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Introduction

Designing object-oriented software is hard, and designing reusable object-
oriented software is even harder. You must find pertinent objects, factor
them  into  classes  at  the  right  granularity,  define  class  interfaces  and
inheritance hierarchies, and establish key relationships among them. Your
design should be specific to the problem at hand but also general enough to
address future problems and requirements. You also want to avoid redesign,
or at least minimize it. Experienced object-oriented designers will tell you
that a reusable and flexible design is difficult if not impossible to get "right"
the first time. Before a design is finished, they usually try to reuse it several
times, modifying it each time.

Yet  experienced  object-oriented  designers  do  make  good  designs.
Meanwhile  new designers  are  overwhelmed by the  options  available  and
tend to fall back on non-object-oriented techniques they've used before. It
takes a long time for novices to learn what good object-oriented design is
all about. Experienced designers evidently know something inexperienced
ones don't. What is it?

One thing expert designers know not to do is solve every problem from first
principles. Rather, they reuse solutions that have worked for them in the
past.  When they find a good solution,  they use it  again and again. Such
experience is part of what makes them experts. Consequently, you'll find
recurring patterns of classes and communicating objects in many object-
oriented systems. These patterns solve specific design problems and make
object-oriented  designs  more  flexible,  elegant,  and  ultimately  reusable.
They help designers reuse successful designs by basing new designs on prior
experience. A designer who is familiar with such patterns can apply them
immediately to design problems without having to rediscover them.

An analogy will help illustrate the point.  Novelists and playwrights rarely
design their plots from scratch. Instead, they follow patterns like "Tragically
Flawed Hero" (Macbeth, Hamlet, etc.) or "The Romantic Novel" (countless
romance  novels).  In  the  same  way,  object-oriented  designers  follow



patterns like "represent states with objects" and "decorate objects so you
can  easily  add/remove  features."  Once  you  know the  pattern,  a  lot  of
design decisions follow automatically.

We all know the value of design experience. How many times have you had
design  déjà-vu—that feeling that  you've solved a problem before but not
knowing exactly where or how? If you could remember the details of the
previous  problem  and  how  you  solved  it,  then  you  could  reuse  the
experience instead of rediscovering it. However, we don't do a good job of
recording experience in software design for others to use.

The  purpose  of  this  book  is  to  record  experience  in  designing  object-
oriented software  as  design patterns.  Each  design  pattern  systematically
names, explains, and evaluates an important and recurring design in object-
oriented systems. Our goal is to capture design experience in a form that
people can use effectively. To this end we have documented some of the
most important design patterns and present them as a catalog.

Design  patterns  make  it  easier  to  reuse  successful  designs  and
architectures. Expressing proven techniques as design patterns makes them
more accessible to developers  of new systems. Design patterns  help  you
choose  design  alternatives  that  make  a  system  reusable  and  avoid
alternatives that compromise reusability. Design patterns can even improve
the documentation and maintenance of existing systems by furnishing an
explicit specification of class and object interactions and their underlying
intent.  Put  simply,  design  patterns  help  a  designer  get  a  design  "right"
faster.

None of the design patterns in this book describes new or unproven designs.
We have included only designs that have been applied more than once in
different  systems.  Most  of  these  designs  have  never  been  documented
before.  They  are  either  part  of  the  folklore  of  the  object-oriented
community  or  are elements  of some successful  object-oriented systems—
neither  of  which is  easy for novice designers  to learn from. So although
these designs aren't new, we capture them in a new and accessible way: as
a catalog of design patterns having a consistent format.

Despite the book's size, the design patterns in it capture only a fraction of
what  an  expert  might  know.  It  doesn't  have  any  patterns  dealing  with
concurrency  or  distributed  programming  or  real-time  programming.  It
doesn't  have any application domain-specific  patterns.  It  doesn't  tell  you
how to build user interfaces, how to write device drivers, or how to use an



object-oriented database. Each of these areas has its own patterns, and it
would be worthwhile for someone to catalog those too.

What is a Design Pattern?

Christopher Alexander says, "Each pattern describes a problem which occurs
over and over again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this solution a
million times over, without ever doing it the same way twice" [AIS+77, page
x].  Even  though  Alexander  was  talking  about  patterns  in  buildings  and
towns,  what  he  says  is  true  about  object-oriented  design  patterns.  Our
solutions are expressed in terms of objects and interfaces instead of walls
and  doors,  but  at  the  core  of  both  kinds  of  patterns  is  a  solution  to  a
problem in a context.

In general, a pattern has four essential elements:

1. The pattern name is a handle we can use to describe a design problem, its
solutions, and consequences in a word or two. Naming a pattern immediately
increases our design vocabulary. It lets us design at a higher level of
abstraction. Having a vocabulary for patterns lets us talk about them with our
colleagues, in our documentation, and even to ourselves. It makes it easier to
think about designs and to communicate them and their trade-offs to others.
Finding good names has been one of the hardest parts of developing our
catalog. 

2. The problem describes when to apply the pattern. It explains the problem and
its context. It might describe specific design problems such as how to
represent algorithms as objects. It might describe class or object structures that
are symptomatic of an inflexible design. Sometimes the problem will include a
list of conditions that must be met before it makes sense to apply the pattern. 

3. The solution describes the elements that make up the design, their
relationships, responsibilities, and collaborations. The solution doesn't
describe a particular concrete design or implementation, because a pattern is
like a template that can be applied in many different situations. Instead, the
pattern provides an abstract description of a design problem and how a general
arrangement of elements (classes and objects in our case) solves it. 

4. The consequences are the results and trade-offs of applying the pattern.
Though consequences are often unvoiced when we describe design decisions,



they are critical for evaluating design alternatives and for understanding the
costs and benefits of applying the pattern. The consequences for software often
concern space and time trade-offs. They may address language and
implementation issues as well. Since reuse is often a factor in object-oriented
design, the consequences of a pattern include its impact on a system's
flexibility, extensibility, or portability. Listing these consequences explicitly
helps you understand and evaluate them. 

Point of view affects one's interpretation of what is and isn't a pattern. One
person's pattern can be another person's primitive building block. For this
book we have concentrated on patterns at a certain level of abstraction.
Design patterns are not about designs such as linked lists and hash tables
that can be encoded in classes and reused as is.  Nor are they complex,
domain-specific designs for an entire application or subsystem. The design
patterns in this book are descriptions of communicating objects and classes
that  are  customized  to  solve  a  general  design  problem  in  a  particular
context.

A  design  pattern  names,  abstracts,  and  identifies  the  key  aspects  of  a
common design structure that make it useful for creating a reusable object-
oriented design. The design pattern identifies the participating classes and
instances,  their  roles  and  collaborations,  and  the  distribution  of
responsibilities. Each design pattern focuses on a particular object-oriented
design problem or issue. It  describes when it  applies,  whether it  can be
applied  in  view  of  other  design  constraints,  and  the  consequences  and
trade-offs of its use. Since we must eventually implement our designs,  a
design pattern also provides sample C++ and (sometimes) Smalltalk code to
illustrate an implementation.

Although design patterns describe object-oriented designs, they are based
on practical solutions that have been implemented in mainstream object-
oriented  programming  languages  like  Smalltalk  and  C++  rather  than
procedural  languages  (Pascal,  C,  Ada)  or  more  dynamic  object-oriented
languages (CLOS, Dylan, Self). We chose Smalltalk and C++ for pragmatic
reasons: Our day-to-day experience has been in these languages, and they
are increasingly popular.

