Firebird 2.0 Language Reference Update

Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.

9 December 2010, document version 1.0 — covers Firebird 2.0-2.0.6

Firebird 2.0 Language Reference Update

Everything new in Firebird SQL since InterBase 6

9 December 2010, document version 1.0 — covers Firebird 2.0-2.0.6
Paul Vinkenoog et a.

Table of Contents

R 011 0T [F o1 o o I PP SPTP 1
VEISIONS COVEIEAeiiiiiiiiie ettt ettt e skttt ettt e e etk bt e e e ekt e e e e e s bt e e e e s et e e s aabte e e e e anba e e e e e nbe e e e s anbneeeeans 1

U 11 g0 £ g 1T o TSRS 2

2. Reserved Words and KEYWOITSuviiiieeiiiiciieiee et e e e e e e e e e e e s e et r e e e e e e e s s snnbeaneeaaeeenaas 3
Added SINCE INTEIBASE B ..ottt e e e e bt e e e s snreeeean 3
NEWIY FESEIVE WOITS ...t ee et e e e e s e e e e e e e s e et re e e e aeeessnantaaeeeeaeens 3

NEW KEYWOITS ...ooiiieeeiieee ettt e e e e s et e e e e e e e s s et b ba e e e aeeeessnsnnrbaneeaeeeeannes 4

Dropped SINCE INEIBASE 6ceeiieeeiii ittt e e et e e e e e s e s e e e e e s s s et e e e e aeeesaeatrtaaereeeeessannnseees 4

N[O R Lol aTe T g =S = Y=o O PRPRR 4

NO [ONGEr KEYWOITS ... e e e e e e e e e st r e e e e e e s s e ntaaeeeeeas 5

Possibly reserved in fULUME VEISIONSc.uviiiiiie ettt e e e e et e e e e e s s et eeeaaeeeean 5

3. Miscellaneous [anguage ElEMENLScuiiiiei i e e e e e e e e e s e et e e e e e e e e s annanrraeeeaeens 6
== (SINGIE-TINE COMMENL) ... e e e e e e s e e e e e e s e et e e e e aeeesssnsntabnreeaaeesaanes 6
SNOMNBNG CBSES ...t e e ettt e e e bbbt e e e ebb e e e e e sabb e e e e e nbeeeas 6
CASE CONSLIUCE ...ttt ns 7

S 0] 0 Lo 7 SRR 7

SEAICNEA CASE ...uuititiieittitttetetrtrrerrrererere i reaereaere e —eseasseseseseesaesssesssesssesesssasessssssbesesessssnssesnnnnnns 8

4, Data types AN SUDLYPESceiiiieiiie e e e et e e s e e e e e s e e e e e e e e e e s st ateaeeaaee e s s e ntraeaeeaaeeeannrrrnaees 9
=L e = = T 1Y 0L SRR 9
@] R0 = = T 1Y/ 0 L= SRR 9
NEW ChEFBCIEN SELSeeiieiiiie ettt e e et e e et e e e e st et e e e s bbe e e e e nnbeeeeeanes 10
Character set NONE handling Changedoeviiiiiiiiiiiiiiiee et e e e e e e e e 11
INEW COHBLIONS ...ttt ettt e ettt e e e b et e e e e a bt et e e s nbb e e e e e nb et e e e enbte e e e s annneee s 12

5. DDLU SEBLEIMIENLSiieeteeeeeee e e e e ettt e e e e e e sttt et e e e e e s s s e bbb et e e e e e e e e e a bbb et et e e e e e e s s nnbbbeeeeeeeeesaaanbbnneeeaeenas 13
ALTER DA T AB A SE ..o et e et et e et e e et e e et e et e et e aeans 13
BEGIN BACKURP ...ttt et e et e et e et e et et e e e s et ea et esnenaesaenannannns 13

END BACKURP ..ttt et et et et e et e e e et e et e e e e e e e e e e aaeans 13

ADD DIFFERENCE FILE ..ot et e et e e et e e e e et e e et e e e aeaeens 14

DROP DIFFERENCE FILE ...ttt e e e e et e et e e et e e e s e e eeannas 14

ALTER DOMAIN Lottt e et e e et e et e e e s e e e s e et e e e e e e e e e e e eens 15
RENAME TOMAIN ... e et e e e et e e e e b e e e e nnbn e e e e anneeas 15

SET DEFAULT to any context Variablec.c.ovvviiiiie e 15

ALTER EXTERNAL FUNGCTION .ottt et e e ettt e e et ea s et aa et aas et eaa et aa et aanasnenasnannns 15
ALTER PROCEDURE ...ttt e e e et e et e e e e s e e e s et et e a e s enaeananenns 16
Default argumENt VAIUESuviiiiiiee ettt e e e e e e e e e e e e s e et e e e e e e e e e e sennnenees 16
Restriction on altering USEd PrOCEAUINESuueiiiieei it e e e et e e e e s s e e e e e e e eaeneaees 16

ALTER SEQUENCE ...ttt e e e e et et e et e e et e e et e e e e e et e e et e e e e aeneens 16
ALTER TABLE oot e e e e et et ete e e et e e et e et e e et e e et e aeans 17
ADD column: Context variables as defaultSoooiueiiiiiiiie e 17

ALTER COLUMN: DROP DEFRAULT ettt ettt e et e et e s a e e e e e s anaenns 17

ALTER COLUMN: SET DEFRAULT ettt e et e et e e e e e aa et e e e aeeaeneanennees 18

ALTER COLUMN: POSITION NOW 1-DASEUuvvviiiiiiiiiiiiiiiiiiiiiisreiiissererererasesessreresrnrrere... 18

