
UTN FRD – Sistemas
Operativos

Unidad III – Sincronización
entre Procesos

Multiple Processes

• Central to the design of modern Operating
Systems is managing multiple processes
– Multiprogramming

– Multiprocessing
– Distributed Processing

• Big Issue is Concurrency
– Managing the interaction of all of these

processes

Concurrency

Concurrency arises in:
• Multiple applications

– Sharing time

• Structured applications
– Extension of modular design

• Operating system structure
– OS themselves implemented as a set of

processes or threads

Key Terms

Interleaving and
Overlapping Processes

• Earlier (Ch2) we saw that processes may
be interleaved on uniprocessors

Interleaving and
Overlapping Processes

• And not only interleaved but overlapped
on multi-processors

Difficulties of
Concurrency

• Sharing of global resources
• Optimally managing the allocation of

resources
• Difficult to locate programming errors as

results are not deterministic and
reproducible.

A Simple Example

void echo()
{

chin = getchar();
chout = chin;
putchar(chout);

}

A Simple Example:
On a Multiprocessor

Process P1 Process P2
. .

chin = getchar(); .
. chin = getchar();

chout = chin; chout = chin;
putchar(chout); .

. putchar(chout);

. .

Enforce Single Access

• If we enforce a rule that only one process
may enter the function at a time then:

• P1 & P2 run on separate processors
• P1 enters echo first,

– P2 tries to enter but is blocked – P2 suspends

• P1 completes execution
– P2 resumes and executes echo

Race Condition

• A race condition occurs when
– Multiple processes or threads read and write

data items
– They do so in a way where the final result

depends on the order of execution of the
processes.

• The output depends on who finishes the
race last.

Operating System
Concerns

• What design and management issues are
raised by the existence of concurrency?

• The OS must
– Keep track of various processes
– Allocate and de-allocate resources

– Protect the data and resources against
interference by other processes.

– Ensure that the processes and outputs are
independent of the processing speed

Process Interaction

Competition among
Processes for Resources

Three main control problems:
• Need for Mutual Exclusion

– Critical sections

• Deadlock
• Starvation

Requirements for
Mutual Exclusion

• Only one process at a time is allowed in
the critical section for a resource

• A process that halts in its noncritical
section must do so without interfering with
other processes

• No deadlock or starvation

Requirements for
Mutual Exclusion

• A process must not be delayed access to
a critical section when there is no other
process using it

• No assumptions are made about relative
process speeds or number of processes

• A process remains inside its critical
section for a finite time only

Disabling Interrupts

• Uniprocessors only allow interleaving
• Interrupt Disabling

– A process runs until it invokes an operating
system service or until it is interrupted

– Disabling interrupts guarantees mutual
exclusion

– Will not work in multiprocessor architecture

Pseudo-Code

while (true) {
/* disable interrupts */;

/* critical section */;

/* enable interrupts */;

/* remainder */;

}

Special Machine
Instructions

• Compare&Swap Instruction
– also called a “compare and exchange

instruction”

• Exchange Instruction

Compare&Swap
Instruction

int compare_and_swap (int *word,

int testval, int newval)

{
int oldval;

oldval = *word;

if (oldval == testval) *word = newval;

return oldval;

}

Mutual Exclusion (fig 5.2)

Exchange instruction

void exchange (int register, int
memory)

{
int temp;

temp = memory;

memory = register;

register = temp;

}

Exchange Instruction
(fig 5.2)

Hardware Mutual
Exclusion: Advantages

• Applicable to any number of processes on
either a single processor or multiple
processors sharing main memory

• It is simple and therefore easy to verify
• It can be used to support multiple critical

sections

Hardware Mutual
Exclusion: Disadvantages

• Busy-waiting consumes processor time
• Starvation is possible when a process

leaves a critical section and more than one
process is waiting.
– Some process could indefinitely be denied

access.

• Deadlock is possible

Semaphore

• Semaphore:
– An integer value used for signalling among

processes.

• Only three operations may be performed
on a semaphore, all of which are atomic:
– initialize,
– Decrement (semWait)
– increment. (semSignal)

Semaphore Primitives

Binary Semaphore
Primitives

Strong/Weak
Semaphore

• A queue is used to hold processes waiting
on the semaphore
– In what order are processes removed from

the queue?