The  choice  of  programming  language  is  important  because  it  influences
one's  point  of  view.  Our  patterns  assume  Smalltalk/C++-level  language
features, and that choice determines what can and cannot be implemented
easily. If we assumed procedural languages, we might have included design
patterns  called  "Inheritance,"  "Encapsulation,"  and  "Polymorphism."
Similarly, some of our patterns are supported directly by the less common



object-oriented  languages.  CLOS  has  multi-methods,  for  example,  which
lessen the need for a pattern such as Visitor (page 331). In fact, there are
enough differences between Smalltalk and C++ to mean that some patterns
can be expressed more easily in one language than the other. (See Iterator
(257) for an example.)

Design Patterns in Smalltalk MVC

The Model/View/Controller (MVC) triad of classes [KP88] is used to build
user interfaces in Smalltalk-80. Looking at the design patterns inside MVC
should help you see what we mean by the term "pattern."

MVC consists of three kinds of objects. The Model is the application object,
the View is its screen presentation, and the Controller defines the way the
user  interface  reacts  to  user  input.  Before  MVC,  user  interface  designs
tended to lump these objects together.  MVC decouples them to increase
flexibility and reuse.

MVC decouples views and models by establishing a subscribe/notify protocol
between them. A view must ensure that its appearance reflects the state of
the model. Whenever the model's data changes, the model notifies views
that depend on it. In response, each view gets an opportunity to update
itself. This approach lets you attach multiple views to a model to provide
different presentations. You can also create new views for a model without
rewriting it.

The following diagram shows a model and three views. (We've left out the
controllers for simplicity.) The model contains some data values, and the
views defining a spreadsheet, histogram, and pie chart display these data in
various  ways.  The  model  communicates  with  its  views  when  its  values
change, and the views communicate with the model to access these values.



Taken at face value, this example reflects a design that decouples views
from  models.  But  the  design  is  applicable  to  a  more  general  problem:
decoupling objects so that changes to one can affect any number of others
without requiring the changed object to know details of the others. This
more general design is described by the Observer (page 293) design pattern.

Another feature of MVC is that views can be nested. For example, a control
panel  of  buttons  might  be  implemented  as  a  complex  view  containing
nested button views. The user interface for an object inspector can consist
of nested views that may be reused in a debugger. MVC supports nested
views  with  the  CompositeView class,  a  subclass  of  View.  CompositeView
objects act just like View objects; a composite view can be used wherever a
view can be used, but it also contains and manages nested views.

Again, we could think of this as a design that lets us treat a composite view
just like we treat one of its components. But the design is applicable to a
more general problem, which occurs whenever we want to group objects
and treat the group like an individual object. This more general design is
described by the Composite (163) design pattern. It lets you create a class
hierarchy in which some subclasses define primitive objects (e.g., Button)



and other classes define composite objects (CompositeView) that assemble
the primitives into more complex objects.

MVC also lets you change the way a view responds to user input without
changing  its  visual  presentation.  You  might  want  to  change  the  way  it
responds  to  the  keyboard,  for  example,  or  have  it  use  a  pop-up  menu
instead of command keys. MVC encapsulates the response mechanism in a
Controller object. There is a class hierarchy of controllers, making it easy to
create a new controller as a variation on an existing one.

A view uses an instance of a Controller subclass to implement a particular
response strategy; to implement  a different strategy,  simply replace the
instance with a different kind of controller. It's even possible to change a
view's controller at run-time to let the view change the way it responds to
user input. For example, a view can be disabled so that it doesn't accept
input simply by giving it a controller that ignores input events.

The View-Controller relationship is an example of the Strategy (315) design
pattern.  A Strategy is an object  that  represents  an algorithm. It's  useful
when you want to replace the algorithm either statically or dynamically,
when you have a lot of variants of the algorithm, or when the algorithm has
complex data structures that you want to encapsulate.

MVC uses other design patterns, such as Factory Method (107) to specify the
default controller class for a view and Decorator (175) to add scrolling to a
view.  But  the  main  relationships  in  MVC  are  given  by  the  Observer,
Composite, and Strategy design patterns.

Describing Design Patterns

How do we describe design patterns? Graphical notations, while important
and useful, aren't sufficient. They simply capture the end product of the
design process as relationships between classes and objects. To reuse the
design, we must also record the decisions, alternatives, and trade-offs that
led to it. Concrete examples are important too, because they help you see
the design in action.

We  describe  design  patterns  using  a  consistent  format.  Each  pattern  is
divided  into  sections  according  to  the  following template.  The template



lends a uniform structure to the information, making design patterns easier
to learn, compare, and use.

Pattern Name and Classification 
The pattern's name conveys the essence of the pattern succinctly. A good name
is vital, because it will become part of your design vocabulary. The pattern's
classification reflects the scheme we introduce in Section 1.5. 

Intent 
A short statement that answers the following questions: What does the design
pattern do? What is its rationale and intent? What particular design issue or
problem does it address? 

Also Known As 
Other well-known names for the pattern, if any. 

Motivation 
A scenario that illustrates a design problem and how the class and object
structures in the pattern solve the problem. The scenario will help you
understand the more abstract description of the pattern that follows. 

Applicability 
What are the situations in which the design pattern can be applied? What are
examples of poor designs that the pattern can address? How can you recognize
these situations? 

Structure 
A graphical representation of the classes in the pattern using a notation based
on the Object Modeling Technique (OMT) [RBP+91]. We also use interaction
diagrams [JCJO92, Boo94] to illustrate sequences of requests and
collaborations between objects. Appendix     B   describes these notations in detail.

Participants 
The classes and/or objects participating in the design pattern and their
responsibilities. 

Collaborations 
How the participants collaborate to carry out their responsibilities. 

Consequences 
How does the pattern support its objectives? What are the trade-offs and
results of using the pattern? What aspect of system structure does it let you
vary independently? 

Implementation 
What pitfalls, hints, or techniques should you be aware of when implementing
the pattern? Are there language-specific issues? 

Sample Code 
Code fragments that illustrate how you might implement the pattern in C++ or
Smalltalk. 

Known Uses 
Examples of the pattern found in real systems. We include at least two
examples from different domains. 

Related Patterns 
What design patterns are closely related to this one? What are the important
differences? With which other patterns should this one be used? 

The  appendices  provide  background  information  that  will  help  you
understand the patterns and the discussions surrounding them. Appendix     A  



is a glossary of terminology we use. We've already mentioned  Appendix     B  ,
which  presents  the  various  notations.  We'll  also  describe  aspects  of  the
notations  as  we  introduce  them  in  the  upcoming  discussions.  Finally,
Appendix     C   contains source code for the foundation classes we use in code
samples.

The Catalog of Design Patterns

The catalog beginning on page 79 contains 23 design patterns. Their names
and  intents  are  listed  next  to  give  you  an  overview.  The  number  in
parentheses after each pattern name gives the page number for the pattern
(a convention we follow throughout the book).

Abstract Factory (87) 
Provide an interface for creating families of related or dependent objects
without specifying their concrete classes. 

Adapter (139) 
Convert the interface of a class into another interface clients expect. Adapter
lets classes work together that couldn't otherwise because of incompatible
interfaces. 

Bridge (151) 
Decouple an abstraction from its implementation so that the two can vary
independently. 

Builder (97) 
Separate the construction of a complex object from its representation so that
the same construction process can create different representations. 

Chain of Responsibility (223) 
Avoid coupling the sender of a request to its receiver by giving more than one
object a chance to handle the request. Chain the receiving objects and pass the
request along the chain until an object handles it. 

Command (233) 
Encapsulate a request as an object, thereby letting you parameterize clients
with different requests, queue or log requests, and support undoable
operations. 

Composite (163) 
Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly. 