CHECK aCCEPLS NULL OULCOIMIEuuuvurutututeruuueutntntnsnsnsssnsassnnnnns 19

FOREIGN KEY without target column referenCes PKccovciciiiiieiie e e ssvvveeee e 19

FOREIGN KEY creation no longer requireS eXCIUSIVE GCCESS ...vvvviieeeiiiiiiiireeeeeeesssiniieeeesaaeeannnns 19

UNIQUE cONStraiNts NOW @llOW NULLSiiiiiiiiiiiiee et e ettt s e e e e e eeevaaae s e e eaeseeenes 19

USING INDEX SUBCIAUSEeeiiiiiiiii ettt 20

ALTER TRIGGER ... ettt e et et et et e e e e e et e e et e e et eaesannennannns 20

Firebird 2.0 Language Ref. Update

YW TR Tot (o g v [0 T PEPPR 20
Restriction on altering USEA tHQQEIS ...uuuriiii et e et e e s e e s e e e e e e e e 20
PLAN allOWed iN tHQQEr COUE ..uvviiiiii it e e e e e e e e e et raees 21
ALTER TRIGGER no longer increments table change countc.occcviiieiie i 21
L0 1Y 1Y N PP RPRPRPR 21
CREATE DA T ABASE ..o et ettt st r e e e e e e e e e e ens 22
16 Kb page SiZ€ SUPPOITEXcooiiiiiiiieiee ettt e e e e s st e e e e e e e e s sanbrareeeaaeeanns 22
DIFFERENCE FILE PAraMELErcceuiieeiiiii ettt e et e e e e e e e e e e e e een e ean s 22
CREATE DOM AN ittt e e et e et e e et e et e et e et e s e e e s et eaenaenenaenenenns 22
Context variables as defaUILScoiiiiiiiiii e 23
CREATE EXCEPTION oottt e e e e e et e e et e et e e et e e et e e et e e et e e et aa e e e e eaanneens 23
Message |eNgth INCIEASEAeeiiiiiii i a e e e s e e rreeaa s 23
CREATE GENERATOR ..ottt ettt et et e et et aeesnannns 23
CREATE SEQUENCE PrefEITEUccoiiiiiiiiee ettt e ettt e e e e e st e e e e e e e e s st aeeeeaeeas 24
Maximum number of generators significantly raisedcccccvveeieeieiiiiiiiiie e, 24
CREATE INDEX ettt ittt et et e et e et ens 24
UNIQUE iNdiCES NOW GlIOW NULLSooviitiiiiiiee ettt e e e e et s e e e e e e e eeab e s e e e e e e eseabba e eeas 24
INAEXING ON EXPIESSIONSuvviiiiieeeeiieiitite et e e e e e s e e e e e e e e s e st b e e e e e e e s sesatbraeeeeaeesssasnrrraneeaaens 24
Maximum index key 1ength iNCreasedeeiiveiiiiiiiiiiicee e 25
Maximum number of indices per table INCreasedcccvveeiiei e 25
CREATE PROCEDURE ...ttt ettt st et s et s et s e st s e et e e e e s e e e e e ens 26
CREATE SEQUENCE ...ttt et e et e et e et e e e e e et e e et e e e e e e et e e et e e et e e e e aeneenaen 27
(O I 17 = I PPt 27
CHECK aCCEPLS NULL OULCOIMEiieiiieeiiiiie s e e e e ee ettt s e e e e e e e eeatbe s s s e e e e e e e eatann s e e e e e e eeetnnaseeeas 27
Context variables as columMN defaUltsoooiiiiiiiiiiie e 28
FOREIGN KEY without target column referenCes PKcooiiiiiiiiieiie e eevrveeee e 28
FOREIGN KEY creation no longer requireS eXClUSIVE BCCESS ..uvvvviieeiiiiiiiiiieeeeeeesseiiireeeeseeeeeainns 29
UNIQUE cONStraiNtS NOW @llOW NULLSiiiiiiiieiiiee e eee ettt e et s e e e e e s eeeaaaae s e e e e e s eennes 29
USING INDEX SUBCIAUSEeeiiiiiiiiie ittt ettt st e e nane e e e 29
CREATE TRIGGER ...ttt e et e e e e et e et e et e e e e e e et e e e e e e e e e e e e e e e e e eens 30
YW TR Tot (o R v [0 = T PSPPI 31
CREATE TRIGGER no longer increments table change countcccoceeieeee i 31
PLAN allOWed iN tHQQEr COOE ..uvviiiiii ittt e e e e e e e e e e aaaraees 32
CREATE VIEW ittt ettt e e e e e e s e e e e s e e e e s et ea e et ea s e ea s et ea e e eanenneneenennenns 32
Full SELECT SyntaX SUPPOITEcooiiiiiiiiiee et e e et e e e e et e e e e e e e s et rrneeeaeas 32
PLAN subclause disallowed in 1.5, reallowed 1IN 2.0ooeeeeeieeeeee et e e 32
Triggers on updatable views block auto-writethroughccooiiiiiiiiiiei e, 32
View with non-participating NOT NULL columns in base table can be made insertable.............. 33
CREATE OR ALTER EXCEPTION ..ouiiiiiiiei ittt ettt s e st s e s e s e s e s e e e ens 34
CREATE OR ALTER PROCEDURE ...ttt ettt ettt e s s s e e s e e e s e e e ens 34
CREATE OR ALTER TRIGGER ...ttt ettt et et e e s r e e e e e s e e r e e ens 34
DECLARE EXTERNAL FUNCTION ..ottt st ee e s eis e s eas e s eneea s ensensensenseneensensensenesnnenns 34
BY DESCRIPTOR ParameEter PASSING ..vveeeeeeeeeiieiurrreeeeeeeesiiiistiseeeseessssiasssneresssesssassssssssessessananns 35
RETURNS PARAMETER N oot ettt ettt e e e s e r e e e e e 35
] O] o I I o PRSPPI 35
DROP GENERATOR ..ttt ettt ettt et et et e e e e e e st e aeaeens 36
DROP PROCEDUREuiitiiiiitiiiee e es e et e e e et e e s e s e et s eaeea s e ea s eaeea s eaeea s e e ea e e eneeneen e ensennens 36
Restriction on dropping USEd PrOCEAUIESeiieeeeiiiiiiiiee it e e e e e ecctre e e e e e s e et re e e e e e e e e s ennnnraees 37
DROP SEQUENCEouiiiiiiiiii ettt ettt ettt st et s e et e s e et et s et s e et e e e e s e e e s e a e e ennen 37
DROP TRIGGER ...ttt e et e et e et e et e e et e e e e e e e e e e et e e e e e e e e e e e e aeneenen 37
Restriction on dropping USEA tHIQOENS ..uueieeeeei it ee e e e ettt e e e e et e e e e e e e et e e e e e e e e e 37
DROP TRIGGER no longer increments table change countcooiciiiieiiee e iccciiieeee e 38

