UTN FRD — Sistemas
Operativos
Unidad Il — Sincronizacion
entre Procesos

Multiple Processes

e Central to the design of modern Operating
Systems Is managing multiple processes

— Multiprogramming
— Multiprocessing
— Distributed Processing

e Big Issue is Concurrency

— Managing the interaction of all of these
processes

Concurrency

Concurrency arises In:
 Multiple applications

— Sharing time
o Structured applications

— Extension of modular design

e Operating system structure

— OS themselves implemented as a set of
processes or threads

Key Terms

Table 5.1 Some Keyv Terms Related to Concurrency

atomic operation

critical section

deadlock

lvelock

mutual exclasion

race condifion

starvation

A sequence of one or more statements that appears to be indivisible; thatis,
no other process can see an intermediate state or intermupt the operation.

A section of code within a process that requires access to shared resources
and that must not be executed while another process is in a corresponding
section of code.

A situation in which two or more processes are unable to proceed because
each is waiting for one of the others to do something.

A situation in which two or more processes continuouslv change their states

in response to changes in the other process(es) without doing any useful
work.

The requirement that when one process is in a critical section that accesses
shared resources, no other process mav be in a critical section that accesses
anv of those shared resources.

A situation in which multiple threads or processes read and write a shared
data item and the final result depends on the relative timing of their
execution.

A situation in which a runnable process is overlooked indefinitely by the
scheduler; although it is able to proceed. it is never chosen.

Interleaving and

Overlapping Processes

e Earlier (Ch2) we saw that processes may
be interleaved on uniprocessors

Time g
Process 1 (I | 7
Process 2 —1 _-— |

Process 3 —_—]

(a) Interleaving (muliiprogramming, one Processor)

B Blocked [Running

Figure 2.12 Multiprogramming and Multiprocessing

Interleaving and

Overlapping Processes

 And not only interleaved but overlapped
on multi-processors

Time >

Process 1 | E— |
Process 2 I | | |

Process 3 EBEee—T—=H I

(b} Interleaving and overlapping (muliprocessing; tWo processors)

B Blocked 1 Running

Figure 2.12 Multiprogramming and Multiprocessing

Difficulties of

Concurrency

e Sharing of global resources

* Optimally managing the allocation of
resources

 Difficult to locate programming errors as
results are not deterministic and
reproducible.

A Simple Example

void echo()

{
chin = getchar();
chout = chin;
putchar(chout);

}

A Simple Example:
On a Multiprocessor
Process P1 Process P2

chin = getchar();

chin = getchar();
chout = chin; chout = chin;
putchar(chout); .
putchar(chout);

Enforce Single Access

If we enforce a rule that only one process
may enter the function at a time then:

Pl & P2 run on separate processors

P1 enters echo first,
— P2 tries to enter but is blocked — P2 suspends

P1 completes execution
— P2 resumes and executes echo

Race Condition

e A race condition occurs when

— Multiple processes or threads read and write
data items

— They do so in a way where the final result
depends on the order of execution of the
processes.

e The output depends on who finishes the
race last.

Operating System
Concerns

 \What design and management issues are
raised by the existence of concurrency?

e The OS must

— Keep track of various processes
— Allocate and de-allocate resources

— Protect the data and resources against
iInterference by other processes.

— Ensure that the processes and outputs are
Independent of the processing speed

Process Interaction

Table 5.2

Process Interaction

Degree of Awareness Relationship Influence That One Potential Control
Process Has on the Problems
Other
Processes unaware of Competition * Results of one * Mutual exclusion
each other process inrclependent * Deadlock (renewable
of the action of others resource)
* Timing of process * Starvation
may be affected
Processes indirectly Cooperation by sharing * Results of one * Mutual exclusion

aware of each other (e.g.,
shared object)

process may depend
on information
obtained from others

* Timing of process
may be affected

* Deadlock (renewable
resource)

® Starvation

* Data coherence

Processes directly aware
of each other (have com-
munication primitives
available to them)

Cooperation by commu-
nication

* Results of one
process may depend
on information
obtained from others

* Timing of process
may be affected

* Deadlock {consum-
able resource)

* Starvation

Competition among
Processes for Resources

hree main control problems:

e Need for Mutual Exclusion
— Critical sections

e Deadlock
e Starvation

Reqguirements for
Mutual Exclusion
 Only one process at a time Is allowed In

the critical section for a resource

e A process that halts in its noncritical
section must do so without interfering with
other processes

e No deadlock or starvation

Reqguirements for
Mutual Exclusion

e A process must not be delayed access to
a critical section when there is no other
process using it

