt er 6;

i mport com db4o. Db4oEnbedded;

i mport com db4o. Qbj ect Cont ai ner;

i mport com db4o. Obj ect Set ;

i mport com db4o. confi g. EnbeddedConfi gurati on;
i mport com db4odoc.f1.Util;

i mport java.io.File;

public class DeepExanple extends Util {
final static String DB4OFI LENAME =

System get Property("user. homre") + "/formul al. db4o";
public static void main(String[] args) {

new Fi | e(DB4OFI LENAME) . del et e() ;
nj ect Cont ai ner db = Db4oEnbedded. openFi | e(DB4OFI LENAME) ;

www.db4o.com

#Transactions

storeCar (db);

db. cl ose();

db = Db4oEnbedded. openFi | e(DB4OFI LENANME)
db. cl ose();

t akeMany Snapshot s() ;

db = Db4oEnbedded. openFi | e(DB4OFI LENANME)
retrieveAl | Snapshot s(db);

db. cl ose();

db = Db4oEnbedded. openFi | e(DB4OFI LENANME)
retri eveSnapshot sSequenti al | y(db);

retri eveSnapshot sSequenti al | yl npr oved(db) ;
db. cl ose();

retri eveSnapshot sSequenti al | yCascade() ;

public static void storeCar(ObjectContainer db) {
Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);
car.setPilot(pilot);

db. store(car);

public static void takeManySnapshots() ({

EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();

confi g. common() . obj ect C ass(Car. cl ass) . cascadeOnUpdat e(true);

nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)

nj ect Set result = db. queryByExanpl e(Car. cl ass);

if (result.hasNext()) {

Car car = (Car) result.next();

for (int i =0; i <5; i++) {
car. snapshot () ;
}
db. store(car);
}
db. cl ose();

public static void retrieveAl |l Shapshot s(Cbj ect Cont ai ner db) {
nj ect Set result = db. quer yByExanpl e(Sensor Readout . cl ass) ;

www.db4o.com

while (result.hasNext()) {

Systemout.println(result.next());

public static void retrieveSnapshot sSequenti al | y(Obj ect Cont ai ner
db) {
nj ect Set result = db. queryByExanpl e(Car. cl ass);
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout !'= null) {
System out . printl n(readout);

readout = readout.get Next ();

public static void retrieveSnapshot sSequenti al |l yCascade() ({
EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();
confi g. common() . obj ect ass(Tenper at ur eSensor Readout . cl ass) . cascadeOn
Act i vat e(
true);
nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)

nj ect Set result = db. queryByExanpl e(Car. cl ass);
if (result.hasNext()) {
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout !'= null) {
System out . printl n(readout);

readout = readout.get Next ();

}
db. cl ose();

public static void
retri eveSnapshot sSequenti al | yl npr oved(Obj ect Cont ai ner db) {
nj ect Set result = db. queryByExanpl e(Car. cl ass);
Car car = (Car) result.next();

www.db4o.com

Sensor Readout readout = car.getH story();
while (readout !'= null) {

db. acti vate(readout, 1);

System out . printl n(readout);

readout = readout.get Next ();

www.db4o.com

9. Transactions

Probably you have already wondered how db4o handles concurrent access to a single database. Just as
any other DBMS, db4o provides a transaction mechanism. Before we take a look at multiple, perhaps
even remote, clients accessing a db4o instance in parallel, we will introduce db4o transaction concepts
in isolation.

9.1. Commit and rollback

You may not have noticed it, but we have already been working with transactions from the first chapter
on. By definition, you are always working inside a transaction when interacting with db4o. A
transaction is implicitly started when you open a container, and the current transaction is implicitly
committed when you close it again. So the following code snippet to store a car is semantically

identical to the ones we have seen before; it just makes the commit explicit.

/! storeCar Comm t

Pil ot pilot=new Pilot("Rubens Barrichello", 99);
Car car=new Car ("BMN);

car.setPilot(pilot);

db. store(car);

db. commit () ;

/'l 1TistAlCars

bj ect Set resul t =db. quer yByExanpl e(Car. cl ass) ;
listResult(result);

www.db4o.com

However, we can also rollback the current transaction, resetting the state of our database to the last
commit point.

/1 storeCarRol | back

Pil ot pilot=new Pilot("Mchael Schumacher", 100);
Car car=new Car("Ferrari");

car.setPilot(pilot);

db. store(car);

db. rol I back();

/'l 1TistAlCars

bj ect Set resul t =db. quer yByExanpl e(Car. cl ass) ;

listResult(result);

9.2. Refresh live objects

There's one problem, though: We can roll back our database, but this cannot automagically trigger a
rollback for our live objects.

/| car Snapshot Rol | back

Obj ect Set resul t =db. quer yByExanpl e(new Car ("BMV)) ;
Car car=(Car)result.next();
car. snapshot () ;

db. store(car);

www.db4o.com

db. rol I back();

Systemout.println(car);

We will have to explicitly refresh our live objects when we suspect they may have participated in a
rollback transaction.

/1 car Snapshot Rol | backRefresh

Obj ect Set resul t =db. quer yByExanpl e(new Car ("BMV)) ;
Car car=(Car)result.next();

car. snapshot () ;

db. store(car);
db. rol I back();
db. ext (). refresh(car, I nteger. MAX VALUE) ;

Systemout.println(car);

What is this #ext() construct good for? Well, it provides some functionality that is in itself stable, but
the API may still be subject to change. As soon as we are confident that no more changes will occur,
#ext() functionality will be transferred to the common ObjectContainer API.

Finally, we clean up again.

/1 del eteAll

bj ect Set resul t =db. quer yByExanpl e(new Obj ect());

www.db4o.com

whil e(result. hasNext()) {
db. del ete(result. next());

9.3. Conclusion

We have seen how transactions work for a single client. In the Client/Server chapter we will see how
the transaction concept extends to multiple clients, whether they are located within the same VM or on

a remote machine.

Let't first revisit Activation again in the next chapter and take a look at how db4o can take care of our

Object lifecycle automatically.

9.4. Full source

package com db4odoc. f 1. chapt er 6;

i mport java.io.?*;
i mport com db4o. *;
i mport com db4odoc. f1.*;

public class Transacti onExanpl e extends Uil {

final static String DB4OFI LENAME =
System get Property("user. homre") + "/formul al. db4o";

public static void main(String[] args) {
new Fi | e(DB4OFI LENAME) . del et e() ;
nj ect Cont ai ner
db=Db4oEnbedded. openFi | e(Db4oEnbedded. newConf i gurati on(),
DBACFI LENAME) ;
try {
st oreCar Commi t (db) ;
db. cl ose();
db=Db4oEnbedded. openFi | e(Db4oEnbedded. newConf i gurati on(),
DBACFI LENAME) ;

www.db4o.com

#ClientServer
#TransparentActivation

[istAll Cars(db);

st or eCar Rol | back(db) ;

db. cl ose();

db=Db4oEnbedded. openFi | e(Db4oEnbedded. newConfi gurati on(),

DB4COF| LENAME)

[istAll Cars(db);

car Snapshot Rol | back(db) ;

car Snapshot Rol | backRef resh(db);
}
finally {

db. cl ose();

public static void storeCarCommt(Object Contai ner db) {
Pil ot pilot=new Pilot("Rubens Barrichello", 99);
Car car=new Car ("BMN);
car.setPilot(pilot);
db. store(car);

db. commit ();

public static void |istAll Cars(ObjectContainer db) {
nj ect Set resul t =db. quer yByExanpl e(Car. cl ass);

listResult(result);

public static void storeCarRol | back(Obj ect Cont ai ner db) {
Pilot pilot=new Pilot("M chael Schumacher", 100);
Car car=new Car("Ferrari");
car.setPilot(pilot);
db. store(car);
db. rol | back();

public static void car Shapshot Rol | back(Obj ect Cont ai ner db) {
nj ect Set resul t =db. quer yByExanpl e(new Car ("BMN)) ;
Car car=(Car)result.next();
car. snapshot () ;
db. store(car);
db. rol | back();

www.db4o.com

System out. println(car);

public static void car Snapshot Rol | backRef r esh(Obj ect Cont ai ner db)

nj ect Set resul t =db. quer yByExanpl e(new Car ("BMN)) ;
Car car=(Car)result.next();

car. snapshot () ;

db. store(car);

db. rol | back();

db. ext().refresh(car, | nt eger. MAX VALUE) ;

System out. println(car);

www.db4o.com

10. Transparent Activation

Let's take a second look at the concept of Activation. We have seen how db4o uses a "depth" concept

by default to activate objects to a specific depth when they are returned from a query.

Wouldn't it be a lot nicer, if an application would never have to worry about activating objects and if

db4o could handle things transparently for us? This is what Transparent Activation was developed for.

10.1. The Activation Problem

We can reuse most of the code from the Deep Graphs chapter and get it to work with Transparent

Activation.

As a first step we should fill up our database with Car, Pilot and SensorReadout objects, so we have

some objects to work with.

/'l storeCar AndSnapshot s

Pilot pilot = new Pilot("Ki m Raikkonen", 110);
Car car = new Car("Ferrari");
car.setPilot(pilot);
for (int i =0; i <5; i++) {

car. snapshot () ;

}

db. store(car);

If we now rerun the code to traverse all cars and their sensor readings, we are again confronted with

the same problem that we had before, we end up with some leaves of our object graph being null.