Firebird 2.0 Language Ref. Update

RECREATE EX CEPTION ittt et ettt ettt e e s s e sasaeara s st s rasaesasnssnsnsnsnsnsnenenenensnns 38
RECREATE PROCEDUREcuiiiiiiiiiiiiiiii ettt sttt e ae et e s e s e e sasa s sataeatatataeasarsraraesreaensnenenenensnsnes 38
Restriction on recreating USEd PrOCEAUINESeeviiieiiiiiiiiiiee e e e e st e e e et e e e e e e e e naanraees 38
O] N I R 2N = N 39
RECREATE TRIGGER ...cniiiiiiiiiiii ittt ettt e e e e e e e e e e e s s e s e s e s e e e s e s e e enenenenenenenennnns 39
Restriction on recreating USEA tHQGEISuvuriieeeei it ee e et s st e e e e e s aeeeeaeas 39
O N I Y 1 N 39
REVOKE ADMIN OPTION L.itititiiititiiiiiiiieiieieieeeeteteasaeseatasaesa s s sratasasasnsasasasasararsrarererererenenenenen 40
SET GENER A T OR ettt ittt ettt ettt et et e e e e e s e s e eaeaeasaeaeasarararararararerenenenenenenenen 40
LT 1\ I 7 1= = 1 41
D I I S 41
COLLATE subclause for text BLOB COIUMNScoovivuiiiiiieeeeieeeie et e e e eevaaaaa s 41
LI = = S 41
T PP 42
Relation alias makes real name unavailableeeeiiiiiiiiieee e 42

[1Y AT 2 TP 42

[L I R = T 0 L1 43
EXECUTE PROCEDUREiiiiiiiiiiiiiiii ittt ettt ettt e e e s e e e e s s eaeaeaeataaasaeasaeaeaesasnsnsassnsensnensnnn 45
A It S 46
RETURNING ClALSE ..ovvueeieetee e ettt ettt et e e e et e e et et e et e e e et ea e e e eea e seeee s seeeesaseeeennseeennnn 47
UNION alowed in feediNg SELECTcuvviiiieeeiiiiiiiieieeee e e e s ssnrree e e e e e e s s s sntrrne e e e e e e e s sennneraeeeaaens 47

S] I = PP 47
Aggregate functions: Extended funCtionalityccccooiiiiiiiiiie e 47
COLLATE subclause for text BLOB COIUMNScoiiivuiiiiiieeee et e e e eevaaaaaas 50
Derived tables (“SELECT FROM SELECT”) ...iiicitiieiieeeeeeiiiiiteeeeeee e e s s sinnaeeeee e e e s s ssnsssnneeaaaeesanns 50

(L Sy =0 JES S L = TR 51

L 0L 1 = S 52
(YA N RS (ot (< g U = 54
N0 I PP 54
LI = = S 55
T PP 57
Relation alias makes real name unavailableeeeiiiiiiiiiiee e 58

[1YY 2 TP 59

L1 N PP 60
KL N 10 LS 61

L1 3 A IS 62
COLLATE subclause for text BLOB COIUMNScoiiivuiiiiiieeee et e e e eevaaaaaas 62
LI = S 62
T PP 63
Relation alias makes real name unavailableeeeiiiiiiiiiiee e 63

[1YY 2 T PP 63

7. TransaCtion CONEIOl SLALEIMENESccoiieiiiiiie e e e e e ettt e e e e e e e ettt e e e e e s ee e e eab e e eeaesseesbbbaseeeesseeassnannss 65
L I AN Y Y = 8 1\ N 65
(I 7 AN 1 N 65
ROL L BA CK RET AN ottt e et s e e et a e e e e e s e e e snenenenrararararararannnnns 65
ROLLBACK TO SAVEPOIN T ittt ettt e et e s s easararararararararererenenenens 66

SA YV E P O N T ittt ittt ettt et ettt et e e e e s e e ea s e eaeaeasasa e s s e e e e ensnensnenenenenensneneteserrarannnans 66
INtErN@l SAVEPOINES ... c e e e e e s e e e e e e e e e s s st bbb aereeeeeseanantbrneeeeaeeaaanns 67