 No assumptions are made about relative
process speeds or number of processes

e A process remains inside Iits critical
section for a finite time only

Disabling Interrupts

* Uniprocessors only allow interleaving

* Interrupt Disabling

— A process runs until it invokes an operating
system service or until it is interrupted

— Disabling interrupts guarantees mutual
exclusion

— Will not work in multiprocessor architecture

Pseudo-Code

while (true) {

[* disable interrupts */;
[* critical section */;
[* enable Interrupts */;
[* remal nder */;

Special Machine
Instructions

o Compare&Swap Instruction

— also called a “compare and exchange
Instruction”

 Exchange Instruction

Compare&Swap

Instruction
I nt conpare_and swap (I nt *word,
Int testval, 1 nt newal)
{
| nt ol dval ;
ol dval = *word;
I f (oldval == testval) *word = newal;

return ol dval

Mutual Exclusion (fig 5.2)

/* program mutualexclusion */

const int n = /* number of processes */;
int bolt;

void P(int 1)

{

while (true) {
while (compare_and swap(bolt, 0, 1) ==

/* do nothing */;
/* critical section */;

bolt = Q;
/* remainder */;

}

volid main()
{
bolt = 0;
parbegin (P(1), P(2}), ... ,P(n));

(a) Compare and swap instruction

Exchange instruction

voli d exchange (int register, Int
Menory)

{
I nt tenp;
tenp = nenory;
nenory = register,
register = tenp;

Exchange Instruction
(fig 5.2)

/* program mutualexclusion #*/
int const n = /* number of processes**/;
int beolt;

void Pi{int 1)

{

int keyi = 1;
while (true) {
do exchange (keyi, bolt)

while (keyvi != 0);
/* critical section */;
bolt = 0;

/* remainder */;

}

volid main()

{
bolt = Q;

parbegin (P(1), P(2), ..., PB(n));

(b) Exchange instruction

Hardware Mutual
Exclusion: Advantages

* Applicable to any number of processes on
either a single processor or multiple
Drocessors sharing main memory

e Itis simple and therefore easy to verify

It can be used to support multiple critical
sections

Hardware Mutual

Exclusion: Disadvantages

e Busy-walting consumes processor time

e Starvation Is possible when a process
leaves a critical section and more than one
process Is waiting.

— Some process could indefinitely be denied
access.

e Deadlock Is possible

Semaphore

e Semaphore:

— An Integer value used for signalling among
processes.

* Only three operations may be performed
on a semaphore, all of which are atomic:
— Initialize,

— Decrement (semMi t)
— Increment. (senfi gnal)

Semaphore Primitives

struct semaphore {

Hi

vold

{

vold

int count;
queueType queue;

semWalit (semaphore s)

s.count—--;

if (s.count < 0) {
/* place this process
/* block this process
t

semSignal (semaphore s)

8 .count++;

if (s.count <= 0) {
/* remove a process P
/* place process P on

in s.queue */;

k3 -
r

from s.queue */;
ready list */;

Figure 5.3 A Definition of Semaphore Primitives

Binary Semaphore
Primitives

struct binary semaphore |
enum {zero, one} value;
queueType queue;

bHi
void semWaitB(binary semaphore s)
{
if (s.value == one)
s.value = zero;
else {
/* place this process in s.queue */;
/* block this process */;
}
t
void semSignalB(semaphore s)
{
if (s.gqueue is empty())
s.value = one;
else {
/* remove a process P from s.queue */;
/* place process P on ready list */;
}
}

Figure 5.4 A Definition of Binary Semaphore Primitives

Strong/Weak
Semaphore

* A gueue Is used to hold processes waiting
on the semaphore

— In what order are processes removed from
the queue?

e Strong Semaphores use FIFO

« Weak Semaphores don’t specify the
order of removal from the queue

Example of Strong

Semaphore II\/Iechanism
@ lﬁf:;.*;m :
e E— C|D|B

Blocked quene Semaphore Ready queue

@ Processor
B I:
I— s=1} I—r A|lC|D

L 2

w

Blocked gueue Semaphore Ready queue
@ Processor
D I -+
——- B - 5= —l ‘-_\ {:' ———
Blocked queue Semaphore Ready queue

@ Processor
D I:

Blocked queue Semaphore Ready queue

I—

w W

Example of Semaphore
Mechanism

® Processor
I C I -

—- - s=10 D| B | A pre—

Blocked queune Semaphore Ready quene

@ Processor
I D I:.