/1 retrieveSnapshot sSequentially

nj ect Set result = db. queryByExanpl e(Car. cl ass);
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();

while (readout !'= null) {

www.db4o.com

#Deep

System out. println(readout);

readout = readout. get Next();

10.2. Turning On Transparent Activation

Let's configure db4o to run in Transparent Activation mode and let's try again:

/] retrieveSnapshot sSequenti al | yTA

EnbeddedConfi guration config = Db4oEnbedded. newConfi guration();
config.common() . add(new Transpar ent Acti vati onSupport());
Obj ect Cont ai ner db = Db4oEnbedded. openFil e(confi g, DBACOFI LENAME);
bj ect Set result = db. quer yByExanpl e(Car. cl ass);
if (result.hasNext()) {

Car car = (Car) result.next();

Sensor Readout readout = car.getH story();

while (readout != null) {

System out. println(readout);

readout = readout. get Next();

}
db. cl ose();

www.db4o.com

Wow it worked! Is it really that easy? Principally yes. When db4o is run in Transparent Activation mode
there are no surprises with null members that have not yet been read from the database.

10.3. Implementing Activatable

www.db4o.com

When Transparent Activation is turned on, all objects that do not implement the com.db4o.ta.

Activatable interface will be fully activated when they are used.

Although we wont get any surprises with null objects when we work in this mode, access to the root of
a deep graph may load the entire graph into memory and that can take a long time and use a lot of

memory.

To prevent immediate activation of a class you can implement the Activatable interface. Whenever
db4o comes across an Activatable object while activating a graph of objects it will stop traversing the
graph any deeper. db4o will "know" that it can activate Activatable objects on demand, so there is no

reason to continue activation until these objects are really needed.

For demonstration purposes we have made all classes used in this example Activatable and we have

also added all the code required to activate by hand.

Let's take a look at the Activatable version of our Car class:

package com db4odoc. f 1. chapt er 8;

i mport java.util.?*;

i mport com db4o. acti vation. *;

i nport com db4o.ta.*;

public class Car inplements Activatable {
private String nodel;
private Pilot pilot;
private Sensor Readout history;

private transient Activator _activator;

public Car(String nodel) {
t hi s. nodel =nodel ;
this.pilot=null;

this. history=null;

public Pilot getPilot() {
activate(Activati onPurpose. READ);

www.db4o.com

return pilot;

public Pilot getPilotWthoutActivation() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot=pilot;

public String getMdel () {
activate(Activati onPurpose. READ);

return nodel ;

publ i c Sensor Readout getHi story() ({
activate(Activati onPurpose. READ);

return history;

public void snapshot () {
activate(ActivationPurpose. WRI TE) ;
appendToH st ory(new Tenper at ur eSensor Readout (
new Date(),this,"oil",poll Q| Tenperature()));
appendToH st ory(new Tenper at ur eSensor Readout (
new Date(),this,"water", pol | Wat er Tenperature()));
appendToH st ory(new PressureSensor Readout (

new Date(),this,"oil",poll Gl Pressure()));

prot ected double poll G| Tenperature() {

return 0.1*count Hi st oryEl enent s();

prot ect ed doubl e pol | Wat er Tenperature() {

return 0.2*count Hi storyEl enent s();

prot ected double poll G| Pressure() {

return 0. 3*count Hi storyEl enents();

www.db4o.com

public String toString() {
activate(Activati onPurpose. READ);

return nodel +"["+pil ot +"]/"+count Hi st oryEl ement s() ;

private int countHi storyEl ements() {
activate(Activati onPurpose. READ) ;

return (history==null ? 0 : history.countEl enents());

private void appendToH st ory(Sensor Readout readout) ({
activate(ActivationPurpose. WRI TE) ;
i f(history==null) {
hi st ory=r eadout ;
}
el se {

hi st ory. append(readout);

public void activate(ActivationPurpose purpose) {
if(_activator !'= null) {

_activator.activate(purpose);

public void bind(Activator activator) {

if (_activator == activator) {
return;

}

if (activator !'= null && _activator !'= null) {
t hrow new ||| egal St at eExcepti on();

}

_activator = activator;

www.db4o.com

Can you spot the member _activator, all the # activate() calls and the two methods # activate() and #
bind(Activator) at the end?

An Activatable class should store the Activator that db4o provides to the bind method in a transient

variable and call # activate() on this Activator before any field is accessed.

If the object is already activated, the method will return immediately. If it is not, activation will happen

at this time.

We have added the #getPilotWithoutActivation() method to the Car class to be able to demonstrate.

/1 denonstrateTransparent Acti vation

EnbeddedConfi guration config = Db4oEnbedded. newConfi guration();
confi g. common() . add(new Transpar ent Acti vati onSupport());

nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g, DB4OFI LENAME) ;

nj ect Set result = db. queryByExanpl e(Car. cl ass);
if (result.hasNext()) {
Car car = (Car) result.next();

Syst em out
.println("#getPil ot Wt hout Activation() before the car is
activated");

System out. println(car.getPilotWthoutActivation());

Systemout.println("calling #getPilot() activates the car
object");
Systemout.println(car.getPilot());

Syst em out
.println("#getPil ot Wt hout Activation() after the car is
activated");

System out. println(car.getPilotWthoutActivation());

}
db. cl ose();

www.db4o.com

10.4. Where Enhancement can help

If all this Activatable code in a persistent class looked like a lot of typing work, do not worry: db4o
comes with a tool to add this code automatically to all of your persistent classes. Read more about it in

the chapter on Enhancement .

As a final step we should clean up the database again.

/1 del eteAll
bj ect Set resul t =db. quer yByExanpl e(new Obj ect ());

whi |l e(resul t.hasNext()) {
db. del ete(result.next());

10.5. Conclusion

This was just a short introduction to Transparent Activation and what it can do for you. For more
detailed information please see the pages on Transparent Activation in our online reference or in your

offline copy of the Reference documentation.

10.6. Full source

package com db4odoc. f 1. chapt er 8;

www.db4o.com

#Enhancement
http://developer.db4o.com/Documentation.aspx

i mport java.io.?*;

i mport com db4o. *;

i mport com db4o. confi g. *;
i mport com db4o.ta.*;

i mport com db4odoc. f1.*;

public class Transparent Activati onExanpl e extends Uil ({

final static String DB4OFI LENAME =
Syst em get Property("user. home")

+ "/fornul al. db4o";

public static void main(String[] args) throws Exception {
new Fi | e(DB4OFI LENAME) . del et e() ;
nj ect Cont ai ner db = Db4oEnbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENANME)
try {
st or eCar AndSnapshot s(db) ;
db. cl ose();
db =
Db4oEnbedded. openFi | e(Db4oEnbedded. newConf i gurati on(),
DB4COF| LENAME)
retri eveSnapshot sSequenti al |l y(db);
db. cl ose();
retri eveSnapshot sSequenti al | yTA() ;

denonstrat eTranspar ent Acti vation();

} finally {
db. cl ose();

public static void storeCar AndSnapshot s(Cbj ect Cont ai ner db) {
Pilot pilot = new Pilot("Ki m Raikkonen", 110);
Car car = new Car("Ferrari");
car.setPilot(pilot);
for (int i =0; i <5; i++) {
car . snapshot () ;

}

db. store(car);

www.db4o.com

public static void retrieveSnapshot sSequenti al | y(Obj ect Cont ai ner

db) {
nj ect Set result = db. queryByExanpl e(Car. cl ass);
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout !'= null) {
System out . printl n(readout);

readout = readout.get Next ();

public static void retrieveSnapshotsSequential |l yTA() {
EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();
confi g. comon() . add(new Transpar ent Acti vati onSupport());
nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)
nj ect Set result = db. queryByExanpl e(Car. cl ass);
if (result.hasNext()) {
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout !'= null) {
System out . printl n(readout);

readout = readout.get Next ();

}
db. cl ose();

public static void denpnstrateTransparent Activation() {
EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();
confi g. comon() . add(new Transpar ent Acti vati onSupport());
nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)

nj ect Set result = db. queryByExanpl e(Car. cl ass);
if (result.hasNext()) {
Car car = (Car) result.next();

www.db4o.com

Syst em out
.println("#getPil ot Wt hout Activation() before the
car is activated");

Systemout. println(car.getPilotWthoutActivation());

Systemout.println("calling #getPilot() activates the car
object");
Systemout.println(car.getPilot());

Syst em out
.println("#getPil ot Wthout Activation() after the
car is activated");

Systemout. println(car.getPilotWthoutActivation());

}
db. cl ose();

www.db4o.com

11. Transparent Persistence

The problem of updating deep object structures was briefly outlined in Structured objects chapter .
Update Depth configuration setting gives a user a certain control over the object updating and allows
to find a balance between performance and convenient object storage code. However, this balance is
far from ideal:

- when update depth is zero, each piece of code should "know" how many levels of objects should be
updated; this potentially creates lots of problems when the objects are refactored;

- when update depth is maximum performance can become very poor as many unchanged objects will

be stored unnecessary.

The solution to this problem is to let db4o engine decide, which objects were modified and should be
stored. This feature was introduced in db4o version 7.1 and was named Transparent Persistence. So
how does it work?

1. Database should be configured to use TransparentPersistenceSupport.

2. Persistent classes available for Transparent Persistence must implement Activatable interface. This
interface provides a #bind() method to bind an object to the object container's activator.

3. The object is bound to the ObjectContainer when it is first stored or instantiated from the database.
4. When an object field is modified in the runtime, #activate() method is called to register the object
to be stored with the next commit. The difference from Transparent Activation is in the activation
purpose: ActivationPurpose. WRITE is used for TP.

5. When the transaction is committed or the database is closed, db4o traverses the list of modified
Activatable objects and persists them.