Decorator (175) 
Attach additional responsibilities to an object dynamically. Decorators provide
a flexible alternative to subclassing for extending functionality. 

Facade (185) 
Provide a unified interface to a set of interfaces in a subsystem. Facade defines
a higher-level interface that makes the subsystem easier to use. 

Factory Method (107) 
Define an interface for creating an object, but let subclasses decide which class
to instantiate. Factory Method lets a class defer instantiation to subclasses. 



Flyweight (195) 
Use sharing to support large numbers of fine-grained objects efficiently. 

Interpreter (243) 
Given a language, define a represention for its grammar along with an
interpreter that uses the representation to interpret sentences in the language. 

Iterator (257) 
Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation. 

Mediator (273) 
Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling by keeping objects from referring to each other
explicitly, and it lets you vary their interaction independently. 

Memento (283) 
Without violating encapsulation, capture and externalize an object's internal
state so that the object can be restored to this state later. 

Observer (293) 
Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically. 

Prototype (117) 
Specify the kinds of objects to create using a prototypical instance, and create
new objects by copying this prototype. 

Proxy (207) 
Provide a surrogate or placeholder for another object to control access to it. 

Singleton (127) 
Ensure a class only has one instance, and provide a global point of access to it.

State (305) 
Allow an object to alter its behavior when its internal state changes. The object
will appear to change its class. 

Strategy (315) 
Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients
that use it. 

Template Method (325) 
Define the skeleton of an algorithm in an operation, deferring some steps to
subclasses. Template Method lets subclasses redefine certain steps of an
algorithm without changing the algorithm's structure. 

Visitor (331) 
Represent an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the
elements on which it operates. 

Organizing the Catalog

Design patterns vary in their granularity and level of abstraction. Because
there  are  many design  patterns,  we need a  way to  organize  them. This
section classifies design patterns so that we can refer to families of related
patterns.  The  classification  helps  you  learn  the  patterns  in  the  catalog
faster, and it can direct efforts to find new patterns as well.



We classify design patterns by two criteria (Table 1.1). The first criterion,
called  purpose,  reflects  what  a  pattern  does.  Patterns  can  have  either
creational, structural, or behavioral purpose. Creational patterns concern
the  process  of  object  creation.  Structural  patterns  deal  with  the
composition of classes or objects. Behavioral patterns characterize the ways
in which classes or objects interact and distribute responsibility.

 Purpose

Creational Structural Behavioral

Scop
e

Class Factory Method
(107)

Adapter (139) Interpreter (243)
Template Method (325)

Objec
t

Abstract Factory
(87)
Builder (97)
Prototype (117)
Singleton (127)

Adapter (139)
Bridge (151)
Composite
(163)
Decorator (175)
Facade (185)
Proxy (207)

Chain of Responsibility
(223)
Command (233)
Iterator (257)
Mediator (273)
Memento (283)
Flyweight (195)
Observer (293)
State (305)
Strategy (315)
Visitor (331)

Table 1.1:  Design pattern space

The second criterion, called  scope, specifies whether the pattern applies
primarily  to  classes  or  to  objects.  Class  patterns  deal  with  relationships
between classes and their  subclasses. These relationships are established
through  inheritance,  so  they  are  static—fixed  at  compile-time.  Object
patterns deal with object relationships, which can be changed at run-time
and are more dynamic. Almost all patterns use inheritance to some extent.
So the only patterns labeled "class patterns" are those that focus on class
relationships. Note that most patterns are in the Object scope.

Creational class patterns defer some part of object creation to subclasses,
while Creational object patterns defer it to another object. The Structural
class  patterns  use  inheritance  to  compose  classes,  while  the  Structural
object  patterns  describe  ways to  assemble objects.  The Behavioral  class
patterns  use  inheritance  to  describe  algorithms  and  flow  of  control,
whereas the Behavioral  object  patterns describe  how a group of objects
cooperate to perform a task that no single object can carry out alone.



There are other  ways to organize the patterns.  Some patterns are often
used  together.  For  example,  Composite  is  often  used  with  Iterator  or
Visitor. Some patterns are alternatives: Prototype is often an alternative to
Abstract Factory. Some patterns result in similar designs even though the
patterns  have  different  intents.  For  example,  the  structure  diagrams  of
Composite and Decorator are similar.

Yet  another  way  to  organize  design  patterns  is  according  to  how  they
reference each other in their "Related Patterns" sections. Figure 1.1 depicts
these relationships graphically.

Clearly there are many ways to organize design patterns. Having multiple
ways of thinking about patterns will deepen your insight into what they do,
how they compare, and when to apply them.



Figure 1.1:  Design pattern relationships

How Design Patterns Solve Design Problems

Design  patterns  solve  many  of  the  day-to-day  problems  object-oriented
designers  face,  and  in  many  different  ways.  Here  are  several  of  these
problems and how design patterns solve them.

Finding Appropriate Objects



Object-oriented programs are made up of objects. An object packages both
data and the procedures  that  operate on that  data.  The procedures are
typically called  methods or  operations.  An object  performs an operation
when it receives a request (or message) from a client.

Requests  are  the  only way  to  get  an  object  to  execute  an  operation.
Operations are the only way to change an object's internal data. Because of
these restrictions, the object's internal state is said to be encapsulated; it
cannot be accessed directly, and its representation is invisible from outside
the object.

The hard part about object-oriented design is decomposing a system into
objects.  The  task  is  difficult  because  many  factors  come  into  play:
encapsulation, granularity, dependency, flexibility, performance, evolution,
reusability, and on and on. They all influence the decomposition, often in
conflicting ways.

Object-oriented  design  methodologies  favor  many  different  approaches.
You can write a problem statement, single out the nouns and verbs, and
create  corresponding  classes  and  operations.  Or  you  can  focus  on  the
collaborations and responsibilities in your system. Or you can model the real
world and translate the objects found during analysis into design. There will
always be disagreement on which approach is best.

Many objects in a design come from the analysis model. But object-oriented
designs often end up with  classes that  have no counterparts  in  the  real
world.  Some of  these  are  low-level  classes  like arrays.  Others  are  much
higher-level.  For  example,  the  Composite  (163) pattern  introduces  an
abstraction  for  treating  objects  uniformly  that  doesn't  have  a  physical
counterpart.  Strict  modeling  of  the  real  world  leads  to  a  system  that
reflects today's  realities  but not necessarily tomorrow's. The abstractions
that emerge during design are key to making a design flexible.

Design patterns help you identify less-obvious abstractions and the objects
that can capture them. For example, objects that represent a process or
algorithm don't  occur  in  nature,  yet  they  are  a  crucial  part  of  flexible
designs.  The  Strategy  (315) pattern  describes  how  to  implement
interchangeable families of algorithms. The State (305) pattern represents
each state of an entity as an object. These objects are seldom found during
analysis or even the early stages of design; they're discovered later in the
course of making a design more flexible and reusable.



Determining Object Granularity

Objects  can  vary  tremendously  in  size  and  number.  They  can  represent
everything down to the hardware or all the way up to entire applications.
How do we decide what should be an object?

Design  patterns  address  this  issue  as  well.  The  Facade  (185)  pattern
describes  how  to  represent  complete  subsystems  as  objects,  and  the
Flyweight (195) pattern describes how to support huge numbers of objects
at the finest granularities. Other design patterns describe specific ways of
decomposing  an  object  into  smaller  objects.  Abstract  Factory  (87) and
Builder  (97) yield  objects  whose  only  responsibilities  are  creating  other
objects.  Visitor  (331) and  Command  (233) yield  objects  whose  only
responsibilities are to implement a request on another object or group of
objects.