Blocked queune Semaphore Ready quene

@ Processor
II D I -

Blocked queune Semaphore Ready quene

Figure 5.5 Example of Semaphore Mechanism

Mutual Exclusion Using

Semaphores

/* program mutualexclusion */

const int n = /* number of processes */;
semaphore s = 1;
vold P{(int 1)

while (true) {
semWait(s);

/* critical section */
semSignal(s);
/* remainder */
t
t
vold main()
{
parbegin (P{(1l), P{(2), . . ., B(n));
}

Figure 5.6 Mutual Exclusion Using Semaphores

Processes Using
Semaphore

Quene for Value of

semaphore lock semaphore lock A B C
Critical
] region
Y
e Mormal
Wit |] e
L= L= L8
0
Y I Blocked on
semWaitilock) : semaphore
e e s s T T T T I ,
B 1 : ! bk
I semWait{lock)
S - q-——=
C|B —2 ! |
¥ ! I
semSignalilock) 1 I
e ———j———
C -1 :
|
|
|
semSignal(lock) |
D 1
semSignalilock)
] L +

. -
¥ TRy i
Figure 5.7

Neate that normal
execuiion can
proceed in parallel
buit that critical
regions are serialized.

Processes Accessing Shared Data Protected by a Semaphore

Producer/Consumer
Problem

e General Situation:

— One or more producers are generating data and
placing these in a buffer

— A single consumer is taking items out of the buffer
one at time

— Only one producer or consumer may access the
buffer at any one time

e The Problem:

— Ensure that the Producer can’'t add data into full
buffer and consumer can’t remove data from empty
buffer

Producer/Consumer Animation -

Functions

« Assume an infinite buffer b with a linear array of
elements

while (true) { while (true) {
/* produce item v */ while (in <= out)
blin] = v; /*do nothing */;
in++; w = b[out];

} out++;

/* consume item w */

Deadlock

o A set of processes Is deadlocked when
each process In the set Is blocked awaiting
an event that can only be triggered by
another blocked process in the set

— Typically involves processes competing for
the same set of resources

e No efficient solution

Potential Deadlock

¢c b ﬁ'l_]
DB d a
-
=

Actual Deadlock

_. =

Lo ﬂ M |
L8
. -

Two Processes P and Q

* Lets look at this with Process P Process Q
two processes Pand Q ¢4 Get B

« Each needing B Get A
exclusive access to a Release A Releass B
resource A and B for a Release B Release A

period of time

Joint Progress
Diagram of Deadlock

Progress
of Q A
‘1
Release
A 7
A Release }/% /

\m\

; —3»,:‘:::'::;:1\ A
Required want
q GetB * k\ \\\\\ S >

[
6
>

Progress
of P

Get A Get B Release A Release B

FA = both P and Q want resource A k—”—Y_\—j
< TR A
=both P and Q want resource B Required _/_Y_j

I:‘ = deadlock-inevitable region B Required
_P = possible progress path of P and Q.

Horizontal portion of path mdicates P 1s executing and Q 1s walting.
Vertical portion of path indicates () is executing and P is waiting .

Figure 6.2 Example of Deadlock

Alternative logic

time so that the two . e
processes have this Get B Release B

form Release B Release A

e Suppose that P does Process P Process Q
not need both ot A ot
resources at the same .. s

Release A Get A

Diagram of
alternative logic

Progress
of Q
A
1
A
Release
A
4
>
A‘ Release
Required B / want A / \\\\
Get A /// \P and Q\
T \ want B\E
b %
Required \
<
Get B i N >
6
I
Progress
GetA Release A GetB Release B of P
=both P and Q want resource A A Required B Required
< = ; . i el = possible progress path of Pand Q.
L\ both Pand Q want resource B Horizontal portion of path indicates P 1s executing and () is waiting.

Vertical portion of path indieates (Q is executing and P is waiting.

Figure 6.3 Example of No Deadlock [BACO03]

Resource Categories

wo general categories of resources:

e Reusable

— can be safely used by only one process at a
time and is not depleted by that use.

e Consumable

— one that can be created (produced) and
destroyed (consumed).