Well, that's enough of theory, let's look at an example.
11.1. Transparent Persistence Example
We will use Car and SensorReadout classes from Deep Graphs chapter. These are persistent classes, so

if we want to use Transparent Persistence, we should make them "visible" to Transparent Persistence
by implementing Activatable interface.

package com db4odoc. f 1. chapter9;

i mport java.util.?*;

i mport com db4o. activation. *;

i nport com db4o.ta.*;

www.db4o.com

#Structured
#TransparentActivation
#Deep

public class Car inplements Activatable {
private String nodel;
private Sensor Readout history;

private transient Activator _activator;

public Car(String nodel) {
t hi s. nodel =nodel ;

t hi s. hi story=null;

public String getMdel () {
activate(Activati onPurpose. READ);

return nodel ;

publ i c Sensor Readout getHi story() ({
activate(Activati onPurpose. READ);

return history;

public void snapshot () {
activate(ActivationPurpose. WRI TE) ;
appendToH st ory(new Tenper at ur eSensor Readout (
new Date(),this,"oil",poll Q| Tenperature()));
appendToH st ory(new Tenper at ur eSensor Readout (

new Date(),this,"water", pol | Wat er Tenperature()));

prot ected double poll G| Tenperature() {

return 0.1*count Hi st oryEl enent s();

prot ect ed doubl e pol | Wat er Tenperature() {

return 0.2*count Hi storyEl enent s();

public String toString() {
activate(Activati onPurpose. READ);

return nodel +"/" +count Hi st or yEl ement s() ;

www.db4o.com

private int countHi storyEl ements() {
activate(Activati onPurpose. READ);

return (history==null ? 0 : history.countEl enents());

private void appendToH st ory(Sensor Readout readout) ({
activate(ActivationPurpose. WRI TE) ;
i f(history==null) {
hi st ory=r eadout ;
}
el se {

hi st ory. append(readout);

public void activate(ActivationPurpose purpose) {
if(_activator !'= null) {

_activator.activate(purpose);

public void bind(Activator activator) {

if (_activator == activator) {
return;

}

if (activator !'= null && _activator !'= null) {
t hrow new ||| egal St at eExcepti on();

}

_activator = activator;

Note, that we've added an activator field, bind and activate methods to implement Activatable
interface. In addition to that all methods that read or write object fields has got activate calls with a
corresponding purpose.

Similar modifications should be done to the SensorReadout class.

Now we are ready to test how Transparent Persistence work. First we should configure the database to

www.db4o.com

use TransparentPersistenceSupport before storing objects:

/'l storeCar AndSnapshot s

EnbeddedConfi gurati on config = Db4oEnbedded. newConfi guration();
confi g. comon() . add(new Tr anspar ent Per si st enceSupport());
nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g, DB4OFI LENANME)
Car car = new Car("Ferrari");
for (int i =0; i < 3; i++) {
car. snapshot () ;
}
db. store(car);
db. cl ose();

Ok, all the objects are stored.

Now, let's retrieve all the stored objects and modify them:

/1 nodi f ySnapshot Hi story

EnbeddedConfi gurati on config = Db4oEnbedded. newConfi guration();
confi g. common() . add(new Tr anspar ent Per si st enceSupport());

nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g, DB4OFI LENANME)

Systemout.println("Read all sensors and nodify the description:");
nj ect Set result = db. queryByExanpl e(Car. cl ass);
if (result.hasNext()) {
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout !'= null) {
System out . printl n(readout);
readout . set Descri ption("Mdified: " +
readout . get Description());
readout = readout.get Next ();

}
db. commit ();

}
db. cl ose();

www.db4o.com

You can see that we do not have to call #store any more - all the objects are stored when #commit is
called.
Let's test that the modifications actually reached the database:

/1 readSnapshot Hi story

EnbeddedConfi gurati on config = Db4oEnbedded. newConfi guration();
confi g. comon() . add(new Tr anspar ent Per si st enceSupport());
nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g, DB4OFI LENAME) ;

Systemout.println("Read all nodified sensors:");
nj ect Set result = db. queryByExanpl e(Car. cl ass);
if (result.hasNext()) {
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout !'= null) {
System out . printl n(readout);

readout = readout.get Next ();

}
db. cl ose();

Yes, it is all as it should be. If you want to see the difference without Transparent Persistence, run the

same examples withoutTransparentPersistenceSupport .

11.2. Transparent Persistence Enhancement

As we saw before enhancement tools can simplify the process for Transparent Activation. The same
applies to Transparent Persistence. Actually Transparent Persistence enhancement implicitly provides
TA for enhanced classes.

For more information please refer to Enhancement chapter .

11.3. Conclusion

Transparent Persistence can considerably simplify the development process at the same time providing
considerable performance benefits. For more information on Transparent Persistence please refer to

our online reference or your offline copy of the Reference documentation.

11.4. Full source

www.db4o.com

#TransparentActivation
#Enhancement
http://developer.db4o.com/Documentation.aspx

package com db4odoc. f 1. chapter9;

i mport java.io.*;

i mport com db4o. *;

i mport com db4o. confi g. *;
i mport com db4o.ta.*;

i mport com db4odoc. f1.*;

public class Transparent Persi stenceExanpl e extends Util {

final static String DB4OFI LENAME =
System get Property("user. home") + "/formul al. db4o"

public static void main(String[] args) throws Exception {
new Fi | e(DB4OFI LENAME) . del et e() ;
st or eCar AndSnapshot s() ;
nodi f ySnapshot Hi st ory();
readSnapshot Hi story();

public static void storeCar AndSnhapshots() {

EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();

confi g. comon() . add(new Tr anspar ent Per si st enceSupport());

nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)

Car car = new Car("Ferrari");

for (int i =0; i <3; i++) {

car. snapshot () ;

}

db. store(car);

db. cl ose();

public static void nodifySnapshot Hi story() {
EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();

www.db4o.com

confi g. comon() . add(new Tr anspar ent Per si st enceSupport());
nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4OFI LENAME)

Systemout.println("Read all sensors and nodify the
description:");
nj ect Set result = db. queryByExanpl e(Car. cl ass);
if (result.hasNext()) {
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout !'= null) {
System out . printl n(readout);
readout . set Descri ption("Mdified: " +
readout . get Description());
readout = readout.get Next ();

}
db. commit ();

}
db. cl ose();

public static void readSnapshot H story() {
EnmbeddedConfi guration config =
Db4oEnbedded. newConfi gurati on();
confi g. comon() . add(new Tr anspar ent Per si st enceSupport());
nj ect Cont ai ner db = Db4oEnbedded. openFi |l e(confi g,
DB4COF| LENAME)

Systemout.println("Read all nodified sensors:");
nj ect Set result = db. queryByExanpl e(Car. cl ass);
if (result.hasNext()) {
Car car = (Car) result.next();
Sensor Readout readout = car.getH story();
while (readout !'= null) {
System out . printl n(readout);

readout = readout.get Next ();

}
db. cl ose();

www.db4o.com

package

i mport j

com db4odoc. f 1. chapt er 9;

ava. util.*;

i mport com db4o. acti vation. *;

i nport com db4o.ta.*;

public class Car inplements Activatable {

private String nodel;

private Sensor Readout history;

private transient Activator _activator;

publ

publ

publ

publ

ic Car(String nodel) {
t hi s. nodel =nodel ;

t hi s. hi story=null;

ic String getModel () {
activate(Activati onPurpose. READ);

return nodel ;

i ¢ Sensor Readout getHistory() {
activate(Activati onPurpose. READ);

return history;

ic void snapshot () {
activate(ActivationPurpose. WRI TE) ;
appendToH st ory(new Tenper at ur eSensor Readout (
new Date(),this,"oil",poll Q| Tenperature()));
appendToH st ory(new Tenper at ur eSensor Readout (

new Date(),this,"water", pol | Wat er Tenperature()));

prot ected double poll G| Tenperature() {

www.db4o.com

return 0.1*count Hi st oryEl enent s();

prot ect ed doubl e pol | Wat er Tenperature() {

return 0.2*count Hi storyEl enent s();

public String toString() {
activate(Activati onPurpose. READ) ;

return nodel +"/" +count Hi st or yEl ement s() ;

private int countHi storyEl ements() {
activate(Activati onPurpose. READ);

return (history==null ? 0 : history.countEl enents());

private void appendToH st ory(Sensor Readout readout) ({
activate(ActivationPurpose. WRI TE) ;
i f(history==null) {
hi st ory=r eadout ;
}
el se {

hi st ory. append(readout);

public void activate(ActivationPurpose purpose) {
if(_activator !'= null) {

_activator.activate(purpose);

public void bind(Activator activator) {

if (_activator == activator) {
return;

}

if (activator !'= null && _activator !'= null) {
t hrow new ||| egal St at eExcepti on();

}

_activator = activator;

www.db4o.com

package com db4odoc. f 1. chapter9;

i mport java.util.*;

i mport com db4o. acti vation. *;

i nport com db4o.ta.*;

public class Sensor Readout inplements Activatable {
private Date tine;
private Car car;
private String description;
private Sensor Readout next;

private transient Activator _activator;

prot ect ed Sensor Readout (Date tine, Car car, String description) {
this.time=tine;
t hi s. car =car;
thi s. descri pti on=descri pti on;

t hi s. next=nul | ;

public Car getCar() {
activate(Activati onPurpose. READ);

return car;

public Date getTime() {
activate(Activati onPurpose. READ);

return tine;

public String getDescription() {
activate(Activati onPurpose. READ);

return description;

www.db4o.com

public void setDescription(String description) {
activate(ActivationPurpose. WRI TE) ;

thi s.description = description;

publ i c Sensor Readout getNext () {
activate(Activati onPurpose. READ) ;

return next;

public void append(Sensor Readout readout) ({
activate(ActivationPurpose. WRI TE) ;
i f(next==null) {

next =r eadout ;

}
el se {

next . append(readout);
}

public int countEl ements() {
activate(Activati onPurpose. READ);

return (next==null ? 1 : next.countEl ements()+1);

public String toString() {
activate(Activati onPurpose. READ);

return car+" : "+time+" : "+description;

public void activate(ActivationPurpose purpose) {
if(_activator !'= null) {

_activator.activate(purpose);

public void bind(Activator activator) {
if (_activator == activator) {

return;

www.db4o.com

}

if (activator !'= null && _activator !'= null) {

t hrow new ||| egal St at eExcepti on();

}

_activator = activator;

package com db4odoc. f 1. chapter9;

i mport java.util.*;

i mport com db4o. acti vation. *;

public class TenperatureSensor Readout extends SensorReadout {

private doubl e tenperature;

publ i c Tenper at ur eSensor Readout (
Date tine, Car car,
String description,double tenperature) ({
super (time, car, description);

t hi s. t emper at ur e=t enper at ur e;

public doubl e get Temperature() {
activate(Activati onPurpose. READ);

return tenperature;

public String toString() {

return super.toString()+" tenp : "+tenperature;

www.db4o.com

www.db4o.com

12. Client/Server

Now that we have seen how transactions work in db4o conceptually, we are prepared to tackle

concurrently executing transactions.