• Strong Semaphores use FIFO
• Weak Semaphores don’t specify the

order of removal from the queue

Example of Strong
Semaphore Mechanism

Example of Semaphore
Mechanism

Mutual Exclusion Using
Semaphores

Processes Using
Semaphore

Producer/Consumer
Problem

• General Situation:
– One or more producers are generating data and

placing these in a buffer
– A single consumer is taking items out of the buffer

one at time
– Only one producer or consumer may access the

buffer at any one time

• The Problem:
– Ensure that the Producer can’t add data into full

buffer and consumer can’t remove data from empty
buffer

Producer/Consumer Animation

Functions

Producer Consumer

while (true) {

/* produce item v */

b[in] = v;

in++;

}

while (true) {

while (in <= out)

/*do nothing */;

w = b[out];

out++;

/* consume item w */

}

• Assume an infinite buffer b with a linear array of
elements

Deadlock

• A set of processes is deadlocked when
each process in the set is blocked awaiting
an event that can only be triggered by
another blocked process in the set
– Typically involves processes competing for

the same set of resources

• No efficient solution

Potential Deadlock

I need
quad A and

B

I need
quad B and

C

I need
quad C and

B

I need
quad D and

A

Actual Deadlock

HALT until
B is free

HALT until
C is free

HALT until
D is free

HALT until
A is free

Two Processes P and Q

• Lets look at this with
two processes P and Q

• Each needing
exclusive access to a
resource A and B for a
period of time

Joint Progress
Diagram of Deadlock

Alternative logic

• Suppose that P does
not need both
resources at the same
time so that the two
processes have this
form

Diagram of
alternative logic

Resource Categories

Two general categories of resources:
• Reusable

– can be safely used by only one process at a
time and is not depleted by that use.

• Consumable
– one that can be created (produced) and

destroyed (consumed).

Reusable Resources

• Such as:
– Processors, I/O channels, main and

secondary memory, devices, and data
structures such as files, databases, and
semaphores

• Deadlock occurs if each process holds
one resource and requests the other

Consumable Resources

• Such as Interrupts, signals, messages,
and information in I/O buffers

• Deadlock may occur if a Receive message
is blocking

• May take a rare combination of events to
cause deadlock

Resource Allocation
Graphs

• Directed graph that depicts a state of the
system of resources and processes

Conditions for
possible Deadlock

• Mutual exclusion
– Only one process may use a resource at a

time

• Hold-and-wait
– A process may hold allocated resources while

awaiting assignment of others

• No pre-emption
– No resource can be forcibly removed form a

process holding it

Actual Deadlock
Requires …

All previous 3 conditions plus:
• Circular wait

– A closed chain of processes exists, such that
each process holds at least one resource
needed by the next process in the chain

Resource Allocation
Graphs of deadlock

Resource Allocation
Graphs

Dealing with Deadlock

• Three general approaches exist for
dealing with deadlock.
– Prevent deadlock

– Avoid deadlock
– Detect Deadlock

Deadlock Prevention
Strategy

• Design a system in such a way that the
possibility of deadlock is excluded.

• Two main methods
– Indirect – prevent all three of the necessary

conditions occurring at once
– Direct – prevent circular waits

Deadlock Prevention
Conditions 1 & 2

• Mutual Exclusion
– Must be supported by the OS

• Hold and Wait
– Require a process request all of its required

resources at one time

Deadlock Prevention
Conditions 3 & 4

• No Preemption
– Process must release resource and request

again
– OS may preempt a process to require it

releases its resources

• Circular Wait
– Define a linear ordering of resource types

Deadlock Avoidance

• A decision is made dynamically whether
the current resource allocation request
will, if granted, potentially lead to a
deadlock

• Requires knowledge of future process
requests

Two Approaches to
Deadlock Avoidance

• Process Initiation Denial
– Do not start a process if its demands might

lead to deadlock

• Resource Allocation Denial
– Do not grant an incremental resource request

to a process if this allocation might lead to
deadlock

Process
Initiation Denial

• A process is only started if the maximum
claim of all current processes plus those of
the new process can be met.

• Not optimal,
– Assumes the worst: that all processes will

make their maximum claims together.

Resource
Allocation Denial

• Referred to as the banker’s algorithm
– A strategy of resource allocation denial

• Consider a system with fixed number of
resources
– State of the system is the current allocation of

resources to process

– Safe state is where there is at least one
sequence that does not result in deadlock

– Unsafe state is a state that is not safe

Determination of
Safe State

• A system consisting of four processes and
three resources.

• Allocations are made to processors
• Is this a safe state?

Amount of
Existing

Resources

Resources
available

after
allocation

Process i

• Cij - Aij ≤ Vj, for all j
• This is not possible for P1,

– which has only 1 unit of R1 and requires 2
more units of R1, 2 units of R2, and 2 units of
R3.

• If we assign one unit of R3 to process P2,
– Then P2 has its maximum required resources

allocated and can run to completion and
return resources to ‘available’ pool

After P2
runs to completion

• Can any of the remaining processes can
be completed?

Note P2 is
completed

After P1 completes

P3 Completes

Thus, the state defined
originally is a safe

state.

Determination of an
Unsafe State

This time
Suppose that
P1 makes the
request for one
additional unit
each of R1 and
R3.
Is this safe?

Deadlock Avoidance

• When a process makes a request for a set
of resources,
– assume that the request is granted,

– Update the system state accordingly,

• Then determine if the result is a safe state.
– If so, grant the request and,
– if not, block the process until it is safe to grant

the request.