Specifying Object Interfaces

Every operation declared by an object specifies the operation's name, the
objects it  takes  as parameters,  and the  operation's  return value.  This  is
known as the operation's signature. The set of all signatures defined by an
object's  operations  is  called  the  interface to  the  object.  An  object's
interface characterizes the complete set of requests that can be sent to the
object. Any request that matches a signature in the object's interface may
be sent to the object.

A  type is a name used to denote a particular interface. We speak of an
object  as  having  the  type  "Window"  if  it  accepts  all  requests  for  the
operations defined in the interface named "Window." An object may have
many  types,  and  widely  different  objects  can  share  a  type.  Part  of  an
object's  interface may be characterized by one type, and other parts by
other types. Two objects of the same type need only share parts of their
interfaces. Interfaces can contain other interfaces as subsets. We say that a
type is a  subtype of another if its interface contains the interface of its
supertype.  Often  we  speak  of  a  subtype  inheriting the  interface  of  its
supertype.

Interfaces are fundamental in object-oriented systems. Objects are known
only through their interfaces. There is no way to know anything about an
object or to ask it to do anything without going through its interface. An
object's interface says nothing about its implementation—different objects



are free to implement requests differently. That means two objects having
completely different implementations can have identical interfaces.

When  a  request  is  sent  to  an  object,  the  particular  operation  that's
performed depends on both the request and the receiving object. Different
objects that support identical requests may have different implementations
of the operations that fulfill these requests. The run-time association of a
request to an object and one of its operations is known as dynamic binding.

Dynamic  binding  means  that  issuing  a  request  doesn't  commit  you  to  a
particular  implementation  until  run-time.  Consequently,  you  can  write
programs that expect an object with a particular interface, knowing that
any object that has the correct interface will accept the request. Moreover,
dynamic binding lets you substitute objects that have identical interfaces
for each other at run-time. This substitutability is known as polymorphism,
and it's  a key concept in object-oriented systems. It  lets a client object
make few assumptions about other objects beyond supporting a particular
interface.  Polymorphism  simplifies  the  definitions  of  clients,  decouples
objects  from each other,  and lets  them vary their  relationships  to  each
other at run-time.

Design patterns help you define interfaces by identifying their key elements
and the kinds of data that get sent across an interface. A design pattern
might also tell you what  not to put in the interface. The  Memento (283)
pattern is a good example. It describes how to encapsulate and save the
internal state of an object so that the object can be restored to that state
later.  The  pattern  stipulates  that  Memento  objects  must  define  two
interfaces: a restricted one that lets clients hold and copy mementos, and a
privileged one that only the original object can use to store and retrieve
state in the memento.

Design patterns also specify relationships between interfaces. In particular,
they often require some classes to have similar interfaces, or they place
constraints on the interfaces of some classes. For example, both Decorator
(175) and Proxy (207) require the interfaces of Decorator and Proxy objects
to be identical to the decorated and proxied objects. In  Visitor (331), the
Visitor interface must reflect all classes of objects that visitors can visit.

Specifying Object Implementations



So far we've said little about how we actually define an object. An object's
implementation  is  defined  by  its  class.  The  class  specifies  the  object's
internal data and representation and defines the operations the object can
perform.

Our OMT-based notation (summarized in  Appendix     B  ) depicts a class as a
rectangle with the class name in bold. Operations appear in normal type
below the  class  name.  Any  data  that  the  class  defines  comes  after  the
operations.  Lines  separate  the  class  name  from  the  operations  and  the
operations from the data:

Return  types  and  instance  variable  types  are  optional,  since  we  don't
assume a statically typed implementation language.

Objects are created by  instantiating a class. The object is said to be an
instance of the class. The process of instantiating a class allocates storage
for the object's internal data (made up of instance variables) and associates
the operations with these data. Many similar instances of an object can be
created by instantiating a class.

A  dashed  arrowhead  line  indicates  a  class  that  instantiates  objects  of
another class. The arrow points to the class of the instantiated objects.

New  classes  can  be  defined  in  terms  of  existing  classes  using  class
inheritance. When a  subclass inherits from a  parent class, it includes the
definitions  of  all  the data  and operations  that  the  parent  class  defines.
Objects that are instances of the subclass will contain all data defined by



the  subclass  and  its  parent  classes,  and  they'll  be  able  to  perform  all
operations defined by this subclass and its parents. We indicate the subclass
relationship with a vertical line and a triangle:

An  abstract  class is  one  whose  main  purpose  is  to  define  a  common
interface for its subclasses. An abstract class will defer some or all of its
implementation to operations defined in subclasses; hence an abstract class
cannot be instantiated. The operations that an abstract class declares but
doesn't  implement  are  called  abstract  operations.  Classes  that  aren't
abstract are called concrete classes.

Subclasses can refine and redefine behaviors of their parent classes. More
specifically, a class may override an operation defined by its parent class.
Overriding  gives  subclasses  a  chance  to  handle  requests  instead  of  their
parent classes. Class inheritance lets you define classes simply by extending
other classes, making it easy to define families of objects having related
functionality.

The names of abstract classes appear in slanted type to distinguish them
from  concrete  classes.  Slanted  type  is  also  used  to  denote  abstract
operations.  A  diagram  may  include  pseudocode  for  an  operation's
implementation; if so, the code will appear in a dog-eared box connected
by a dashed line to the operation it implements.



A mixin class is a class that's intended to provide an optional interface or
functionality to other classes. It's similar to an abstract class in that it's not
intended to be instantiated. Mixin classes require multiple inheritance:

Class versus Interface Inheritance

It's important to understand the difference between an object's class and its
type.

An object's class defines how the object is implemented. The class defines
the  object's  internal  state  and  the  implementation  of  its  operations.  In
contrast, an object's type only refers to its interface—the set of requests to
which  it  can  respond.  An  object  can  have  many  types,  and  objects  of
different classes can have the same type.

Of course, there's a close relationship between class and type. Because a
class  defines  the  operations  an  object  can  perform,  it  also  defines  the
object's  type. When we say that an object  is  an instance of a class, we
imply that the object supports the interface defined by the class.



Languages like C++ and Eiffel use classes to specify both an object's type
and its  implementation.  Smalltalk  programs do not  declare  the  types of
variables;  consequently,  the  compiler  does  not  check  that  the  types  of
objects assigned to a variable are subtypes of the variable's type. Sending a
message requires checking that the class of the receiver implements the
message, but it doesn't require checking that the receiver is an instance of
a particular class.

It's also important to understand the difference between class inheritance
and  interface  inheritance  (or  subtyping).  Class  inheritance  defines  an
object's  implementation  in  terms  of  another  object's  implementation.  In
short,  it's  a mechanism for code and representation sharing. In contrast,
interface inheritance (or subtyping) describes when an object can be used
in place of another.

It's easy to confuse these two concepts, because many languages don't make
the distinction explicit. In languages like C++ and Eiffel, inheritance means
both interface and implementation inheritance. The standard way to inherit
an interface in C++ is to inherit publicly from a class that has (pure) virtual
member functions. Pure interface inheritance can be approximated in C++
by inheriting publicly from pure abstract classes. Pure implementation or
class  inheritance  can  be  approximated  with  private  inheritance.  In
Smalltalk,  inheritance  means  just  implementation  inheritance.  You  can
assign instances of any class to a variable as long as those instances support
the operation performed on the value of the variable.

Although  most  programming  languages  don't  support  the  distinction
between  interface  and  implementation  inheritance,  people  make  the
distinction in practice. Smalltalk programmers usually act as if subclasses
were subtypes (though there are some well-known exceptions [Coo92]); C++
programmers manipulate objects through types defined by abstract classes.