S V= Lo gL ES3 a0 [s | PR 68

S I 72 1 Y O [10 68
IGNORE LIMBIO ittt ittt ettt e et et e s e e e e e e e e e aeaea e s ea st et eaeaeaeaeasasssrarnrasnenenensn 69

I 13 S I 1Y/ = PP 69

Vi

Firebird 2.0 Language Ref. Update

NO AUTO UNDUO ittt e e et e et e et e e e e e e et e e e e e e e e e e e e e e e e e eenaeeenaen 69

o T S I = (1 £ 71
BEGIN ... END blockS May D8 EMPLY ...ccooiiiiiiieiee et 71
T PPN 71
L@@ 1 ol =0 PP 72
DEC L A RE ...ttt en 72
DECLARE ... CURSDR ...cuituiiiiiii ettt e et s ettt s e et s e s e s e st e eas e e e e enns 72
DECLARE [VARIABLE] With iNitialiZationccccooeiiiiiiiii v eaeaees 73

E X CEPT ION ettt e e e et et e e et e e et e e et e e et e e et e e et e e et e a et e e et e n e e nenns 74
Rethrowing a caught EXCEPLIONoviiiiiiii e e e a e e e e 74
Providing @ CUSLOM EITOF MESSAGEuvvvviiiieeeeeieiitiie e e e e e e e s sstt e e e e e e e s e s sabbaeeeeeaeesssannrbaeeeaaens 74
EXECUTE PROCEDURE ...ttt ettt e et et et e e et e e et e nenaenns 75
EXECUTE ST AT EMEN T ottt e et et et e e e e e e e e s e e e s e e e e e s e s e aesenaenns 75
NO daEA FEIUMNEAeiiieieee e e e e e s e s e e e e e e e s s s stabareeeaaeeeeannneeees 75

OnNe row Of data FEIUMEeeeiiieii i e e e e e s e e e e e e s s e nnrrreaeeaeas 76

Any number of data rOWS FELUMMEcoiiiiiiiiieiee e e e e e 76
Caveats With EXECUTE STATEMENT ...ooviiiiiiieieeeeeeeeeeeeeeeee ettt 7
) PP 77
L O T ol U S RRPPTRRRT 78
FOR EXECUTE STATEMENT ... DO uiiiiiiiiiiii it et e e e e e e e e e e e e e e eeenaen 78
FOR SELECT ... INTO ... DO ouiiiiiiiiiiiii ettt et e st e s e e e et e e e e e e e e e e ens 78
AS CURSOR ClAUSE ..eiiiieei ittt e ettt e e e e e s e et e e e e e e e e s eaa bbb e e e eaeeessannnrbaeeeaeens 79

I Y PP 80
(@] I o £ o OSSPSR 8l
PLAN allOWEd iN tHQQEr COUE ...vvviiiiie et e e e e e e et e e e e e e e e st b re e e e eaeeeean 81
UDFs callable @s vVOid fUNCLIONSuuuiiiiiiei it e s e e e e e et ae e e e e e e s e eannnees 82
WHERE CURRENT OF invalid fOr VIBW CUISOISuvviiiiieeeeiicciiiieiee e e csitvee e e e e e s ennvrn e e e e e e e e e 82
LS 00 01 (= A= = o == SRR 83
CURRENT _CONNECTT ON ...ttt eee et ettt eee e et et eee e et eteete e e e ese e aeeeseeeeeeeeseeeteeeereeseeeeeeeeeeneeeenens 83
CURRENT _ROLE ...ttt ettt ettt ettt ettt et et et et et et e e e et et e ee et et e te et et e e et et e e eee et e e eeeseeeeeeeeeeeeenens 83
CURRENT _TI ME ettt ettt ettt e e et e et e e et e et e e e e et e eee et e e aeeeae e e e seeeseeeaeeseeestesseesreeseeeessneeseeans 84
CURRENT _TIMESTANP ..ottt et et e e ee et e ettt e et e et e e e et e et e et e s e e seeeaeesteeetesseesaeeseeeaeeseeeereaeeas 84
CURRENT_TRANSACTT ON ...ttt te e et e et e s eae s e e seeeaeesseesaeseesseeeseeeees st esresaeeseeeseeseeseeaneas 85
CURRENT _USER ...t etee et e et e et e e st e e e s e et e eteeaee s et e sae et e e aeesae e e e seeeseeeaeseeeestessessaeeseeeesseeeseeans 85
[I I N PP 86
(€ 5100 b PP 86
I St T N U PN 87
INEWV ettt ettt ettt e et e o4ttt e 4okt e e+ oA R bt e e 4o R e et o4 e AR et e e e e R h et e e e e AR ee e e e e Rt et e e e e nne e e e e nnnrees 87
B 1 1 PRSPPI 87
@ I PRSP 88
ROV COUNT ...ttt ettt et e et et ee et et e e et et eeeee et eeees e e e et ee e et e et et e ee et e e e eee et eeeese et eeeteereeeeeeereeeeesareeeas 89
SQLOODE ..ottt eeeee ettt e et e et et et e et et et e et et e et e et et et e et e e et et e et et et e ee et et et et et et et et et are et et e et enans 89
LI I PP 90
10. Operators and PrEdICAIEScccii i it e e e e e e s e e e e e e e e s s aabt b e e e e aeeeseasnrrraeeeeas 91
NULL literals allowed as OPEraNdScccceeiiiiiiiiiei e et e e e e e e e e st e e e e e e e e e snrrraeee s 91
[gL ge R0 o (= 7= (o] TR 91
RESUIL TYPE VARCHARttt ettt e e e e e e et e e e e e e e e s st e e e e e e e e s sentbreaeeaeas 91
OVEFIOW CHECKINGvviieiieee e e e e e e e raees 91
PP RPRPRE 92
NULL HteralS @llOWE ...t e e e e e e e e e s s raeeeaa s 92
UNION S SUDSEIECL ..oveiiiiiei et s e e e e e s e e e e e e e e e s s e entb e e e e e e e e e e e nnnnrnees 92
ANY J SOME ..ottt 92