Reusable Resources

e Such as:

— Processors, I/0 channels, main and
secondary memory, devices, and data
structures such as files, databases, and
semaphores

 Deadlock occurs if each process holds
one resource and requests the other

Consumable Resources

e Such as Interrupts, signals, messages,
and information in 1/O buffers

 Deadlock may occur if a Recelve message
IS blocking

 May take a rare combination of events to
cause deadlock

Resource Allocation
Graphs

* Directed graph that depicts a state of the
system of resources and processes

R Held b
pj —————>® Ra pj <————® Ra

(a) Resouce is requested (b) Resource is held

Conditions for
possible Deadlock

 Mutual exclusion
— Only one process may use a resource at a
time
* Hold-and-wait

— A process may hold allocated resources while
awaiting assignment of others

* No pre-emption

— No resource can be forcibly removed form a
process holding it

Actual Deadlock
Requires ...

All previous 3 conditions plus:

 Circular wait

— A closed chain of processes exists, such that
each process holds at least one resource
needed by the next process in the chain

Resource Allocation
Graphs of deadlock

Ra

Pl P2 Pl P2

Rb

(¢} Circular wait (d) No deadlock

Resource Allocation
Graphs

P1 P2 P3 P4
A \ A \ A \ A

©]]
Ra Rb Re Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b

Dealing with Deadlock

 Three general approaches exist for
dealing with deadlock.

— Prevent deadlock
— Avoid deadlock
— Detect Deadlock

Deadlock Prevention
Strategy

* Design a system In such a way that the
possibility of deadlock Is excluded.

e Two main methods

— Indirect — prevent all three of the necessary
conditions occurring at once

— Direct — prevent circular waits

Deadlock Prevention
Conditions 1 & 2

e Mutual Exclusion
— Must be supported by the OS

e Hold and Wait

— Require a process request all of its required
resources at one time

Deadlock Prevention
Conditions 3 & 4

 No Preemption

— Process must release resource and request
again

— OS may preempt a process to require it
releases its resources

e Circular Walit
— Define a linear ordering of resource types

Deadlock Avoidance

* A decision is made dynamically whether
the current resource allocation request

will, If granted, potentially lead to a
deadlock

* Requires knowledge of future process
requests

Two Approaches to

Deadlock Avoidance

e Process Initiation Denial

— Do not start a process If its demands might
lead to deadlock

e Resource Allocation Denial

— Do not grant an incremental resource request
to a process if this allocation might lead to
deadlock

Process
Initiation Denial

* A process iIs only started if the maximum

claim of all current processes plus those of
the new process can be met.

* Not optimal,

— Assumes the worst: that all processes will
make their maximum claims together.

Resource L

Allocation Denial

* Referred to as the banker’s algorithm
— A strategy of resource allocation denial

e Consider a system with fixed number of
resources

— State of the system is the current allocation of
resources to process

— Safe state is where there Is at least one
sequence that does not result in deadlock

— Unsafe state is a state that is not safe

Determination of
Safe State

* A system consisting of four processes and
three resources.

» Allocations are made to processors
e Is this a safe state?

R R R R R2 R3 El 2} R3

Pl 1 0 0 1 2

P2 6 1 B 1 2 0 0 1
P3 3 1 4 1 1 1 0

P4 4 2 4 0 0 4 4 2 0

Claim matrix C Allocation matrix A C-A
R R3 Rl E
L9 | | 6 | Lo [1 [1 |
r Ay

Process |

* G- A=V, forall
e This Is not possible for P1,

—which has only 1 unit of R1 and requires 2
more units of R1, 2 units of R2, and 2 units of
R3.

 If we assign one unit of R3 to process P2,

— Then P2 has its maximum required resources
allocated and can run to completion and
return resources to ‘available’ pool

After P2

runs to completion

e Can any of the remaining processes can
be completed?