Many  of  the  design  patterns  depend  on  this  distinction.  For  example,
objects in a  Chain of Responsibility (223) must have a common type, but
usually they don't share a common implementation. In the Composite (163)
pattern,  Component  defines  a  common  interface,  but  Composite  often
defines a common implementation.  Command (233),  Observer (293),  State
(305), and Strategy (315) are often implemented with abstract classes that
are pure interfaces.

Programming to an Interface, not an Implementation



Class  inheritance  is  basically  just  a  mechanism  for  extending  an
application's functionality by reusing functionality in parent classes. It lets
you define a new kind of object rapidly in terms of an old one. It lets you
get new implementations almost for free, inheriting most of what you need
from existing classes.

However, implementation reuse is only half the story. Inheritance's ability
to define families of objects with identical interfaces (usually by inheriting
from  an  abstract  class)  is  also  important.  Why?  Because  polymorphism
depends on it.

When  inheritance  is  used  carefully  (some  will  say  properly),  all  classes
derived from an abstract class will share its interface. This implies that a
subclass merely adds or overrides operations and does not hide operations
of the parent class. All subclasses can then respond to the requests in the
interface of this abstract class, making them all subtypes of the abstract
class.

There  are  two  benefits  to  manipulating  objects  solely  in  terms  of  the
interface defined by abstract classes:

1. Clients remain unaware of the specific types of objects they use, as long as the
objects adhere to the interface that clients expect. 

2. Clients remain unaware of the classes that implement these objects. Clients
only know about the abstract class(es) defining the interface. 

This so greatly reduces implementation dependencies between subsystems
that it leads to the following principle of reusable object-oriented design:

Program to an interface, not an implementation. 

Don't  declare  variables  to  be  instances  of  particular  concrete  classes.
Instead, commit only to an interface defined by an abstract class. You will
find this to be a common theme of the design patterns in this book.

You  have  to  instantiate  concrete  classes  (that  is,  specify  a  particular
implementation) somewhere in your system, of course, and the creational
patterns  (Abstract  Factory  (87),  Builder  (97),  Factory  Method  (107),



Prototype (117), and Singleton (127) let you do just that. By abstracting the
process  of  object  creation,  these  patterns  give  you  different  ways  to
associate  an  interface  with  its  implementation  transparently  at
instantiation.  Creational  patterns  ensure  that  your  system  is  written  in
terms of interfaces, not implementations.

Putting Reuse Mechanisms to Work

Most people can understand concepts like objects, interfaces, classes, and
inheritance. The challenge lies in applying them to build flexible, reusable
software, and design patterns can show you how.

Inheritance versus Composition

The  two  most  common  techniques  for  reusing  functionality  in  object-
oriented systems are class  inheritance  and  object  composition.  As we've
explained, class inheritance lets you define the implementation of one class
in terms of another's. Reuse by subclassing is often referred to as white-box
reuse.  The  term  "white-box"  refers  to  visibility:  With  inheritance,  the
internals of parent classes are often visible to subclasses.

Object  composition  is  an  alternative  to  class  inheritance.  Here,  new
functionality is obtained by assembling or  composing objects to get more
complex functionality. Object composition requires that the objects being
composed have well-defined interfaces. This style of reuse is called black-
box reuse, because no internal details of objects are visible. Objects appear
only as "black boxes."

Inheritance and composition each have their advantages and disadvantages.
Class inheritance is defined statically at compile-time and is straightforward
to use,  since  it's  supported directly  by the  programming  language.  Class
inheritance  also  makes  it  easier  to  modify  the  implementation  being
reused. When a subclass overrides some but not all operations, it can affect
the  operations  it  inherits  as  well,  assuming  they  call  the  overridden
operations.

But class inheritance has some disadvantages, too. First, you can't change
the  implementations  inherited  from parent  classes  at  run-time,  because
inheritance is defined at compile-time. Second, and generally worse, parent
classes  often  define  at  least  part  of  their  subclasses'  physical



representation.  Because  inheritance  exposes  a  subclass  to  details  of  its
parent's  implementation,  it's  often  said  that  "inheritance  breaks
encapsulation" [Sny86]. The implementation of a subclass becomes so bound
up  with  the  implementation  of  its  parent  class  that  any  change  in  the
parent's implementation will force the subclass to change.

Implementation  dependencies  can  cause  problems  when  you're  trying  to
reuse a subclass. Should any aspect of the inherited implementation not be
appropriate for new problem domains, the parent class must be rewritten
or  replaced  by  something  more  appropriate.  This  dependency  limits
flexibility  and ultimately reusability.  One cure  for  this  is  to  inherit  only
from  abstract  classes,  since  they  usually  provide  little  or  no
implementation.

Object  composition  is  defined  dynamically  at  run-time  through  objects
acquiring  references  to  other  objects.  Composition  requires  objects  to
respect each others'  interfaces, which in turn requires carefully designed
interfaces that don't stop you from using one object with many others. But
there  is  a  payoff.  Because  objects  are  accessed  solely  through  their
interfaces,  we don't  break encapsulation. Any object  can be replaced at
run-time by another as long as it has the same type. Moreover, because an
object's implementation will be written in terms of object interfaces, there
are substantially fewer implementation dependencies.

Object composition has another effect on system design. Favoring object
composition over class inheritance helps you keep each class encapsulated
and focused on one task. Your classes and class hierarchies will remain small
and will be less likely to grow into unmanageable monsters. On the other
hand, a design based on object composition will have more objects (if fewer
classes), and the system's behavior will depend on their interrelationships
instead of being defined in one class.

That leads us to our second principle of object-oriented design:

Favor object composition over class inheritance. 

Ideally, you shouldn't have to create new components to achieve reuse. You
should  be  able  to  get  all  the  functionality  you  need just  by  assembling
existing components through object composition. But this is rarely the case,
because  the  set  of  available  components  is  never  quite  rich  enough  in
practice.  Reuse by inheritance makes it easier to make new components



that can be composed with old ones. Inheritance and object composition
thus work together.

Nevertheless,  our  experience  is  that  designers  overuse  inheritance  as  a
reuse technique, and designs are often made more reusable (and simpler)
by depending more on object  composition.  You'll  see object  composition
applied again and again in the design patterns.

Delegation

Delegation is  a  way  of  making  composition  as  powerful  for  reuse  as
inheritance  [Lie86,  JZ91].  In  delegation,  two objects  are  involved  in
handling a request: a receiving object delegates operations to its delegate.
This is analogous to subclasses deferring requests to parent classes. But with
inheritance, an inherited operation can always refer to the receiving object
through the this member variable in C++ and self in Smalltalk. To achieve the
same effect with delegation, the receiver passes itself to the delegate to
let the delegated operation refer to the receiver.

For  example,  instead  of  making  class  Window  a  subclass  of  Rectangle
(because windows happen to be rectangular), the Window class might reuse
the  behavior  of  Rectangle  by keeping  a  Rectangle  instance  variable  and
delegating Rectangle-specific behavior to it. In other words, instead of a
Window  being a Rectangle, it would  have a Rectangle. Window must now
forward  requests  to  its  Rectangle  instance  explicitly,  whereas  before  it
would have inherited those operations.

The  following  diagram  depicts  the  Window  class  delegating  its  Area
operation to a Rectangle instance.



A  plain  arrowhead  line  indicates  that  a  class  keeps  a  reference  to  an
instance of another class. The reference has an optional name, "rectangle"
in this case.