Vii

Firebird 2.0 Language Ref. Update

NULL [teralS @llOWEooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 92
UNION @S SUDSEIECE ...uvuvvvuvurirursrurerursrussrsrsssssrsrsssssssreressssssrsresrssresssasesrssrsrrrsrararerrrrrrr... 92

N N 93
NULL [teralS @llOWEooeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 93
UNION @S SUDSEIECE ...uvuvuvurururirrrurerursrasersrsrsrsssrsrssessraresssssersesssssrsrrsrsesrssrerrrerarar................. 93

IS [NOT] DISTINCT FROM .tuitiiitiiititiiei ettt s et e et e e s s et s e e e s e et s st e et s et e ea e e e eara e eeanneanneen 93
NEXT VALUE FOR .ot r ettt et e et e st et et e et e et e e e s e s s e sn e eararararararsrararananens 94
S =P 94
12, Internal FUNCLIONScooeeeeieeeeeeeeeeeee 95
BIT LENGTH() eveuveeeeee et et et et et eeeeeee et e e e eee e e et et et et e eeeeeeee et e eeeeeeeeeeeeeeeeeeseeseeereseeeeeeee et eeeseeseeens 95
CAST() et eee e e e et et et et et et et et e e e et e e e e et et et et et et et e e e et et ee e et et et et et e et e e e et e et et et et et et e eaens 96
CHAR_LENGTH(), CHARACTER LENGTH() vvvveeeeeeeeeeeeeeeeeeeeseeeeeeeeeseseeaeeseesesnseneeeseeeseesenaenneas 97
COALESCE() veteeeeee et ee et et e et et e et e e et e e e e et et et et et et e et e et e eeeeeeeee e e et e e et e et e eeeseeeeeeeeeeeeeeeenenes 98
EXTIRACT() vveeeeeeeeeeeeeeeeeeeee e e et et et et e et e eeeeaeeeeeeeeeeeee et e e e e e eeeeeeeeeeeeeeeeeeeeseeeeeeeeeaeeseeeeeeeeaeeeeeeeeens 99
GEN_ID() vttt eee e eee oo ee et ettt e et e e e e e e et et e et et et e et e e e et e e e ee e et et et et et et e et e et e et e e e e e et aeenaans 100
LI () +eeeeeeeet ettt oo ettt et e e et ettt et eeee et ettt bt eeeeeeeettta——eeeeeeteetta——aeeaeeeetttraaaaaareratrraaaaaees 100
LOWER() vttt eeeeeeeeeeeeeeee e e eeeeee et et et et e et e es e et e eeeeeeeee e et e et e e et e eeeeeeeeeeeeeeeeee et eeeeeeseeeeeseeereeeeeeeeaeans 101
NULLTF() vttt ettt et et ee e eeeeeeeee et et et et e e teeseeueseeeeeeeeeee et eee e eeeeeeeeseeeeeeeeeeeeeteeseeeseeeeeseeereeeeeeeaeeans 101
OCTET _LENGTH() «eveveeee et et et et et e e eeeeeeeeeeeesee et e e et et eeeeseeeeeeeeeeeaeeeeeeee et et eseeeseseeseeeeeeeneeenenas 102
RDBSGET _CONTEXT() +uvruveueeveeteeeetestessesesssseeseesssssssssssssssssasssseseessssssssssssssssssessassssesssssssessssessnsees 103
RDBSSET _CONTEXT() +.vuveteireiteeeseieeitessssssssessessessessssssessssssasssssssassssessesssssssesssssssssesssssessessesessens 104
SUBSTRING() .vveeveeueeet et et eeeeeeeeeeeeeeee et eee et et eeeeseeeeeeeeeee et et et et eeeeseeereeeeseeaeeeeeeeeeeeeeseeeesaeeeneas 105
TRIM() et ee oottt et e e e e e e et et et et et e e e e e e e e e eeeee e et et et et e e e eeeeeeeeeeeeeee et e s et e seeeeeereeenaeneneaeas 106
UPPER() . vtevteeeeeeeeeeeeeeee et eee et ee e et e eeeeeeeeeeeeeeeeeeeeeeeeet et e e e eeeeeeeeeeae et eteeet et et eeeeeeeereeee et eeeee et eneaes 107
12, External fUNCLIONS (UDFS)ccoiiiiiieiee ettt e e e e e e e e e e s et e e e e e e e e e e ntreeees 108
= X0 [1= P 108
=X Lo | "o 11 TN 108
=Yoo 1Y I I TS Y= T oo 1 o o 109
=Yoo 1Y I TV < 109
=X [0 1Yo o | A o I 110
=X [0 =Yo7 oY [110
=X [0 AT Y] TN 111
=X [0 I == | TN 111
=Y o N TR o3 ¢ - 1 112
[0 [11 S 112
[0 0T 0 11 P 113
(o= e T ol I =13 = Uy 2 J 113
I o YU g o 114
I A T g Tox=) A =N 114
o o N 114
0 11 T 115
N = Lo PPN 116
N T 0 T 117
Eal 2 LU T 117
Eal 2174 118
L= 1 o T 119
T 0 PN 120
(oYU o Yo RIS 7 o YU g Vo T 120
[= Lo PPN 121
L T 0 T 122
LYo [0 1 123
EY = 1 o 123

viii

Firebird 2.0 Language Ref. Update

£ o | L P 124

LY ST 4T 124 o1 o 1 o TS 124

LS S =Y o PP 125
LY] ¢ 1= 0 PP 125
LY] o 13 0 T o P 126
ErUNCAL €, 1 BAL I UNCAL © ieniieiiiiiie et e et e e e e et et e et e e e e b e eb e e b s e s eaeseneaenseans 127