Deadlock Avoidance
Logic

Deadlock Avoidance
Logic

Deadlock Avoidance
Advantages

• It is not necessary to preempt and rollback
processes, as in deadlock detection,

• It is less restrictive than deadlock
prevention.

Deadlock Avoidance
Restrictions

• Maximum resource requirement must be
stated in advance

• Processes under consideration must be
independent and with no synchronization
requirements

• There must be a fixed number of
resources to allocate

• No process may exit while holding
resources

Roadmap

• Principals of Deadlock
– Deadlock prevention

– Deadlock Avoidance
– Deadlock detection

– An Integrated deadlock strategy

• Dining Philosophers Problem
• Concurrency Mechanisms in UNIX, Linux,

Solaris and Windows

Deadlock Detection

• Deadlock prevention strategies are very
conservative;
– limit access to resources and impose

restrictions on processes.

• Deadlock detection strategies do the
opposite
– Resource requests are granted whenever

possible.

– Regularly check for deadlock

A Common
Detection Algorithm

• Use a Allocation matrix and Available
vector as previous

• Also use a request matrix Q
– Where Qij indicates that an amount of

resource j is requested by process I

• First ‘un-mark’ all processes that are not
deadlocked
– Initially that is all processes

Detection Algorithm

1. Mark each process that has a row in the
Allocation matrix of all zeros.

2. Initialize a temporary vector W to equal
the Available vector.

3. Find an index i such that process i is
currently unmarked and the ith row of Q is
less than or equal to W.
– i.e. Qik ≤ Wk for 1 ≤ k ≤ m.
– If no such row is found, terminate

Detection Algorithm cont.

4. If such a row is found,
– mark process i and add the corresponding

row of the allocation matrix to W.
– i.e. set Wk = Wk + Aik, for 1 ≤ k ≤ m

Return to step 3.
• A deadlock exists if and only if there are

unmarked processes at the end
• Each unmarked process is deadlocked.

Deadlock Detection

Recovery Strategies
Once Deadlock Detected

• Abort all deadlocked processes
• Back up each deadlocked process to

some previously defined checkpoint, and
restart all process
– Risk or deadlock recurring

• Successively abort deadlocked processes
until deadlock no longer exists

• Successively preempt resources until
deadlock no longer exists

Advantages
and Disadvantages

Roadmap

• Principals of Deadlock
– Deadlock prevention

– Deadlock Avoidance
– Deadlock detection

– An Integrated deadlock strategy

• Dining Philosophers Problem
• Concurrency Mechanisms in UNIX, Linux,

Solaris and Windows

Dining Philosophers
Problem: Scenario

The Problem

• Devise a ritual (algorithm) that will allow
the philosophers to eat.
– No two philosophers can use the same fork at

the same time (mutual exclusion)

– No philosopher must starve to death (avoid
deadlock and starvation … literally!)

A first solution using
semaphores

Avoiding deadlock

Solution using Monitors

Monitor solution cont.

Roadmap

• Principals of Deadlock
– Deadlock prevention

– Deadlock Avoidance
– Deadlock detection

– An Integrated deadlock strategy

• Dining Philosophers Problem
• Concurrency Mechanisms in UNIX, Linux,

Solaris and Windows

UNIX Concurrency
Mechanisms

• UNIX provides a variety of mechanisms for
interprocessor communication and
synchronization including:
– Pipes

– Messages
– Shared memory
– Semaphores

– Signals

Pipes

• A circular buffer allowing two processes to
communicate on the producer-consumer
model
– first-in-first-out queue, written by one process

and read by another.

• Two types:
– Named:

– Unnamed

Messages

• A block of bytes with an accompanying
type.

• UNIX provides msgsnd and msgrcv
system calls for processes to engage in
message passing.

• Associated with each process is a
message queue, which functions like a
mailbox.

Shared Memory

• A common block of virtual memory shared
by multiple processes.

• Permission is read-only or read-write for a
process,
– determined on a per-process basis.

• Mutual exclusion constraints are not part
of the shared-memory facility but must be
provided by the processes using the
shared memory.

Semaphores

• SVR4 uses a generalization of the
semWait and semSignal primitives
defined in Chapter 5;

• Associated with the semaphore are
queues of processes blocked on that
semaphore.

Signals

• A software mechanism that informs a
process of the occurrence of
asynchronous events.
– Similar to a hardware interrupt, without

priorities

• A signal is delivered by updating a field in
the process table for the process to which
the signal is being sent.

Signals defined for
UNIX SVR4.

MUTEX Lock

• A mutex is used to ensure only one thread
at a time can access the resource
protected by the mutex.

• The thread that locks the mutex must be
the one that unlocks it.

Condition Variables

• A condition variable is used to wait until a
particular condition is true.

• Condition variables must be used in
conjunction with a mutex lock.