The  main  advantage  of  delegation  is  that  it  makes  it  easy  to  compose
behaviors at run-time and to change the way they're composed. Our window
can become circular at run-time simply by replacing its Rectangle instance
with a Circle instance, assuming Rectangle and Circle have the same type.

Delegation has a disadvantage it  shares with other techniques that make
software  more  flexible  through  object  composition:  Dynamic,  highly
parameterized software is harder to understand than more static software.
There  are  also  run-time inefficiencies,  but  the  human inefficiencies  are
more important  in the long run.  Delegation is  a good design choice only
when it simplifies more than it complicates. It isn't easy to give rules that
tell you exactly when to use delegation, because how effective it will be
depends on the context  and on how much experience  you have with it.
Delegation  works  best  when  it's  used  in  highly  stylized  ways—that  is,  in
standard patterns.

Several design patterns use delegation. The State (305), Strategy (315), and
Visitor  (331) patterns  depend  on  it.  In  the  State  pattern,  an  object
delegates requests to a State object that represents its current state. In the
Strategy pattern, an object delegates a specific request to an object that
represents a strategy for carrying out the request. An object will only have
one  state,  but  it  can  have  many  strategies  for  different  requests.  The
purpose of both patterns is to change the behavior of an object by changing
the objects to which it delegates requests. In Visitor, the operation that
gets performed on each element of an object structure is always delegated
to the Visitor object.

Other  patterns  use delegation  less  heavily.  Mediator  (273) introduces  an
object to mediate communication between other objects. Sometimes the
Mediator object implements operations simply by forwarding them to the
other objects; other times it passes along a reference to itself and thus uses
true  delegation.  Chain  of  Responsibility  (223) handles  requests  by
forwarding  them from  one  object  to  another  along  a  chain  of  objects.
Sometimes this request carries with it  a reference to the original object
receiving the request, in which case the pattern is using delegation. Bridge
(151) decouples an abstraction from its implementation. If the abstraction
and a particular implementation are closely matched, then the abstraction
may simply delegate operations to that implementation.



Delegation is an extreme example of object composition. It shows that you
can always replace inheritance with object composition as a mechanism for
code reuse.

Inheritance versus Parameterized Types

Another (not strictly object-oriented) technique for reusing functionality is
through  parameterized  types,  also  known  as  generics (Ada,  Eiffel)  and
templates (C++). This technique lets you define a type without specifying
all  the  other  types  it  uses.  The  unspecified  types  are  supplied  as
parameters at  the  point  of  use.  For  example,  a  List  class  can  be
parameterized  by the  type  of  elements  it  contains.  To  declare  a  list  of
integers,  you  supply  the  type  "integer"  as  a  parameter  to  the  List
parameterized  type.  To  declare  a  list  of  String  objects,  you  supply  the
"String" type as a parameter. The language implementation will create a
customized version of the List class template for each type of element.

Parameterized types give us a third way (in addition to class inheritance
and object composition) to compose behavior in object-oriented systems.
Many designs can be implemented using any of these three techniques. To
parameterize  a  sorting  routine  by  the  operation  it  uses  to  compare
elements, we could make the comparison

1. an operation implemented by subclasses (an application of Template Method
(325), 

2. the responsibility of an object that's passed to the sorting routine (Strategy
(315), or 

3. an argument of a C++ template or Ada generic that specifies the name of the
function to call to compare the elements. 

There  are  important  differences  between  these  techniques.  Object
composition lets you change the behavior being composed at run-time, but
it also requires indirection and can be less efficient. Inheritance lets you
provide default implementations for operations and lets subclasses override
them. Parameterized types let you change the types that a class can use.
But neither inheritance nor parameterized types can change at run-time.
Which  approach  is  best  depends  on  your  design  and  implementation
constraints.



None of the patterns in this book concerns parameterized types, though we
use  them  on  occasion  to  customize  a  pattern's  C++  implementation.
Parameterized types aren't needed at all in a language like Smalltalk that
doesn't have compile-time type checking.

Relating Run-Time and Compile-Time Structures

An  object-oriented  program's  run-time  structure  often  bears  little
resemblance to its code structure. The code structure is frozen at compile-
time; it  consists of classes in fixed inheritance relationships. A program's
run-time structure consists of rapidly changing networks of communicating
objects.  In  fact,  the  two  structures  are  largely  independent.  Trying  to
understand one from the other is like trying to understand the dynamism of
living ecosystems from the static taxonomy of plants and animals, and vice
versa.

Consider the distinction between object aggregation and acquaintance and
how  differently  they  manifest  themselves  at  compile-  and  run-times.
Aggregation  implies  that  one  object  owns  or  is  responsible  for  another
object. Generally we speak of an object  having or being  part of another
object. Aggregation implies that an aggregate object and its owner have
identical lifetimes.

Acquaintance  implies  that  an  object  merely  knows  of another  object.
Sometimes acquaintance is called "association" or the "using" relationship.
Acquainted objects may request operations of each other, but they aren't
responsible  for  each  other.  Acquaintance  is  a  weaker  relationship  than
aggregation and suggests much looser coupling between objects.

In  our  diagrams,  a  plain  arrowhead  line  denotes  acquaintance.  An
arrowhead line with a diamond at its base denotes aggregation:

It's easy to confuse aggregation and acquaintance, because they are often
implemented in the same way. In Smalltalk, all variables are references to
other objects. There's no distinction in the programming language between
aggregation and acquaintance. In C++, aggregation can be implemented by



defining member variables that are real instances, but it's more common to
define  them  as  pointers  or  references  to  instances.  Acquaintance  is
implemented with pointers and references as well.

Ultimately, acquaintance and aggregation are determined more by intent
than by explicit language mechanisms. The distinction may be hard to see in
the  compile-time  structure,  but  it's  significant.  Aggregation  relationships
tend to be fewer and more permanent than acquaintance. Acquaintances,
in contrast, are made and remade more frequently, sometimes existing only
for the duration of an operation. Acquaintances are more dynamic as well,
making them more difficult to discern in the source code.

With  such  disparity  between  a  program's  run-time  and  compile-time
structures, it's clear that code won't reveal everything about how a system
will work. The system's run-time structure must be imposed more by the
designer  than the language. The relationships  between objects  and their
types must be designed with great care, because they determine how good
or bad the run-time structure is.

Many design patterns (in particular those that have object scope) capture
the  distinction  between  compile-time  and  run-time structures  explicitly.
Composite  (163) and  Decorator  (175) are  especially  useful  for  building
complex run-time structures.  Observer  (293) involves  run-time structures
that are often hard to understand unless you know the pattern.  Chain of
Responsibility (223) also results in communication patterns that inheritance
doesn't  reveal.  In  general,  the  run-time structures  aren't  clear  from the
code until you understand the patterns.

Designing for Change

The  key  to  maximizing  reuse  lies  in  anticipating  new requirements  and
changes to existing requirements, and in designing your systems so that they
can evolve accordingly.

To design the system so that it's robust to such changes, you must consider
how  the  system might  need  to  change  over  its  lifetime.  A  design  that
doesn't take change into account risks major redesign in the future. Those
changes  might  involve  class  redefinition  and  reimplementation,  client
modification, and retesting. Redesign affects many parts of the software
system, and unanticipated changes are invariably expensive.



Design patterns help you avoid this by ensuring that a system can change in
specific ways. Each design pattern lets some aspect of system structure vary
independently of other aspects, thereby making a system more robust to a
particular kind of change.

Here are some common causes of redesign along with the design pattern(s)
that address them: 

1. Creating an object by specifying a class explicitly. Specifying a class name
when you create an object commits you to a particular implementation instead
of a particular interface. This commitment can complicate future changes. To
avoid it, create objects indirectly. 