We start by preparing our database in the familiar way.

!/l setFirstcCar

Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);
car.setPilot(pilot);

db. store(car);

/] set SecondCar

Pilot pilot = new Pilot("M chael Schumacher", 100);
Car car = new Car("Ferrari");
car.setPilot(pilot);

db. store(car);

12.1. Embedded server

From the API side, there's no real difference between transactions executing concurrently within the
same VM and transactions executed against a remote server. To use concurrent transactions within a
single VM , we just open a db4o server on our database file, directing it to run on port 0, thereby

declaring that no networking will take place.

/| accesslLocal Server

nj ect Server server = Db4oCd ient Server. openServer (Db4oC i ent Server

. newServer Confi guration(), DB4CFI LENAVE, O0);

www.db4o.com

try {
Obj ect Contai ner client = server.openCient();
/] Do something with this client, or open nore clients
client.close();

} finally {
server.cl ose();

Again, we will delegate opening and closing the server to our environment to focus on client
interactions.

/1 querylLocal Server

Obj ect Contai ner client = server.openCient();

i stResult(client.queryByExanmpl e(new Car(null)));
client.close();

The transaction level in db4o is read committed . However, each client container maintains its own
weak reference cache of already known objects. To make all changes committed by other clients

immediately, we have to explicitly refresh known objects from the server. We will delegate this task to
a specialized version of our #listResult() method.

public static void |istRefreshedResul t(Cbject Contai ner
contai ner, Cbj ect Set result,int depth) {
Systemout.println(result.size());
whil e(result. hasNext()) {
bj ect obj = result.next();

container.ext().refresh(obj, depth);

www.db4o.com

System out . println(obj);

/! denonstrat eLocal ReadCommi tted

Obj ect Container clientl = server.openCient();

Obj ect Contai ner client2 = server.openCient();

Pilot pilot = new Pilot("David Coul thard", 98);

Obj ect Set result = clientl. queryByExanpl e(new Car ("BMN));
Car car = (Car) result.next();

car.setPilot(pilot);

clientl. store(car);

listResult(clientl. queryByExanmpl e(new Car(null)));

i stResult(client2.queryByExanmpl e(new Car(null)));
clientl.commt();

listResult(clientl.queryByExanpl e(Car. cl ass));

i st RefreshedResul t(client2, client?2.queryByExanpl e(Car.class), 2);

clientl.close();

client2. close();

www.db4o.com

Simple rollbacks just work as you might expect now.

/! denonstrat eLocal Rol | back

Obj ect Container clientl = server.openCient();

Obj ect Contai ner client2 = server.openCient();

Obj ect Set result = clientl. queryByExanpl e(new Car ("BMN));
Car car = (Car) result.next();

car.setPil ot (new Pil ot ("Soneone el se", 0));
clientl. store(car);

listResult(clientl. queryByExanmpl e(new Car(null)));
i stResult(client2.queryByExanmpl e(new Car(null)));
clientl.roll back();

clientl.ext().refresh(car, 2);

listResult(clientl. queryByExanmpl e(new Car(null)));
i stResult(client2.queryByExanmpl e(new Car(null)));

clientl.close();

client2. close();

12.2. Networking

www.db4o.com

From here it's only a small step towards operating db4o over a TCP/IP network. We just specify a port

number greater than zero and set up one or more accounts for our client(s).

/!l accessRenot eServer

Obj ect Server server = Db4oC i ent Server. openServer (Db4od i ent Server
.newSer ver Configuration(), DB4OFI LENAMVE, PORT);
server. grant Access(USER, PASSWORD) ;
try {
Obj ect Cont ai ner client = Db4od ient Server.opend i ent (
Db4od i ent Server. newCl i ent Confi guration(), "local host",
PORT, USER, PASSWORD);
// Do something with this client, or open nore clients
client.close();
} finally {

server. cl ose();

The client connects providing host, port, user name and password.

/1 quer yRenot eSer ver

Obj ect Cont ai ner client = Db4oC ient Server.opend ient(Db4oC i ent Server
.newC i ent Configuration(), "local host", port, user,
passwor d) ;

i stResult(client.queryByExanmpl e(new Car(null)));

client.close();

www.db4o.com

Everything else is absolutely identical to the local server examples above.

/! denonstrat eRenpt eReadCommi tt ed

bj ect Container clientl =
Db4od i ent Server . openC i ent (Db4oC i ent Server
.newC i ent Configuration(), "local host", port, user,
passwor d) ;
bj ect Contai ner client2 =
Db4od i ent Server. openC i ent (Db4oC i ent Server
.newC i ent Configuration(), "local host", port, user,
passwor d) ;
Pilot pilot = new Pilot("Jenson Button", 97);
Obj ect Set result = clientl. queryByExanpl e(new Car(null));
Car car = (Car) result.next();
car.setPilot(pilot);
clientl. store(car);
listResult(clientl. queryByExanpl e(new Car(null)));
i stResult(client2.queryByExanmpl e(new Car(null)));
clientl.commt();
listResult(clientl. queryByExanmpl e(new Car(null)));
i st RefreshedResul t(client2, client?2.queryByExanple(Car.class), 2);
clientl. close();

client2. close();

www.db4o.com

/! denonstr at eRenpt eRol | back

bj ect Container clientl =
Db4od i ent Server . openC i ent (Db4od i ent Ser ver
.newC i ent Configuration(), "local host", port, user
passwor d) ;
bj ect Contai ner client2 =
Db4oC i ent Server . openC i ent (Db4od i ent Ser ver
.newC i ent Configuration(), "local host", port, user
passwor d) ;
Obj ect Set result = clientl. queryByExanpl e(new Car(null));
Car car = (Car) result.next();
car.setPil ot (new Pil ot ("Soneone el se", 0));
clientl. store(car);
listResult(clientl. queryByExanmpl e(new Car(null)));
i stResult(client2.queryByExanmpl e(new Car(null)));
clientl.roll back();
clientl.ext().refresh(car, 2);
listResult(clientl. queryByExanpl e(new Car(null)));
i stResult(client2.queryByExanmpl e(new Car(null)));

clientl.close();

client2. close();

www.db4o.com

12.3. Native Queries in Client/Server mode

A quite subtle problem may occur if you're using Native Queries as anonymous (or just non-static)
inner classes in Client/Server mode. Anonymous/non-static inner class instances carry a synthetic field
referencing their outer class instance - this is just Java's way of implementing inner class access to
fields or final method locals of the outer class without introducing any notion of inner classes at all at
the bytecode level. If such a non-static inner class predicate cannot be converted to S.0.D.A. form on
the client, it will be wrapped into an evaluation and passed to the server, introducing the same
problem already mentioned in the evaluation chapter : db4o will try to transfer the evaluation, using
the standard platform serialization mechanism. If this fails, it will just try to pass it to the server via
db4o marshalling. However, this may fail, too, for example if the outer class references any local db4o
objects like ObjectContainer, etc., resulting in an ObjectNotStorableException.

So to be on the safe side with NQs in C/S mode, you should declare Predicates as top-level or static
inner classes only. Alternatively, you could either make sure that the outer classes containing Predicate
definitions could principally be persisted to db4o, too, and don't add significant overhead to the
predicate (the appropriate value for 'significant’

being your choice) or ensure during development that all predicates used actually can be optimized to
S.0.D.A. form.

12.4. Out-of-band signalling

Sometimes a client needs to send a special message to a server in order to tell the server to do
something. The server may need to be signalled to perform a defragment or it may need to be
signalled to shut itself down gracefully.

This is configured bycalling #messageRecipient() , passing the object that will process client-initiated

messages.

public void runServer() {
synchroni zed (this) {
Server Configuration config =
Db4od i ent Server. newSer ver Confi guration();
/1 Using the nessaging functionality to redirect all
/1 nmessages to this.processMessage
confi g. net wor ki ng() . nessageReci pi ent (t hi s);

nj ect Server db4oServer = Db4od ient Server. openServer (config

www.db4o.com

#Evaluations

, FILE, PORT);
db4oSer ver. gr ant Access(USER, PASS);

/1l to identify the thread in a debugger
Thr ead. current Thread() . set Name(t hi s. get G ass() . get Name());

/1 W only need low priority since the db4o server has
/1 it's own thread.