F N 0= 010 D N N\ o (== SRR 129
Character set NONE data acCepted “aS IS ...oiciiiiiiiiiieiie et e e e e e e e 129
Understanding the WITH LOCK ClaUSEc.vuviiiiiie et e e e e e et rae e e as 130
SyntaX and DENAVIOULcoiiiiiiiiiiiiec e e e s e e e e e e e e areeeeaeeeaaa 130

How the engine deals With WITH LOCKccuuiiiiiiee it eee e e e st e e e e e e s ssnrrree e e e e e e 131

The optional “OF <col um- Nanes>" SUD-ClAUSEcccoiiiiiiieiiie e 132

Caveats USING WITH LOCK ..oiiiiiiiiiiiiiieiee e e e e e e sttt e e e e e e e s ettt e e e e e e e s s st ae e e e e e e s e e s snnntnaeeeaaeens 132

Examples using explicit IOCKINGcccuiiieiiie et 132

A NOtE ON CSTRING PAIAIMELELS ...uvvuiiieeeiieeeiiiier e e e e e ettt s s e e e e e e e ae e s e e e e e e e aata s s eeeeeeeerennaaaeaeees 133
Passing NULL t0 UDFS N FIirebird 2ooooiiiiiiiiicc et 134
“Upgrading” i b_udf functionsin an existing databaseccoovviiiiiiiiiee i 134
Maximum number of indices in different Firebird VErSIONSccovviiiieeiiiiiiee e 135
AppendiX B: DOCUMENE HISLOMYuveiiiiieeiiiiiiiii e e s e e e e e e e s st re e e e e e e e s e sntbaraeeeaeeeas 136
APPENIX C: LICENSE NOLICE ...uvviiiiee e ittt ee et e e e s e e e e e s e et e e e e e e e e s e aantrreeeeaeeseeanassrnnes 139

List of Tables

4.1. Character SetS NEW iN FIFEDITToooiiiiiiiiie e 10
4.2. Collations NEW iN FFEiFdooiiiie it e e e e e e e e et e e e e e e e s s asnneneeeeaaaeeeeanns 12
5.1. Maximum indexable (VAR)CHAR IENGENuiiiiiii e 25
5.2. Max. indices per table, FIrehird 2.0 ... 26
6.1. NULLS placement in ordered COIUMINScooiiiiiiiiiiiiie ettt e e e 56
10.1. Comparison of [NOT] DISTINCT t0 “=" @Nd “<>"uiiiiiiiee it e e e e e eeeeeee e e e e e e 94
11,1, POSSIDIE CASTS ittt e et e et e e e R e e e e e e e e e e e e e e annes 97
11.2. RANQES fOIr EXTRACT TESUITSuvieiieiiiiit ettt ettt e e e e e e e s e e e 99
11.3. Context variables in the SYSTEM NAMESPACEuueeieiiiiiieeiiiiie s e e 103
A.1l. How TPB settings affect eXpliCit [OCKINGcvviiiiiiiiieee e 131
A.2. Max. indices per table in FIrebird 1.0 — 2.0oooiiiiiiiiiiiee e 135

Chapter 1

Introduction

This guide documents the changes made in the Firebird SQL language between InterBase 6 and Firebird 2.0.x.
It coversthe following aress:

* Reserved words

» Datatypes and subtypes

» DDL statements (Data Definition Language)

» DML statements (Data Manipulation Language)

» Transaction control statements

» PSQL statements (Procedural SQL, used in stored procedures and triggers)
» Context variables

» Operators and predicates

* Internal functions

» UDFs (User Defined Functions, also known as external functions)

To have acomplete Firebird 2.0 SQL reference, you need:

* ThelInterBase 6.0 beta SQL Reference (LangRef . pdf and/or SQLRef . ht m)
» Thisdocument

Topics not discussed in this document include:

* ODSversions

» Buglistings

 Installation and configuration

» Upgrade, migration and compatibility
» Server architectures

* AP functions

» Connection protocols

» Toolsand utilities

Consult the Release Notes for information on these subjects. Y ou can find the Release Notes and other docu-
mentation viathe Firebird Documentation Index at http://www.firebirdsgl.org/index.php?op=doc.

Versions covered

This document covers al Firebird versions up to and including 2.0.6.

http://www.firebirdsql.org/index.php?op=doc

Introduction

Authorship

Most of this document was written by the main author. The remainder (5-7%) was lifted from various Firebird
Release Notes editions, which in turn contain material from preceding sources like the Whatsnew documents.
Authors and editors of the included material are:

» J Beedey

» Helen Borrie

* Arno Brinkman

* Frank Ingermann

* Alex Peshkov

* Nickolay Samofatov
e Dmitry Yemanov

Chapter 2

Reserved words and keywords

Reserved wordsare part of the Firebird SQL language. They cannot be used asidentifiers (e.g. table or procedure
names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless you have
a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. Y ou can use them as identifiers without double-quoting.