Design  patterns:  Abstract  Factory  (87),  Factory  Method  (107),
Prototype (117). 

2. Dependence on specific operations. When you specify a particular operation,
you commit to one way of satisfying a request. By avoiding hard-coded
requests, you make it easier to change the way a request gets satisfied both at
compile-time and at run-time. 

Design patterns: Chain of Responsibility (223), Command (233). 

3. Dependence on hardware and software platform. External operating system
interfaces and application programming interfaces (APIs) are different on
different hardware and software platforms. Software that depends on a
particular platform will be harder to port to other platforms. It may even be
difficult to keep it up to date on its native platform. It's important therefore to
design your system to limit its platform dependencies. 

Design patterns: Abstract Factory (87), Bridge (151). 

4. Dependence on object representations or implementations. Clients that know
how an object is represented, stored, located, or implemented might need to be
changed when the object changes. Hiding this information from clients keeps
changes from cascading. 

Design patterns: Abstract Factory (87), Bridge (151), Memento (283),
Proxy (207). 



5. Algorithmic dependencies. Algorithms are often extended, optimized, and
replaced during development and reuse. Objects that depend on an algorithm
will have to change when the algorithm changes. Therefore algorithms that are
likely to change should be isolated. 

Design  patterns:  Builder  (97),  Iterator  (257),  Strategy  (315),
Template Method (325), Visitor (331). 

6. Tight coupling. Classes that are tightly coupled are hard to reuse in isolation,
since they depend on each other. Tight coupling leads to monolithic systems,
where you can't change or remove a class without understanding and changing
many other classes. The system becomes a dense mass that's hard to learn,
port, and maintain. 

Loose coupling increases the probability that a class can be reused by
itself  and  that  a  system  can  be  learned,  ported,  modified,  and
extended  more  easily.  Design  patterns  use  techniques  such  as
abstract coupling and layering to promote loosely coupled systems.

Design  patterns:  Abstract  Factory  (87),  Bridge  (151),  Chain  of
Responsibility (223),  Command (233),  Facade (185),  Mediator (273),
Observer (293). 

7. Extending functionality by subclassing. Customizing an object by subclassing
often isn't easy. Every new class has a fixed implementation overhead
(initialization, finalization, etc.). Defining a subclass also requires an in-depth
understanding of the parent class. For example, overriding one operation might
require overriding another. An overridden operation might be required to call
an inherited operation. And subclassing can lead to an explosion of classes,
because you might have to introduce many new subclasses for even a simple
extension. 

Object composition in general  and delegation in particular provide
flexible  alternatives  to  inheritance  for  combining  behavior.  New
functionality can be added to an application by composing existing
objects  in  new  ways  rather  than  by  defining  new  subclasses  of
existing classes. On the other hand, heavy use of object composition
can  make  designs  harder  to  understand.  Many  design  patterns
produce designs in which you can introduce customized functionality
just  by  defining  one  subclass  and  composing  its  instances  with
existing ones. 



Design  patterns:  Bridge  (151),  Chain  of  Responsibility  (223),
Composite (163), Decorator (175), Observer (293), Strategy (315). 

8. Inability to alter classes conveniently. Sometimes you have to modify a class
that can't be modified conveniently. Perhaps you need the source code and
don't have it (as may be the case with a commercial class library). Or maybe
any change would require modifying lots of existing subclasses. Design
patterns offer ways to modify classes in such circumstances. 

Design patterns: Adapter (139), Decorator (175), Visitor (331). 

These  examples  reflect  the  flexibility  that  design  patterns  can  help  you
build into your software. How crucial such flexibility is depends on the kind
of software you're building. Let's look at the role design patterns play in the
development  of  three  broad  classes  of  software:  application  programs,
toolkits, and frameworks.

Application Programs

If  you're  building  an  application  program such  as  a  document  editor  or
spreadsheet, then  internal reuse, maintainability, and extension are high
priorities. Internal reuse ensures that you don't design and implement any
more  than  you  have  to.  Design  patterns  that  reduce  dependencies  can
increase internal reuse. Looser coupling boosts the likelihood that one class
of  object  can  cooperate  with  several  others.  For  example,  when  you
eliminate  dependencies  on  specific  operations  by  isolating  and
encapsulating each operation, you make it easier to reuse an operation in
different  contexts.  The  same  thing  can  happen  when  you  remove
algorithmic and representational dependencies too.

Design patterns also make an application more maintainable when they're
used to limit platform dependencies and to layer a system. They enhance
extensibility by showing you how to extend class hierarchies and how to
exploit object composition. Reduced coupling also enhances extensibility.
Extending a class in isolation is easier if the class doesn't depend on lots of
other classes.

Toolkits



Often an application will incorporate classes from one or more libraries of
predefined classes called toolkits. A toolkit is a set of related and reusable
classes  designed  to  provide  useful,  general-purpose  functionality.  An
example of a toolkit is a set of collection classes for lists, associative tables,
stacks, and the like. The C++ I/O stream library is another example. Toolkits
don't  impose  a  particular  design  on  your  application;  they  just  provide
functionality that can help your application do its job. They let you as an
implementer avoid recoding common functionality. Toolkits emphasize code
reuse. They are the object-oriented equivalent of subroutine libraries.

Toolkit design is arguably harder than application design, because toolkits
have to work in many applications to be useful. Moreover, the toolkit writer
isn't in a position to know what those applications will be or their special
needs.  That  makes  it  all  the  more  important  to  avoid  assumptions  and
dependencies  that  can  limit  the  toolkit's  flexibility  and  consequently  its
applicability and effectiveness.

Frameworks

A framework is a set of cooperating classes that make up a reusable design
for a specific class of software [Deu89,  JF88]. For example, a framework
can be geared toward building graphical editors for different domains like
artistic  drawing,  music  composition,  and  mechanical  CAD [VL90,  Joh92].
Another framework can help you build compilers for different programming
languages and target machines [JML92]. Yet another might help you build
financial  modeling  applications  [BE93].  You customize  a  framework  to  a
particular application by creating application-specific subclasses of abstract
classes from the framework.

The framework dictates the architecture of your application. It will define
the  overall  structure,  its  partitioning  into  classes  and  objects,  the  key
responsibilities thereof, how the classes and objects collaborate, and the
thread of control. A framework predefines these design parameters so that
you,  the  application  designer/implementer,  can  concentrate  on  the
specifics of your application. The framework captures the design decisions
that  are common to  its  application  domain.  Frameworks thus  emphasize
design  reuse over  code  reuse,  though  a  framework  will  usually  include
concrete subclasses you can put to work immediately.

Reuse on this level leads to an inversion of control between the application
and  the  software  on  which  it's  based.  When  you  use  a  toolkit  (or  a
conventional subroutine library for that matter), you write the main body of



the  application  and  call  the  code  you  want  to  reuse.  When  you  use  a
framework, you reuse the main body and write the code it calls. You'll have
to write operations with particular names and calling conventions, but that
reduces the design decisions you have to make.

Not only can you build applications faster as a result, but the applications
have similar structures. They are easier to maintain, and they seem more
consistent  to  their  users.  On  the  other  hand,  you  lose  some  creative
freedom, since many design decisions have been made for you.

If applications are hard to design, and toolkits are harder, then frameworks
are hardest of all. A framework designer gambles that one architecture will
work  for  all  applications  in  the  domain.  Any  substantive  change  to  the
framework's  design  would  reduce  its  benefits  considerably,  since  the
framework's  main  contribution  to  an  application  is  the  architecture  it
defines. Therefore it's imperative to design the framework to be as flexible
and extensible as possible.