Thread. current Thread().setPriority(Thread. M N_PRI ORI TY) ;

try {
if (!stop) {
/1 wait forever for notify() fromclose()
this.wait(Long. MAX_ VALUE) ;
}

} catch (Exception e) {
e.printStackTrace();

}

db4oServer. cl ose();

The message is received and processed by a #processMessage() method:

public void processMessage(MessageCont ext con, Object nessage) ({
i f (message instanceof StopServer) {

cl ose();

Db4o allows a client to send an arbitrary signal or message to a server by sending a plain object to the
server. The server will receive a callback message, including the object that came from the client. The

server can interpret this message however it wants.

www.db4o.com

public static void main(String[] args) {

nj ect Cont ai ner obj ect Contai ner = null;

try {

/] connect to the server
obj ect Cont ai ner =
Db4od i ent Server. openCl i ent (Db4oC i ent Server
.newd i ent Configuration(), HOST, PORT, USER, PASS);

} catch (Exception e) {
e.printStackTrace();
if (objectContainer !'= null) {
/1 get the nessageSender for the ObjectContainer
MessageSender nessageSender =
obj ect Cont ai ner. ext (). confi gure()

.clientServer().get MessageSender () ;

/1 send an instance of a StopServer object

nmessageSender . send(new St opServer());

/1 close the Object Cont ai ner

obj ect Cont ai ner. cl ose() ;

12.5. Putting it all together: a simple but complete db4o server

Let's put all of this information together now to implement a simple standalone db4o server with a

special client that can tell the server to shut itself down gracefully on demand.

First, both the client and the server need some shared configuration information. We will provide this

using an interface:

www.db4o.com

package com db4odoc. f 1. chapt er 6;

/**
* Configuration used for {@ink StartServer} and { @i nk StopServer}.
*/

public interface Serverinfo {

| %

* the host to be used.

*
If you want to run the client server exanples on two
conput ers,

* enter the conputer name of the one that you want to use as
server.

*/

public String HOST = "l ocal host";

/**

* the database file to be used by the server.
*/

public String FILE = "formul al. db4o";

/**

* the port to be used by the server.
*/

public int PORT = 4488;

/**

* the user name for access control.
*/

public String USER = "db4o";

/**

* the pasword for access control.
*/
public String PASS = "db4o";

www.db4o.com

Now we'll create the server:

package com db4odoc. f 1. chapt er 6;

i mport com db4o. *;
i mport com db4o. cs. *;
i mport com db4o. cs. confi g. *;

i mport com db4o. messagi ng. *;

| %
* starts a dbd4o server with the settings from{@ink Serverlnfo}.

*

* This is a typical setup for a long running server.

*

* The Server may be stopped froma renote | ocation by running

St opServer. The

* StartServer instance is used as a MessageReci pient and reacts to
recei ving an

* instance of a StopServer object.

*

*/

public class StartServer inplenments Serverlnfo, MessageReci pient {

/**

* setting the value to true denotes that the server should be
cl osed
*/

private bool ean stop = fal se

/**

* starts a db4o server using the configuration from{@ink
Server | nf o}.

*/

public static void main(String[] argunents) {

new Start Server (). runServer();

/**

www.db4o.com

* opens the bjectServer, and waits forever until close() is
called or a
* StopServer message is being received.
*/
public void runServer() {
synchroni zed (this) {
Server Configuration config =
Db4od i ent Server. newSer ver Confi guration();
/1 Using the nessaging functionality to redirect al
/1 messages to this.processMessage
confi g. net wor ki ng() . nessageReci pi ent (t hi s);
nj ect Server db4oServer =
Db4od i ent Server. openServer (confi g
, FILE, PORT);
db4oSer ver . gr ant Access(USER, PASS)

/1l to identify the thread in a debugger
Thr ead. current Thread() . set Name(t hi s. get G ass() . get Name());
/1 W& only need low priority since the db4o server has

/[l it's own thread

Thread. current Thread().setPriority(Thread. M N_PRI ORI TY) ;

try {
if (!stop) {
/1 wait forever for notify() fromclose()
t hi s. wait(Long. MAX_VALUE)
}

} catch (Exception e) {
e.printStackTrace();

}

db4oServer. cl ose();

/**

* messagi ng cal | back

*

* @Bee

com db4o. nessagi ng. MessageReci pi ent #pr ocessMessage(MessageCont ext ,
* nj ect)
*/

www.db4o.com

public void processMessage(MessageCont ext con, Object nessage) ({
i f (message instanceof StopServer) {

cl ose();

| **
* closes this server.
*/
public void close() {
synchroni zed (this) {
stop = true;

this.notify();

And last but not least, the client that stops the server.

package com db4odoc. f 1. chapt er 6;

i mport com db4o. *;
i nport com db4o. cs. *;

i mport com db4o. messagi ng. *;

| **
* stops the db4o Server started with {@ink StartServer}.

*

* This is done by opening a client connection to the server and by
sendi ng a

* StopServer object as a nmessage. {@ink StartServer} will react in
it's

* processMessage net hod.

*/

public class StopServer inplements Serverlinfo {

/**

www.db4o.com

* stops a db4o Server started with Start Server.
*

* @hrows Exception

*/

public static void main(String[] args) {

nj ect Cont ai ner obj ect Contai ner = null;

try {

/1 connect to the server
obj ect Cont ai ner =
Db4od i ent Server. openCl i ent (Db4oC i ent Server
.newd i ent Confi guration(), HOST, PORT, USER

PASS) ;

} catch (Exception e) {
e.printStackTrace();

if (objectContainer !'= null) {

/1 get the nessageSender for the ObjectContainer
MessageSender nessageSender =

obj ect Cont ai ner. ext (). confi gure()

.clientServer().get MessageSender () ;

/1 send an instance of a StopServer object

messageSender . send(new St opServer());

/1 close the Object Cont ai ner

obj ect Cont ai ner . cl ose();

12.6. Conclusion

That's it, folks. No, of course it isn't. There's much more to db4o we haven't covered yet: schema

evolution, custom persistence for your classes, writing your own query objects, etc. A much more

thorough documentation is provided in the reference that you should have also received with the

www.db4o.com

download or online.

We hope that this tutorial has helped to get you started with db4o. How should you continue now?

- Register on db4o developer website.

- You could browse the remaining chapters. They are a selection of themes from the reference that

very frequently come up as questions in our http://developer.db4o.com/Forums.aspx.

-(Interactive version only)While this tutorial is basically sequential in nature, try to switch back and
forth between the chapters and execute the sample snippets in arbitrary order. You will be working
with the same database throughout; sometimes you may just get stuck or even induce exceptions, but
you can always reset the database via the console window.

- The examples we've worked through are included in your db4o distribution in full source code. Feel

free to experiment with it.
- If you're stuck, browse the information on our web site, check if your problem is submitted to Jira or

visit our forums at http://developer.db4o.com/Forums.aspx.

12.7. Full source

package com db4odoc. f 1. chapt er 6;

i mport java.io.*;

i mport com db4o. *;
i mport com db4o. cs. *;
i mport com db4o. cs. confi g. *;

i mport com db4odoc. f1.*;

public class CientServer Exanpl e extends Util {
final static String DB4OFI LENAME =
Syst em get Property("user. home")

+ "/formnul al. db4o";

private final static int PORT = 0xdb40;
private final static String USER = "user";

www.db4o.com

http://developer.db4o.com/Documentation.aspx
http://www.db4o.com/Users/register.aspx
http://developer.db4o.com/Forums.aspx
http://www.db4o.com/
http://tracker.db4o.com/
http://developer.db4o.com/Forums.aspx

private final static String PASSWORD = "password";

public static void main(String[] args) throws | OException {
new Fi | e(DB4OFI LENAME) . del et e() ;
accesslLocal Server();
new Fi | e(DB4OFI LENAME) . del et e() ;
nj ect Cont ai ner db = Db4oEnbedded. openFi | e(Db4oEnbedded
. newConfiguration(), DB4OFI LENANME)
try {
set Fi rst Car (db) ;
set SecondCar (db) ;

} finally {
db. cl ose();

}
Server Configuration config =
Db4od i ent Server. newSer ver Confi guration();
confi g. common() . obj ect ass(Car. cl ass) . updat eDept h(3) ;
nj ect Server server = Db4od i ent Server. openServer (confi g,
DB4CFI LENAMVE
0);
try {
guerylLocal Server (server);
denonstrat eLocal ReadComi tt ed(server);
denonstrat eLocal Rol | back(server);

} finally {
server.cl ose();

}
accessRenot eServer () ;
server = Db4od i ent Server. openServer (Db4oC i ent Server
. newSer ver Confi guration(), DB4OFI LENAVE, PORT);
server. grant Access(USER, PASSWORD) ;
try {
guer yRenot eSer ver (PORT, USER, PASSWORD) ;
denonst r at eRenot eReadConmi t t ed(PORT, USER, PASSWORD) ;
denonst r at eRenpt eRol | back(PORT, USER, PASSWORD) ;

} finally {
server.cl ose();

public static void setFirstCar(ObjectContainer db) {

www.db4o.com

Pilot pilot = new Pilot("Rubens Barrichello", 99);
Car car = new Car ("BWMWN);
car.setPilot(pilot);

db. store(car);

public static void set SecondCar ((bj ect Cont ai ner db) {
Pilot pilot = new Pilot("M chael Schumacher", 100);
Car car = new Car("Ferrari");
car.setPilot(pilot);

db. store(car);

public static void accessLocal Server() {
hj ect Server server =
Db4od i ent Server. openSer ver (Db4oC i ent Ser ver
. newSer ver Confi guration(), DB4CFI LENAVE, O0);
try {
nj ect Cont ai ner client = server.openCient();
/1 Do sonething with this client, or open nore clients
client.close();