R1 R2 R3 R1 R2 R3 Rl R2 _
3 2 2 Pl 1 0 0 Pl 2 & 4
0 0 0 P2 { 0 0 P2 0 0 0
3 1 4 P3 2 1 1 P3 1 G 3
4 2 2 P4 0 0 2 P4 4 2 0
Claim matmx C Allocation matnx A C-A
Rl R2 R3 Rl R2 R3
9 3 f 6 2 3
Resource vector R Available vector V

ib) P2 runs to completion

Pl

P3
F4

After P1 completes

R1 R2 R3 R1 R2 R3 R1 R2 R?
0 0 0 Pl 0 0 0 Pl 0 0 0
0 0 0 P2 0 0 0 P2 0 0 0
3 | 4 P3 2 1 1 P3 1 0 3
4 2 2 P4 0 0 2 P4 4 2 0

Claim mamix C Allocation matrix A -
R1 R2 R3 Rl R2 R3
9 3 & i 2 3
Resource vector R Available vector V

(¢) P1 runs to completion

Pl

F3
P4

P3 Completes

R1 R2 R3

] 0 0 Pl
] 0 0 P2
0 0 0 P3
4 2 2 P4

Claim matrix C

R1 R2 R3 R1 R2 R3
0 0 0 Pl 0 0 0
0 0 0 P2 0 0 0
0 0 0 P3 0 0 0
0 0 2 P4 4 2 0

Allocation matrix A

-
1
-

-
]
-

6 |

Eesource vector R

Rl R2 R3
L 9 | 3 1 4 |
Available vector V

(d) P3 runs to completion

A

Pl

P3
P4

Determination of an

Unsafe State

Rl R2 R3 Rl R2 R3 R1 R2 R3
3 2 2 Pl 1 0 0 Pl 2 2 2
6 1 3 P2 5 1 1 P2 1 0 2
3 1 4 P3 2 1 1 P3 1 0 3
4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 3 6 1 1 2
esource vector R Avwailable vector V
(a) Initial state

Rl R2 R3 Rl R2 R3 R1 R2 R3
3 2 2 Pl 2 0 1 Pl 1 2 1
O 1 3 P2 5 1 1 P2 1 0 2
3 1 4 P3 2 1 1 P3 1 0 3
4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A

R1 R2 R3 R1 R2 R3

g 3 6 0 1 1

Resource vector R Avwvailable vector V

(b) P1 requests one unit each of R1 and R3

Deadlock Avoidance

 \When a process makes a request for a set
of resources,

— assume that the request is granted,
— Update the system state accordingly,

e Then determine If the result Is a safe state.

— If so, grant the request and,

— If not, block the process until it is safe to grant
the request.

Deadlock Avolidance
Logic

struct state {
int rescurce[m];
int available[m];
int claim[n][m];
int alloc[n][m];

(a) global data structures

if (alloc [i,*] + reguest [*] > claim [i,*])

< error >; /* total request > claim#*/
else if (reguest [*] > available [*])

< suspend process >;

else { /* simulate alloc */
< define newstate by:
alloc [i,*] = alloc [i,*] + request [*];
available [*] = awvailable [*] = reguest [*] =;

}

if (safe [(newstate))
< carry out allocation =;
else {
< restore original state >;
< suspend process >;

(b) resource alloc algorithm

Deadlock Avolidance
Logic

boolean safe (state 5) {
int currentavail[m];
process rest[<number of processes>]:
currentavail = awvailable;
rest = {all processes};
possible = true;
while (possible) {
<find a process Pk in rest such that

claim [k,*] — alleoc [k,*] <= currentavail;=
if (found) { /* simulate execution of Py */
currentavail = currentavail + alloc [k,*];

rest = rest - {Pk};

t

else possible = false;
}
return {(rest == null);

(c) test for safety algorithm (banker's algorithm)

Figure 6.9 Deadlock Avoidance Logic

Deadlock Avoidance
Advantages

t Is not necessary to preempt and rollback
orocesses, as Iin deadlock detection,

t 1S less restrictive than deadlock
orevention.

Deadlock Avoidance

Restrictions

Maximum resource requirement must be
stated in advance

Processes under consideration must be
iIndependent and with no synchronization
requirements

There must be a fixed number of
resources to allocate

No process may exit while holding
resources

Roadmap

* Principals of Deadlock
— Deadlock prevention
— Deadlock Avoidance
>~ — Deadlock detection

e

N

— — An Integrated deadlock strategy

et

* Dining Philosophers Problem

e Concurrency Mechanisms in UNIX, Linux,
Solaris and Windows

Deadlock Detection

 Deadlock prevention strategies are very
conservative;
— [imit access to resources and impose
restrictions on processes.
e Deadlock detection strategies do the
opposite

— Resource regquests are granted whenever
nossible.