Added since InterBase 6

Newly reserved words

The following reserved words have been added to Firebird:

BIGINT

BIT_LENGTH

BOTH

CASE

CHAR_LENGTH
CHARACTER_LENGTH
CLOSE

CROSS
CURRENT_CONNECTION
CURRENT_ROLE
CURRENT_TRANSACTION
CURRENT_USER
FETCH

LEADING

LOWER
OCTET_LENGTH

OPEN

RECREATE

RELEASE
ROW_COUNT

ROWS

SAVEPOINT

TRAILING

TRIM

USING

Reserved words and keywords

New keywords

The following words have been added to Firebird as non-reserved keywords:

BACKUP
BLOCK
COALESCE
COLLATION
COMMENT
DELETING
DIFFERENCE
IF
INSERTING
LAST
LEAVE
LOCK

NEXT
NULLIF
NULLS
RESTART
RETURNING
SCALAR _ARRAY
SEQUENCE
STATEMENT
UPDATING

Dropped since InterBase 6

No longer reserved
The following words are no longer reserved in Firebird 2.0, but are still recognized as keywords:

ACTION
CASCADE
FREE_IT
RESTRICT
ROLE
TYPE
WEEKDAY
YEARDAY

Reserved words and keywords

No longer keywords

The following are no longer keywordsin Firebird 2.0:

BASENAME

CACHE
CHECK_POINT_LEN
GROUP_COMMIT_WAIT
LOG_BUF SIZE
LOGFILE
NUM_LOG_BUFS
RAW_PARTITIONS

Possibly reserved in future versions

The following words are not reserved in Firebird 2.0, but should be avoided as identifiers because they will
likely be reserved in future versions:

ABS
BOOLEAN
FALSE
TRUE
UNKNOWN

Chapter 3

Miscellaneous
language elements

-- (single-line comment)

Availablein: DSQL, PSQL
Added in: 1.0
Changedin: 1.5

Description: A line starting with “- - (two dashes) is a comment and will be ignored. This also makes it easy
to quickly comment out aline of SQL.

In Firebird 1.5 and up, the “- - ” can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:

- atable to store our valued custoners in:
create table Custoners (

name varchar (32),

added_by varchar (24),

custno varchar(8),

pur chases i nteger -- nunber of purchases

)

Notice that the second comment is only allowed in Firebird 1.5 and up.

Shorthand casts
Availablein: DSQL, ESQL, PSQL
Added in: IB

Description: When converting a string literal to a DATE, TIME or TIMESTAMP, Firebird allows the use of a
shorthand “ C-style” cast. This feature already existed in InterBase 6, but was never properly documented.

Syntax:

dat atype 'date/tinestring'

Miscellaneous language elements

Examples:

updat e People set AgeCat = 'dd'
where BirthDate < date '1-Jan-1943'

i nsert into Appointnents

(Empl oyee_Id, dient_Id, App_date, App_tine)
val ues

(973, 8804, date 'today' + 2, tine '16:00")
new. |l astnmod = tinmestanp ' now ;

See also: CAST

CASE construct

Availablein: DSQL, PSQL
Addedin: 1.5

Description: A CASE construct returns exactly one value from anumber of possibilities. There aretwo syntactic
variants:

» Thesimple CASE, comparable to aPascal case oraCswi t ch.

e The searched CASE, which workslikeaseriesof “if ... else if ... else if” clauses.

Simple CASE
Syntax:

CASE <expr essi on>
WHEN <expl> THEN resultl
WHEN <exp2> THEN result2

[ELSE defaul tresult]
END

When this variant is used, <expr essi on> iscompared to <expl>, <exp2> etc., until amatch isfound, upon
which the corresponding result is returned. If there is no match and there is an ELSE clause, def aul t resul t
isreturned. If there is no match and no EL SE clause, NULL is returned.

Thematch isdeterminedwiththe“=" operator, soif <expr essi on>isNULL, it won't match any of the<expN>s,
not even those that are NULL.

The results don't have to be literal values. they may also be field or variable names, compound expressions,
or NULL literals.

Miscellaneous language elements

Example:

sel ect nane,
age,
case upper (sex)
when 'M then ' Mal €'
when 'F' then ' Femal e’
el se ' Unknown'
end,
religion
from peopl e

Searched CASE
Syntax:

CASE
VWHEN <bool _expl> THEN resultl
WHEN <bool _exp2> THEN result2

[ELSE def aul tresult]
END

Here, the<bool _expN>sareteststhat giveaternary booleanresult: t r ue, f al se, or NULL. Thefirst expression
evaluating to TRUE determinestheresult. If no expressionis TRUE and thereisan ELSE clause, def aul t r esul t
isreturned. If no expression is TRUE and there is no ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.

Example:

CanVot e = case
when Age >= 18 then ' Yes'
when Age < 18 then ' No'
el se ' Unsure'
end;

Chapter 4

Data types and subtypes

BIGINT data type

Added in: 1.5
Description: BIGINT is the SQL99-compliant 64-bit signed integer type. It isavailablein Dialect 3 only.
BIGINT numbers range from -2 .. 25%-1, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.
Example:
create tabl e Wol eLott aRecords (
id bigint not null primary key,

description varchar (32)

)

BLOB data type

Changedin: 2.0

Description: Several enhancements have been implemented for text BLOBS:
DML COLLATE clauses are now supported.

» Equality comparisons can be performed on the full BLOB contents.

» Character set conversions are possible when assigning aBLOB to aBLOB or astring to aBLOB.
When defining binary BLOBS, the mnemonic bi nar y can how be used instead of the integer 0.