} finally {
server.cl ose();

public static void querylLocal Server (Obj ect Server server) {
nj ect Cont ai ner client = server.openCient();
listResult(client.queryByExanpl e(new Car(null)));

client.close();

public static void denpnstratelocal ReadConmi tted(Obj ect Server

server) {

nj ect Contai ner clientl server.openCient();

nj ect Cont ai ner client?2
Pilot pilot = new Pilot("David Coul thard", 98);

njectSet result = clientl. queryByExanpl e(new Car("BMN));
Car car = (Car) result.next();

server.openCient();

car.setPilot(pilot);

clientl.store(car);

www.db4o.com

listResult(clientl. queryByExanpl e(new Car(null)));
listResult(client?2.queryByExanpl e(new Car(null)));
clientl.commit();
listResult(clientl. queryByExanpl e(Car. cl ass));
i st RefreshedResul t (client2,

client?2. queryByExanpl e(Car. cl ass), 2);
clientl.close();

client2. close();

public static void denponstratelocal Rol | back(Obj ect Server server)

nj ect Contai ner clientl server.openCient();

nj ect Cont ai ner client?2 server.openCient();
njectSet result = clientl. queryByExanpl e(new Car("BMN));
Car car = (Car) result.next();

car.setPil ot (new Pil ot ("Someone el se", 0));
clientl.store(car);

listResult(clientl. queryByExanpl e(new Car(null)));
listResult(client?2.queryByExanpl e(new Car(null)));
clientl.rollback();

clientl.ext().refresh(car, 2);

listResult(clientl. queryByExanpl e(new Car(null)));
listResult(client?2.queryByExanpl e(new Car(null)));

clientl.close();

client2.close();

public static void accessRenoteServer() throws | COException {
hj ect Server server =
Db4od i ent Server. openSer ver (Db4oC i ent Ser ver
. newSer ver Confi guration(), DB4OFI LENAVE, PORT);

server. grant Access(USER, PASSWORD) ;

try {

nj ect Cont ai ner client = Db4od ient Server.opend ient(
Db4od i ent Server. newd i ent Confi guration(),

"l ocal host",
PORT, USER, PASSWORD);
/1 Do sonething with this client, or open nore clients
client.close();
} finally {

www.db4o.com

server.cl ose();

public static void queryRenoteServer(int port, String user,
String password)
t hrows | OException {

nj ect Cont ai ner client =

Db4od i ent Server. openCl i ent (Db4oC i ent Server
.newd i ent Configuration(), "local host", port, user,

passwor d) ;

listResult(client.queryByExanpl e(new Car(null)));

client.close();

public static void denponstrat eRenot eReadCommitted(i nt port,
String user,
String password) throws | OException {

nj ect Container clientl =

Db4od i ent Server. openCl i ent (Db4od i ent Server
.newd i ent Configuration(), "local host", port, user,

passwor d) ;

nj ect Contai ner client2 =
Db4od i ent Server. openCl i ent (Db4oC i ent Server

.newd i ent Configuration(), "local host", port, user,

passwor d) ;

Pilot pilot = new Pilot("Jenson Button", 97);

njectSet result = clientl. queryByExanpl e(new Car(null));

Car car = (Car) result.next();

car.setPilot(pilot);

clientl.store(car);

listResult(clientl. queryByExanpl e(new Car(null)));

listResult(client?2.queryByExanpl e(new Car(null)));

clientl.commit();

listResult(clientl. queryByExanpl e(new Car(null)));

i st RefreshedResul t (client2,
client2. queryByExanpl e(Car. cl ass), 2);

clientl.close();

client2.close();

www.db4o.com

public static void denpnstrateRenpt eRol | back(int port, String
user,
String password) throws | OException {
nj ect Container clientl =
Db4od i ent Server. openCl i ent (Db4oC i ent Server
.newCl i ent Configuration(), "local host", port, user
passwor d) ;
nj ect Contai ner client2 =
Db4od i ent Server. openCl i ent (Db4oC i ent Server
.newCl i ent Configuration(), "local host", port, user
passwor d) ;
njectSet result = clientl. queryByExanpl e(new Car(null));
Car car = (Car) result.next();
car.setPil ot (new Pil ot ("Someone el se", 0));
clientl.store(car);
listResult(clientl. queryByExanpl e(new Car(null)));
listResult(client?2.queryByExanpl e(new Car(null)));
clientl.rollback();
clientl.ext().refresh(car, 2);
listResult(clientl. queryByExanpl e(new Car(null)));
listResult(client?2.queryByExanpl e(new Car(null)));
clientl.close();

client2.close();

www.db4o.com

13. SODA Evaluations

In the SODA API chapter we already mentioned Evaluations as a means of providing user-defined
custom constraints and as a means to run any arbitrary code in a SODA query. Let's have a closer
look.

13.1. Evaluation API

The evaluation API consists of two interfaces, Evaluation and Candidate . Evaluation
implementations are implemented by the user and injected into a query. During a query, they will be

called from db4o with a candidate instance in order to decide whether to include it into the current

(sub-)result.

The Evaluation interface contains a single method only:

public void eval uat e(Candi dat e candi date);

This will be called by db4o to check whether the object encapsulated by this candidate should be

included into the current candidate set.

The Candidate interface provides three methods:

public Object getCbject();
public void include(bool ean fl ag);

publ i c Obj ect Cont ai ner obj ect Cont ai ner () ;

An Evaluation implementation may call #getObject() to retrieve the actual object instance to be

evaluated, it may call #include() to instruct db4o whether or not to include this object in the current

www.db4o.com

#SODAQueryAPI

candidate

set, and finally it may access the current database directly by calling #objectContainer() .

13.2. Example

For a simple example, let's go back to our Pilot/Car implementation from the Collections chapter. Back

then, we kept a history of SensorReadout instances in a List member inside the car. Now imagine that

we wanted to retrieve all cars that have assembled an even number of history entries. A quite

contrived and seemingly trivial example, however, it gets us into trouble: Collections are transparent to

the query API, it just 'looks through' them at their respective members.

So how can we get this done? Let's implement an Evaluation that expects the objects passed in to be

instances of type Car and checks their history size.

To test it,

package com db4odoc. f 1. chapter7;

i mport com db4o. query. *;
i mport com db4odoc. f1. chapter4.*;

public class EvenHi storyEval uation inplements Eval uation {
public void eval uat e(Candi dat e candi date) ({
Car car=(Car)candi dat e. get Ovj ect();
candi dat e. i ncl ude(car.getH story().size() %2 == 0);

let's add two cars with history sizes of one, respectively two:

|/l storeCars

Pilot pilotl = new Pilot ("M chael Schumacher", 100);
Car carl = new Car("Ferrari");
carl.setPilot(pilotl);

car 1. snapshot () ;

db. store(carl);

www.db4o.com

#Collections

Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car ("BMWV);

car2.setPilot(pilot2);

car 2. snapshot () ;

car 2. snapshot () ;

db. store(car?2);

and run our evaluation against them:

/1 queryWthEval uation

Query query = db. query();
guery. constrain(Car.cl ass);

guery. constrai n(new EvenHi st oryEval uation());

bj ect Set result = query. execute();
Util.listResult(result);

13.3. Drawbacks

While evaluations offer you another degree of freedom for assembling queries, they come at a certain
cost: As you may already have noticed from the example, evaluations work on the fully instantiated
objects, while 'normal' queries peek into the database file directly. So there's a certain performance
penalty for the object instantiation, which is wasted if the object is not included into the candidate set.

Another restriction is that, while 'normal' queries can bypass encapsulation and access candidates'
private members directly, evaluations are bound to use their external API, just as in the language

itself.

www.db4o.com

One last hint: Evaluations are expected to be serializable for client/server operation. So be careful
when implementing them as (anonymous) inner classes and keep in mind that those will carry an
implicit reference to their surrounding class and everything that belongs to it. Best practice is to always

implement evaluations as normal top level or static inner classes.

13.4. Conclusion

With the introduction of evaluations we finally completed our query toolbox. Evaluations provide a

simple way of assemble arbitrary custom query building blocks, however, they come at a price.

13.5. Full source

package com db4odoc. f 1. chapter7;

i mport java.io.?*;

i mport com db4o. *;

i mport com db4o. query. *;

i mport com db4odoc. f1.*;

i mport com db4odoc. f1. chapter4.*;

public class Eval uati onExanpl e extends Util {
final static String DB4OFI LENAME =
System get Property("user. homre") + "/formul al. db4o";

public static void main(String[] args) {
new Fi | e(DB4OFI LENAME) . del et e() ;
nj ect Cont ai ner db =
Db4oEnbedded. openFi | e(Db4oEnbedded. newConfi gurati on(), DB4OFI LENAME);
try {
storeCars(db);
qguer yWt hEval uati on(db) ;

} finally {
db. cl ose();

www.db4o.com

public static void storeCars(Object Container db) {
Pilot pilotl = new Pilot ("M chael Schumacher", 100);
Car carl = new Car("Ferrari");
carl.setPilot(pilotl);
car 1. snapshot () ;
db. store(carl);
Pilot pilot2 = new Pilot("Rubens Barrichello", 99);
Car car2 = new Car("BMNV);
car2.setPil ot (pilot?2);
car 2. snapshot () ;
car 2. snapshot () ;

db. store(car?2);

public static void queryWthEval uati on(Obj ect Cont ai ner db) {
Query query = db. query();
guery. constrai n(Car.cl ass);
guery. constrai n(new EvenHi st oryEval uation());
nj ect Set result = query. execute();

Uil.listResult(result);

www.db4o.com

14. Configuration

db4o provides a wide range of configuration methods to request special behaviour. For a complete list
of all available methods see the API documentation for thecom.db4o.config and com.db4o.cs.config
packages.

A more complete description of Configuration usage and scope can also be obtained from the
Reference documentation.

Some hints around using configuration calls:

14.1. Scope

Configuration should be created and passed to an opening ObjectContainer or ObjectServer:

EnbeddedConfi guration config = Db4oEnbedded. newConfi guration();

Server Confi guration serverConfig =

Db4od i ent Server. newSer ver Confi guration();

ClientConfiguration clientConfig =
Db4od i ent Server. newd i ent Configuration();

Appropriate configuration should be submitted when an ObjectContainer ObjectServer is opened:

Db4oEnbedded. openFi |l e(config, fil enane)

Db4od i ent Server. openSer ver (server Config, filename, PORT)

www.db4o.com

http://developer.db4o.com/Documentation.aspx

Db4od i ent Server. openClient(clientConfig, HOST, PORT, USER, PASS)

A separate configuration instance should be created for each new ObjectContainer ObjectServer It is

recommended to use a factory method with all the necessary settings.