— Regularly check for deadlock

A Common

Detection Algorithm

e Use a Allocation matrix and Available
vector as previous
e Also use a request matrix Q

— Where QIj Iindicates that an amount of
resource | Is requested by process |

* First ‘un-mark’ all processes that are not
deadlocked

— Initially that is all processes

Detection Algorithm

1. Mark each process that has a row In the
Allocation matrix of all zeros.

2. Initialize a temporary vector W to equal
the Available vector.

3. Find an index | such that process i Is
currently unmarked and the ith row of Q Is

less than or equal to W.
—1.e.Q =W, forl<sk=m.
— If no such row Is found, terminate

Detection Algorithm cont.

4. If such a row Is found,

— mark process | and add the corresponding
row of the allocation matrix to W.

—l.e. setW, =W, +A,,forlsks=m
Return to step 3.

* A deadlock exists if and only if there are
unmarked processes at the end

 Each unmarked process is deadlocked.

Pl

P3
P4

Deadlock Detection

Rl R2 R3 R4 RS
O 1|00 1 Pl
o0 | 101 P2
00|00 |1 P3
1101101 P4

Request matrix Q

=

R1

R2 R3 R4 RS

2

1 1| 2|1

Rl R2 R3 R4 RS
10} 1 (1]0
11]00]0
o0]0|1]0
00|00]0

Allocation matrix A

R1

Resource vector

R2 R3 R4 RS

0

o0 | 0|1

Allocation vector

Figure 6.10 Example for Deadlock Detection

Recovery Strategies
Once Deadlock Detected

Abort all deadlocked processes

Back up each deadlocked process to
some previously defined checkpoint, and
restart all process

— Risk or deadlock recurring

Successively abort deadlocked processes
until deadlock no longer exists

Successively preempt resources until
deadlock no longer exists

Advantages
and Disadvantages

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance

Approaches for Operating Systems [ISLOS0]

Resource Allocaton

Major

Approach Policy Different Schemes Major Advantages Disadvantages
*Inefficient
+Works well for *Delays process
; processesthat performa | initiation
Eequesting all resources at [~. .
once smgle burst of activity *Future resource
*No preemption requirements must
necessary beknown by
processes
Conservative: *Convenient when
. = applied to resources
Prevention | undercommits : PP *Preempts more
Preemption whose state canbe
resources oftenthannecessary
saved andrestored -
easily
*Feasible to enforce via
compile-time checks .
P . *Disallows
: *Needs no mn-time :
Eesource ordenng _ meremental
computation since
- : resource requests
problemis solved n
system design

Midway between that

*Future resource
requirements must

Avoidance | of detection and Manipulate to find atleast | *Nopresmption beknown by 08
; onesafapath necessary -
prevention *Processes canbe
blocked forlong
penods
Very liberal; *Never delays process
Detection requested resources Invoke penodically to test | imtiation +Inherent preemption
are granted where fordeadlock *Facilitates online losses
pozzible handling

Roadmap

* Principals of Deadlock
— Deadlock prevention
— Deadlock Avoidance
— Deadlock detection
— An Integrated deadlock strategy

- Dining Philosophers Problem

e Concurrency Mechanisms in UNIX, Linux,
Solaris and Windows

Dining Philosophers
Problem: Scenario

Figure 6.11 Dining Arrangement for Philosophers

The Problem

e Devise a ritual (algorithm) that will allow
the philosophers to eat.

— No two philosophers can use the same fork at
the same time (mutual exclusion)

— No philosopher must starve to death (avoid
deadlock and starvation ... literally!)

A first solution using
semaphores

/* program diningphilosophers #/
semaphore fork [5] = {1};
int 1i;
void philosopher (int 1)
{
while (true) {
think();
wait (fork[i]);
wait (fork [(i+1l) mod 5]);
eat();
signal (fork [(i+1) mod 5]);
signal (fork[i]);
}
}
void main()
{
parbegin (philosopher (0), philosopher (1), philosopher
(2)+
philosopher (3), philosopher (4));

Figure 6.12 A First Solution to the Dining Philosophers Problem

Avoiding deadlock

[* program diningphilosophers */
semaphore fork[5] = {1};

semaphore room = {4};
int 1i;

void philosopher (int i)
{

while (true) {
think();
walt (room);
wait (fork[i1]);
wailt (fork [(i+1l) mod 5]);
eat();
signal (fork [{(1+1l) mod 5]);
signal (fork[i]);
signal (room);

}
}
void main()
{
parbegin (philosopher (0), philosopher (1), philosopher (2),
philosopher (3), philosopher (4));
}