Furthermore, because applications are so dependent on the framework for
their  design,  they  are  particularly  sensitive  to  changes  in  framework
interfaces.  As a framework evolves,  applications  have to evolve with it.
That makes loose coupling all the more important; otherwise even a minor
change to the framework will have major repercussions.

The design issues just discussed are most critical to framework design. A
framework that addresses them using design patterns is far more likely to
achieve high levels of design and code reuse than one that doesn't. Mature
frameworks usually incorporate several design patterns. The patterns help
make the framework's architecture suitable to many different applications
without redesign.

An  added  benefit  comes  when  the  framework  is  documented  with  the
design patterns it uses [BJ94]. People who know the patterns gain insight
into the framework faster. Even people who don't know the patterns can
benefit  from the structure they lend to the framework's  documentation.
Enhancing  documentation  is  important  for  all  types  of  software,  but  it's
particularly  important  for  frameworks.  Frameworks  often  pose  a  steep
learning curve that must be overcome before they're useful. While design
patterns might not flatten the learning curve entirely, they can make it less
steep by making key elements of the framework's design more explicit.



Because  patterns  and  frameworks  have  some  similarities,  people  often
wonder how or even if they differ. They are different in three major ways:

1. Design patterns are more abstract than frameworks. Frameworks can be
embodied in code, but only examples of patterns can be embodied in code. A
strength of frameworks is that they can be written down in programming
languages and not only studied but executed and reused directly. In contrast,
the design patterns in this book have to be implemented each time they're used.
Design patterns also explain the intent, trade-offs, and consequences of a
design. 

2. Design patterns are smaller architectural elements than frameworks. A typical
framework contains several design patterns, but the reverse is never true. 

3. Design patterns are less specialized than frameworks. Frameworks always
have a particular application domain. A graphical editor framework might be
used in a factory simulation, but it won't be mistaken for a simulation
framework. In contrast, the design patterns in this catalog can be used in nearly
any kind of application. While more specialized design patterns than ours are
certainly possible (say, design patterns for distributed systems or concurrent
programming), even these wouldn't dictate an application architecture like a
framework would. 

Frameworks are  becoming increasingly  common and important.  They are
the  way  that  object-oriented  systems  achieve  the  most  reuse.  Larger
object-oriented applications will end up consisting of layers of frameworks
that  cooperate  with  each  other.  Most  of  the  design  and  code  in  the
application will come from or be influenced by the frameworks it uses.

How to Select a Design Pattern

With more than 20 design patterns in the catalog to choose from, it might
be  hard  to  find  the  one  that  addresses  a  particular  design  problem,
especially  if  the  catalog  is  new and unfamiliar  to  you.  Here are  several
different  approaches  to  finding  the  design  pattern  that's  right  for  your
problem:

1. Consider how design patterns solve design problems. Section 1.6 discusses
how design patterns help you find appropriate objects, determine object
granularity, specify object interfaces, and several other ways in which design
patterns solve design problems. Referring to these discussions can help guide
your search for the right pattern. 



2. Scan Intent sections. Section 1.4 (page 8) lists the Intent sections from all the
patterns in the catalog. Read through each pattern's intent to find one or more
that sound relevant to your problem. You can use the classification scheme
presented in Table 1.1 (page 10) to narrow your search. 

3. Study how patterns interrelate. Figure 1.1 (page 12) shows relationships
between design patterns graphically. Studying these relationships can help
direct you to the right pattern or group of patterns. 

4. Study patterns of like purpose. The catalog (page 79) has three chapters, one
for creational patterns, another for structural patterns, and a third for
behavioral patterns. Each chapter starts off with introductory comments on the
patterns and concludes with a section that compares and contrasts them. These
sections give you insight into the similarities and differences between patterns
of like purpose. 

5. Examine a cause of redesign. Look at the causes of redesign starting on page
24 to see if your problem involves one or more of them. Then look at the
patterns that help you avoid the causes of redesign. 

6. Consider what should be variable in your design. This approach is the
opposite of focusing on the causes of redesign. Instead of considering what
might force a change to a design, consider what you want to be able to change
without redesign. The focus here is on encapsulating the concept that varies, a
theme of many design patterns. Table 1.2 lists the design aspect(s) that design
patterns let you vary independently, thereby letting you change them without
redesign. 

Purpose Design Pattern Aspect(s) That Can Vary

Creational Abstract Factory
(87)

families of product objects

Builder (97) how a composite object gets created

Factory Method
(107)

subclass of object that is instantiated

Prototype (117) class of object that is instantiated

Singleton (127) the sole instance of a class



Structural Adapter (139) interface to an object

Bridge (151) implementation of an object

Composite (163) structure and composition of an object

Decorator (175) responsibilities of an object without subclassing

Facade (185) interface to a subsystem

Flyweight (195) storage costs of objects

Proxy (207) how an object is accessed; its location

Behaviora
l

Chain of
Responsibility (223)

object that can fulfill a request

Command (233) when and how a request is fulfilled

Interpreter (243) grammar and interpretation of a language

Iterator (257) how an aggregate's elements are accessed,
traversed

Mediator (273) how and which objects interact with each other

Memento (283) what private information is stored outside an
object, and when

Observer (293) number of objects that depend on another object;
how the dependent objects stay up to date

State (305) states of an object

Strategy (315) an algorithm

Template Method
(325)

steps of an algorithm

Visitor (331) operations that can be applied to object(s) without
changing their class(es)

Table 1.2:  Design aspects that design patterns let you vary

How to Use a Design Pattern

Once you've picked a design pattern, how do you use it? Here's a step-by-
step approach to applying a design pattern effectively:

1. Read the pattern once through for an overview. Pay particular attention to the
Applicability and Consequences sections to ensure the pattern is right for your
problem. 



2. Go back and study the Structure, Participants, and Collaborations sections.
Make sure you understand the classes and objects in the pattern and how they
relate to one another. 

3. Look at the Sample Code section to see a concrete example of the pattern in
code. Studying the code helps you learn how to implement the pattern. 

4. Choose names for pattern participants that are meaningful in the application
context. The names for participants in design patterns are usually too abstract
to appear directly in an application. Nevertheless, it's useful to incorporate the
participant name into the name that appears in the application. That helps
make the pattern more explicit in the implementation. For example, if you use
the Strategy pattern for a text compositing algorithm, then you might have
classes SimpleLayoutStrategy or TeXLayoutStrategy. 

5. Define the classes. Declare their interfaces, establish their inheritance
relationships, and define the instance variables that represent data and object
references. Identify existing classes in your application that the pattern will
affect, and modify them accordingly. 

6. Define application-specific names for operations in the pattern. Here again,
the names generally depend on the application. Use the responsibilities and
collaborations associated with each operation as a guide. Also, be consistent in
your naming conventions. For example, you might use the "Create-" prefix
consistently to denote a factory method. 

7. Implement the operations to carry out the responsibilities and collaborations
in the pattern. The Implementation section offers hints to guide you in the
implementation. The examples in the Sample Code section can help as well. 

These are just guidelines to get you started. Over time you'll develop your
own way of working with design patterns.

No discussion of how to use design patterns would be complete without a
few words on how not to use them. Design patterns should not be applied
indiscriminately.  Often  they  achieve  flexibility  and  variability  by
introducing  additional  levels  of  indirection,  and  that  can  complicate  a
design and/or cost you some performance. A design pattern should only be
applied when the flexibility it affords is actually needed. The Consequences
sections  are  most  helpful  when  evaluating  a  pattern's  benefits  and
liabilities.
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