14.2. Calling Methods
Configurations that influence the database file format will have to take place, before a database is
created, before the first #openXXX() call. Some examples:

EnmbeddedConfi gurati on conf = Db4oEnbedded. newConfi gurati on();
conf. bl ockSi ze(8) ;
conf. stringEncodi ng(hew MyStri ngEncodi ng());

Configuration settings are not stored in db4o database files. Accordingly the same configuration has to
be submitted every time an ObjectContainer ObjectServer is opened.

www.db4o.com

15. Indexes
db4o allows to index fields to provide maximum querying performance. To request an index to be

created, you would issue the following API method call in your global db4o configuration method

before you open an ObjectContainer/ObjectServer:

/1 assum ng
cl ass Foo{

String bar;

ConmonConf i gur at i on#obj ect C ass(Foo. cl ass) . obj ectFi el d("bar").i ndexed

(true);

If the configuration is set in this way, an index on the Foo#bar field will be created (if not present
already) the next time you open an
ObjectContainer/ObjectServer and you use the Foo class the first time

in your application.

Contrary to all other configuration calls indexes - once created - will remain in a database even if the

index configuration call is not issued before opening an ObjectContainer/ObjectServer.

To drop an index you would also issue a configuration call in your db4o configuration method:

ConmonConf i gur at i on#obj ect C ass(Foo. cl ass) . obj ectFi el d("bar").i ndexed

(fal se);

Actually dropping the index will take place the next time the respective class is used.

db4o will tell you when it creates and drops indexes, if you choose a message level of 1 or higher:

ConmonConf i gur at i on#nessagelevel (1);

www.db4o.com

#Configuration
#Configuration

For creating and dropping indexes on large amounts of objects there are two possible strategies:
(1) Import all objects with indexing off, configure the index and reopen the
ObjectContainer/ObjectServer.

(2) Import all objects with indexing turned on and commit regularly for a fixed amount of objects
(~10,000).

(1) will be faster.

(2) will keep memory consumption lower.

www.db4o.com

16. IDs

The db4o team recommends, not to use object IDs where this is not necessary. db4o keeps track of
object identities in a transparent way, by identifying "known" objects on updates. The reference
system also makes sure that every persistent object is instantiated only once, when a graph of objects
is retrieved from the database, no matter which access path is chosen. If an object is accessed by
multiple queries or by multiple navigation access paths, db4o will always return the one single object,
helping you to put your object graph together exactly the same way as it was when it was stored,
without having to use IDs.

The use of IDs does make sense when object and database are disconnected, for instance in stateless
applications.

db4o provides two types of ID systems.
16.1. Internal IDs
The internal db4o ID is a physical pointer into the database with only one indirection in the file to the

actual object so it is the fastest external access to an object db4o provides. The internal ID of an object

is available with

obj ect Cont ai ner. ext (). getl D(obj ect);

To get an object for an internal ID use

obj ect Cont ai ner. ext (). getByl D(id);

Note that #getByID() does not activate objects. If you want to work with objects that you get with
#getByID(), your code would have to make sure the object is activated by calling

obj ect Cont ai ner. acti vat e(obj ect, depth);

db4o assigns internal IDs to any stored first class object. These internal IDs are guaranteed to be
unique within one ObjectContainer/ObjectServer and they will stay the same for every object when an
ObjectContainer/ObjectServer is closed and reopened. Internal IDs will change when an object is

moved from one ObjectContainer to another, as it happens during Defragment.

www.db4o.com

#Activation

16.2. Unique Universal IDs (UUIDs)
For long term external references and to identify an object even after it has been copied or moved to

another ObjectContainer, db4o supplies UUIDs. These UUIDs are not generated by default, since they

occupy some space and consume some performance for maintaining their index. UUIDs can be turned

on globally or for individual classes:

Fi | eConfi gur ati on#gener at eUUl Ds(| nt eger . MAX_VALUE) ;
Db4o. configure(). obj ect d ass(Foo. cl ass) . generat eUU Ds(true);

The respective methods for working with UUIDs are:

Ext Obj ect Cont ai ner #get Obj ect | nf o(Cbj ect)
nj ect | nf o#get UUI () ;
Ext Qbj ect Cont ai ner #get By UUl D(Db4oUUI D) ;

www.db4o.com

17. Enhancement

As we have seen both Transparent Activation and Native Queries will produce correct results out-of-
the-box.

To get your application to run as fast as possible with db4o, you will want to make sure that only
required objects are loaded from the database and that Native Queries are optimized to use field

indexes where this is possible.

Theoretically you could write all the necessary code by hand but you will save yourself a lot of time if

you use automatic enhancement.

The db4o enhancer tools will add code to your persistent classes to make them work even better with
db4o.

db4o for Java supplies three different enhancer strategies:
Enhancing at Compile/Deployment Time

Enhancing at Class Loading Time

Native Query Optimization at Query Execution Time

17.1. Required Libraries

The enhancer tasks require the addition of the following libraries to your project:

ant.jar

for using the Ant enhancer task

bloat-1.0.jar

the bytecode optimization library

db40-8.0-instrumentation.jar

instrumentation library on top of bloat

db40-8.0 -java5.jar

the db4o core engine

db40-8.0 -nqopt.jar
the Native Query Optimizer

db40-8.0-taj.jar

www.db4o.com

#TransparentActivation
#NativeQueries
#EnhancementCompileTime
#EnhancementLoadTime
#NQOptimization
http://ant.apache.org/

the Transparent Activation Framework for Java

db40-8.0 -tools.jar

the tools interface that provides the top level enhancer tasks.

Alternatively you can add db4o-8.0-all-java5.jarinstead, which contains the classes from all

the libraries listed above.

17.2. Enhancing at Compile Time

The db4o enhancer adds code to class files or jar files. Afterwards these files will be slightly different to

what the debugger expects.

In the setup the db4o team has been working with, using the Eclipse IDE, enhancing has worked
perfectly when files were instrumented in-place, directly in the /bin/ directory where the Eclipse
compiler places compiled class files. In all our tests the Eclipse debugger simply ignored additional
statements and stepped over them and debugging worked perfectly as usual.

The db4o enhancer technology is new. Not all possible development environment setups have been
checked by the db4o team and there may be incompatibility issues with your IDE when enhancing class
and library files in place. By trying out in-place enhancement with your setup and by reporting back
issues to the db4o forums you can help the db4o team to improve enhancement for your personal
setup. A possible strategy to resolve problems with in-place enhancement would be to use different
output directories than /bin and /lib as output paths for the enhancer and to run your enhanced

application from there.

17.2.1. Enhancing with Ant

db4otools.jar contains the main enhancer task:

com.db4o.enhance.Db4oEnhancerAntTask

For all possibilities of using this task see the topic on build time enhancement in the reference

documentation.

The simplest enhancer task can do the following:

1. optimize Native Queries 2. add the Activatable interface to your classes, making sure a persistent
object is activated whenever any field is read.
3. replace constructor invocation for platform collections (ArraylList,...) with a custom activatable

version derived from the platform collection

www.db4o.com

http://developer.db4o.com/Forums.aspx
http://developer.db4o.com/Documentation.aspx

Here is an example of how an Ant script could look like. This script enhances all class files and jar files

except for the db4o libraries in-place, in the /bin and /lib directory of your project:

<?xm version="1.0"7?>

<proj ect name="db4o enhance project" default="enhance" basedir=".">

<pat h id="project.classpath">
<pat hel ement pat h="${basedir}/bin" />
<fileset dir="lib">
<include nanme="**/*_jar"/>
</fileset>

</ pat h>

<t askdef nanme="db4o- enhance"
cl assnane="com db4o. enhance. Db4oEnhancer Ant Task"

cl asspat href =" proj ect. cl asspath" />

<t arget name="enhance">
<db4o- enhance cl asstargetdir="${basedir}/bin"
jartargetdir="${basedir}/lib" ng="true" ta="true" collections="true">
<cl asspath refid="project.classpath" />
<sources dir="${basedir}/bin" />
<jars dir="${basedir}/lib">
<include nane="*.jar" />
<excl ude nane="db4o-*.jar" />
<excl ude name="ant.jar" />
<excl ude name="bloat-1.0.jar" />
</jars>
</ db4o- enhance>

</target>

</ proj ect >

The instrumentation process can be configured with the ollowing attributes:

ng: switch for native query optimization enhancement

www.db4o.com

http://ant.apache.org/

ta: switch for transparent activation/persistence enhancement
collections: switch for enhancement of platform collections for transparent activation/persistence (only
effective if ta is switched on)

By default, these all are set to true.

If you use Eclipse, there is a very convenient way to make sure an Ant script is executed every time
after compilation and before you run your application: You can add a builder to your project. To do
this, right click on your project, choose "Properties" + "Builders" + "New" + "Ant Builder" and enter the
name of the build file you created.

17.2.2. Programmatic Enhancement

The db4o enhancer is just another Java application so of course you can start it directly. The enhancer
user interface is a convenience interface to the underlying instrumentation layer. To take advantage of
all the possibilities you may want to consider a look at the sources of

com.db4o.instrumentation.main.Db4oFileInstrumentor and call instrumentation directly.

Here is a very basic example how you could enhance all the files in the /bin folder below the project
'myproject' using the Db4oFileEnhancer:

i mport com db4o. enhance. *;
public static void main(String[] args) throws Exception {

String path = "../nyproject/bin";
new Db4oFi | eEnhancer (). enhance(path, path);

17.3. Enhancing at Load Time
As an alternative to enhancing classes at build time, it is also possible to run a db4o application using a
special launcher. Under the hood the Db4oEnhancedLauncher installs a special ClassLoader that

instruments classes for db4o on the fly, when they are loaded.