Figure 6.13 A Second Solution to the Dining Philosophers Problem

Solution using Monitors

monitor dining controller;

cond ForkReady[&]; /* condition variable for synchronization
boolean fork[5] = {true}; /* availability status of each fork
void get forks(int pid) /* pid is the philosopher id number
{

int left = pid;
int right = (++pid) % 5;
/*grant the left fork*/
if (!fork(left)
cwalt (ForkReady[left]); /* gueue on condition variable
fork(left) = false;
/*grant the right fork*/
if (!fork({right)
cwait (ForkReady({right); /* queue on condition variable
fork(right) = false:
F

void release forks(int pid)
{
int left = pid;
int right = (++pid) % &5;
/*release the left fork*/
if (empty(ForkReady[left]) /*no one 1s waiting for this fork
fork(left) = true;
else /* awaken a process waiting on this fork
csignal (ForkReady[left]);
/*release the right fork*/
if (empty(ForkReady[right]) /*no one is waiting for this fork
fork(right) = true;
else /* awaken a process waiting on this fork
csignal (ForkReady[xright]);

S
* /

*/

* [

* /

*/

* /

=5

=N

Monitor solution cont.

void philosopher[k=0 to 4] /* the five philosopher clients */
{
while (true) {
<think>;
get forks(k); /* client requests two forks via monitor */
<eat spaghetti=;
release forks(k); /* client releases forks wia the monitor */

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor

Roadmap

* Principals of Deadlock
— Deadlock prevention
— Deadlock Avoidance
— Deadlock detection
— An Integrated deadlock strategy

* Dining Philosophers Problem

S

——~Concurrency Mechanisms in UNIX, Linux,
Solaris and Windows

UNIX Concurrency
Mechanisms

 UNIX provides a variety of mechanisms for
Interprocessor communication and
synchronization including:

— Pipes

— Messages

— Shared memory
— Semaphores

— Signals

Pipes

A circular buffer allowing two processes to

communicate on the producer-consumer
model

— first-in-first-out queue, written by one process
and read by another.

 Two types:
— Named:
— Unnamed

Messages

* A block of bytes with an accompanying
type.

 UNIX provides msgsnd and msgrcv
system calls for processes to engage In
message passing.

e Associated with each process is a

message queue, which functions like a
mailbox.

Shared Memory

A common block of virtual memory shared
by multiple processes.

 Permission is read-only or read-write for a
process,

— determined on a per-process basis.

* Mutual exclusion constraints are not part
of the shared-memory faclility but must be
provided by the processes using the
shared memory.

Semaphores

« SVR4 uses a generalization of the
semWait and semSignal primitives
defined in Chapter 5;

« Associated with the semaphore are
gueues of processes blocked on that
semaphore.

Signals

o A software mechanism that informs a
process of the occurrence of
asynchronous events.

— Similar to a hardware interrupt, without
priorities
« A signal is delivered by updating a field In
the process table for the process to which
the signal Is being sent.

Signals defined for
UNIX SVRA4.

Value Name Description

01 SIGHUP Hang up; sent to process when kemel assumes that the
user of that process is doing no useful work

02 SIGINT Intermupt

03 SIGQUIT Quit; sent by user to induce halting of process and
production of core dump

04 SIGILL Illegal instruction

03 SIGTRAP Trace trap; triggers the execution of code for process
tracing

06 SIGIOT 10T instruction

o7 SIGEMT EMT instruction

08 SIGFPE Floating-point exception

09 SIGKILL Kill; terminate process

10 SIGEUS Bus error

11 SIGREGY Segmentation viclation; process attempts to access
location outside its virtual address space

12 SIGEYS Bad argument to system call

13 SIGPIPE Write on a pipe that has no readers attached toit

14 SIGALEM Alarm clock; issued when a process wishes to receive a
signal after a period of time

15 SIGTEEM Software termination
16 SIGUSR1 User-defined signal 1
17 SIGUSE2 User-defined signal 2
18 SIGCHLD Death of a child

19 SIGPWE. Power failure

MUTEX Lock

A mutex Is used to ensure only one thread
at a time can access the resource
protected by the mutex.

e The thread that locks the mutex must be
the one that unlocks it.

Condition Variables

e A condition variable is used to wait until a
particular condition Is true.

e Condition variables must be used In
conjunction with a mutex lock.