For using the launcher, please see the method signatures of

www.db4o.com

http://ant.apache.org/

Db4oEnhancedLauncher #l aunch()

17.4. NQ Optimization at Querying Time

In case no other enhancer has been run previously, Native Queries will still be optimized automatically
if the following optimization libraries are found in the CLASSPATH:
bloat-1.0.jar, db4o-8.0-instrumentation.jar, db40-8.0-nqopt.jar

The Native Query optimizer is still under development to eventually "understand" all Java constructs.

Current optimization supports the following constructs well:

compile-time constants

- simple member access

primitive comparisons

#equals() on primitive wrappers and Strings
#contains()/#startsWith()/#endsWith() for Strings

arithmetic expressions

boolean expressions

static field access

array access for static/predicate fields

arbitrary method calls on static/predicate fields (without candidate based params)

candidate methods composed of the above

- chained combinations of the above

Note that the current implementation does not support polymorphism and multiline methods yet.

17.5. Monitoring Native Query optimization

To find out if a Native Query runs optimized or unoptimized you can attach a query execution listener

as follows:

((Obj ect Cont ai ner Base) db) . get Nat i veQuer yHandl er () . addLi st ener (new
Db4oQuer yExecuti onLi st ener () {
public void notifyQueryExecuted(NQOpti m zationlnfo info) {

www.db4o.com

Systemerr.println(info);

1)

The listener will be notified on each native query call and will be passed the Predicate object processed,
the optimized expression tree (if successful) and the success status of the optimization run:

NativeQueryHandler.UNOPTIMIZED ("UNOPTIMIZED")

if the predicate could not be optimized and is run in unoptimized mode
NativeQueryHandler.PREOPTIMIZED ("PREOPTIMIZED")

if the predicate already was optimized (due to class file or load time
instrumentation)

NativeQueryHandler.DYNOPTIMIZED ("DYNOPTIMIZED")

if the predicate was optimized at query execution time

www.db4o.com

18. Interactive Tutorial Troubleshooting

db4o interactive tutorial uses Java applets to execute code examples directly in your browser enabling
you to see the results immediately during reading.

In order to use the interactive functionality a Java JRE 1.5 or above needs to be installed and enabled
in the browser.

Normally this and db4o for java installation is all that is needed to start with the interactive examples.
However some system configurations can prevent the examples from running properly.

Use the following check-list to locate and fix the problem:

- JRE1.5 or above should be installed.

- JAVA_HOME environment variable should point to the correct JRE (or JDK).

- The Java control panel should be configured to use the web browser.

- Java security settings have to allow a user to grant permissions to signed content and to grant
permission to content from an untrusted authority.

- You should also check that your system firewalls do not block interactive content.

18.1. Configuring JRE on Windows

To see whether your browser is configured to use the Java Runtime Environment or not, open the
Windows Control Panel and check if the Java icon is present.

In the Java Control Panel:

- check that your browser is enabled

- check that the user is granted permissions to signed content (untrusted authority as well).

www.db4o.com

19. License

Versant Inc. supplies the object database engine db4o under a triple licensing regime:

19.1. General Public License (GPL)

db4o is free to be used:

- for development,

- in-house as long as no deployment to third parties takes place,

- together with works that are placed under the GPL themselves.

You should have received a copy of the GPL in the file db4o.license.html together with the db4o
distribution.

If you have questions about when a commercial license is required, please

read our GPL Interpretation policy for further detail, available at:
http://www.db4o.com/about/company/legalpolicies/gplinterpretation.aspx

19.2. Opensource Compatibility license (dOCL)

The db4o Opensource Compatibility License (dOCL) is designed for free/open source projects that want
to embed db4o but do not want to (or are not able to) license their derivative work under the GPL in its
entirety. This initiative aims to proliferate db4o into many more open source projects by providing

compatibility for projects licensed under Apache, LGPL, BSD, EPL, and others, as required by our users.

The terms of this license are available here: "dOCL" agreement.

19.3. Commercial License

For incorporation into own commercial products and for use together with redistributed software that is
not placed under the GPL, db4o is also available under a commercial license.

Visit the purchasing area on the db4o website or contact db4o sales for licensing terms and pricing.
19.4. Bundled 3rd Party Licenses

The db4o distribution comes with the following 3rd party libraries:

-Apache Ant(Apache Software License)

Files: lib/ant.jar, lib/ant.license.txt

www.db4o.com

http://www.versant.com/
http://www.db4o.com/about/company/legalpolicies/docl.aspx
http://www.db4o.com
mailto:sales@db4o.com
http://ant.apache.org/

Ant can be used as a make tool for class file based optimization of native

queries at compile time.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

-BLOAT(GNU LGPL)

Files: lib/bloat-1.0.jar, lib/bloat.license.txt

Bloat is used for bytecode analysis during native queries optimization. It
needs to be on the classpath during runtime at load time or query execution

time for just-in-time optimization. Preoptimized class files are not dependent
on BLOAT at runtime.

www.db4o.com

http://www.cs.purdue.edu/s3/projects/bloat/

20. Contacting Versant

Versant Corporation

255 Shoreline Drive
Suite 450

Redwood City, CA 94065
USA

Phone
+1 (650) 232-2431

Fax
+1 (650) 232-2401

Sales

Fill out our sales contact form on the db4o website

or

mail to sales@db4o.com

Join the db4o Community

Join the db4o community for help, tips and tricks.

Ask for help in the db4o forums at any time.

And take a look at additional resources on the community website.

If you want to stay informed, subscribe to our db4o blogs

Careers

career@db4o.com

Partnering
partner@db4o.com

www.db4o.com

http://www.db4o.com/commercial/purchase/enquiry.aspx
mailto:sales@db4o.com
http://developer.db4o.com
http://developer.db4o.com/Forums.aspx
http://developer.db4o.com/Resources.aspx
http://developer.db4o.com/Blogs.aspx
mailto:career@db4o.com
mailto:partner@db4o.com

	Welcome
	Download Contents
	1. First Glance
	1.1. The db4o engine
	1.2. Installation
	1.3. Object Manager Enterprise installation
	1.4. API Overview

	2. First Steps
	2.1. Opening the database
	2.2. Storing objects
	2.3. Retrieving objects
	2.4. Updating objects
	2.5. Deleting objects
	2.6. Conclusion
	2.7. Full source

	3. Object Manager Enterprise Overview
	3.1. Browsing the database
	3.2. Querying

	4. Querying
	4.1. Query by Example (QBE)
	4.2. Native Queries
	4.2.1. Concept
	4.2.2. Principle
	4.2.3. Simple Example
	4.2.4. Advanced Example
	4.2.5. Arbitrary Code
	4.2.6. Native Query Performance
	4.2.7. Full source

	4.3. SODA Query API
	4.3.1. Simple queries
	4.3.2. Advanced queries
	4.3.3. Conclusion
	4.3.4. Full source

	5. Structured objects
	5.1. Storing structured objects
	5.2. Retrieving structured objects
	5.2.1. QBE
	5.2.2. Native Queries
	5.2.3. SODA Query API

	5.3. Updating structured objects
	5.3.1. Update depth

	5.4. Deleting structured objects
	5.4.1. Recursive deletion
	5.4.2. Recursive deletion revisited

	5.5. Conclusion
	5.6. Full source

	6. Collections and Arrays
	6.1. Storing
	6.2. Retrieving
	6.2.1. QBE
	6.2.2. Native Queries
	6.2.3. Query API

	6.3. Updating and deleting
	6.4. Conclusion
	6.5. Full source

	7. Inheritance
	7.1. Storing
	7.2. Retrieving
	7.3. Updating and deleting
	7.4. Conclusion
	7.5. Full source

	8. Deep graphs
	8.1. Storing and updating
	8.2. Retrieving
	8.2.1. Activation depth

	8.3. Conclusion
	8.4. Full source

	9. Transactions
	9.1. Commit and rollback
	9.2. Refresh live objects
	9.3. Conclusion
	9.4. Full source

	10. Transparent Activation
	10.1. The Activation Problem
	10.2. Turning On Transparent Activation
	10.3. Implementing Activatable
	10.4. Where Enhancement can help
	10.5. Conclusion
	10.6. Full source

	11. Transparent Persistence
	11.1. Transparent Persistence Example
	11.2. Transparent Persistence Enhancement
	11.3. Conclusion
	11.4. Full source

	12. Client/Server
	12.1. Embedded server
	12.2. Networking
	12.3. Native Queries in Client/Server mode
	12.4. Out-of-band signalling
	12.5. Putting it all together: a simple but complete db4o server
	12.6. Conclusion
	12.7. Full source

	13. SODA Evaluations
	13.1. Evaluation API
	13.2. Example
	13.3. Drawbacks
	13.4. Conclusion
	13.5. Full source

	14. Configuration
	14.1. Scope
	14.2. Calling Methods

	15. Indexes
	16. IDs
	16.1. Internal IDs
	16.2. Unique Universal IDs (UUIDs)

	17. Enhancement
	17.1. Required Libraries
	17.2. Enhancing at Compile Time
	17.2.1. Enhancing with Ant
	17.2.2. Programmatic Enhancement

	17.3. Enhancing at Load Time
	17.4. NQ Optimization at Querying Time
	17.5. Monitoring Native Query optimization

	18. Interactive Tutorial Troubleshooting
	18.1. Configuring JRE on Windows

	19. License
	19.1. General Public License (GPL)
	19.2. Opensource Compatibility license (dOCL)
	19.3. Commercial License
	19.4. Bundled 3rd Party Licenses

	20. Contacting Versant