Examples:

sel ect NameBl ob from MyTabl e
where NaneBl ob collate pt_br = 'Joao

create table MyPictures (
idint not null primry key,
title varchar(40),
descri ption varchar (200),
pi cture bl ob sub_type binary
)

Data types and subtypes

New character sets

Added in: 1.0, 1.5, 2.0

The following table lists the character sets added in Firebird.

Table4.1. Character setsnew in Firebird

Name Max bytes/ch. Languages Added in
DOS737 1 Greek 15
DOS775 1 Baltic 15
DOS858 1 = DOS850 plus € sign 15
DOS862 1 Hebrew 15
DOS864 1 Arabic 15
DOS866 1 Russian 15
DOS869 1 Modern Greek 15
1SO8859_2 1 Latin-2, Central European 1.0
1SO8859 3 1 Latin-3, Southern European 15
1SO8859 4 1 Latin-4, Northern European 15
1SO8859_5 1 Cyrillic 15
1SO8859 6 1 Arabic 15
1SO8859_7 1 Greek 15
1SO8859_8 1 Hebrew 15
1SO8859_9 1 Latin-5, Turkish 15
1SO8859 13 1 Latin-7, Baltic Rim 15
KOI8R 1 Russian 20
KOI8U 1 Ukrainian 20
uTFg) 4 Al 2.0
WIN1255 1 Hebrew 15
WIN1256 1 Arabic 15
WIN1257 1 Baltic 15
WIN1258 1 Viethamese 20

OlIn Firebird 1.5, UTF8isan alias for UNICODE_FSS. This character set has some inherent problems. In Firebird 2, UTF8 is a character set
in its own right, without the drawbacks of UNICODE_FSS.

10

Data types and subtypes

Character set NONE handling changed

Changedin: 1.5.1

Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer trandliteration errors. For more details, see the Note at
the end of the book.

11

Data types and subtypes

Addedin: 1.0, 1.5,1.5.1, 2.0

New collations

The following table lists the collations added in Firebird. The “Details’ column is based on what has been
reported inthe Release Notes and other documents. Theinformation in thiscolumnis probably incompl ete; some
collationswith an empty Detailsfield may till be caseinsensitive (ci), accent insensitive (ai) or dictionary-sorted

(dic).

Table4.2. Collationsnew in Firebird

Character set Collation Language Details Added in
1SO8859_1 ES ES CI_Al Spanish ci, ai 2.0
PT BR Brazilian Portuguese ci,a 20
1SO8859_2 Cs cz Czech 1.0
ISO_HUN Hungarian 15
1SO_PLK Polish 2.0
1SO8859_13 LT_LT Lithuanian 151
UTF8 UCS BASIC All 2.0
UNICODE All dic 2.0
WIN1250 BS BA Bosnian 20
PXW_HUN Hungarian Ci 1.0
WIN_Cz Czech Ci 20
WIN_CZ_CI_Al Czech ci,a 2.0
WIN1251 WIN1251 UA Ukrainian and Russian 15
WIN1252 WIN_PTBR Brazilian Portuguese ci,a 20
WIN1257 WIN1257_EE Estonian dic 2.0
WIN1257 LT Lithuanian dic 2.0
WIN1257 LV Latvian dic 2.0
KOI8R KOI8R_RU Russian dic 2.0
KOI8U KOI8U_UA Ukrainian dic 2.0

A note on the UTF8 collations

The UCS BASIC collation sorts in Unicode code-point order: A, B, a, b, 4.. Thisis exactly the same as UTF8
with no collation specified. UCS BASIC was added to comply with the SQL standard.

The UNICODE collation sorts using UCA (Unicode Collation Algorithm): a, A, & b, B...

12

Chapter 5

DDL statements

ALTER DATABASE

Availablein: DSQL, ESQL

Description: Alters a database's file organisation or togglesits “ safe-to-copy” state.

Syntax:
ALTER { DATABASE | SCHEMA}
[<add_sec_cl ause> [<add_sec_cl ause> ...]]
[ADD DI FFERENCE FI LE 'filepath' | DROP DI FFERENCE FI LE]
[{BEG N | END} BACKUP|
<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]
<sec_file> = FILE '"filepath'

[STARTI NG [AT [PAGE]] pagenum
[LENGTH [=] num [PAGE] §]]

The DIFFERENCE FILE and BACKUP clauses, added in Firebird 2.0, are not available in ESQL.

BEGIN BACKUP
Availablein: DSQL
Addedin: 2.0

Description: Freezes the main database file so that it can be backed up safely by filesystem means, even while
users are connected and perform operations on the data. Any mutations to the database will be written to a
separate file, the delta file. Contrary to what the syntax suggests, this statement does not initiate the backup
itself; it merely creates the conditions.

Example:

al ter database begi n backup

END BACKUP

Availablein: DSQL

13

DDL statements

Added in: 2.0

Description: Merges the delta file back into the main database file and restores the normal state of operation,
thus closing the time window during which safe backups could be made via the filesystem. (Safe backups with
ghak are still possible.)

Example:

al ter dat abase end backup

Tip

Instead of BEGIN and END BACKUP, consider using Firebird's nbackup tool: it can freeze and unfreeze the
main database file as well as make full and incremental backups. A manua for nbackup is available via the
Firebird Documentation Index.

ADD DIFFERENCE FILE
Availablein: DSQL
Added in: 2.0

Description: Presets path and name of the deltafile to which mutations are written when the database goes into
“copy-safe” mode after an ALTER DATABASE BEGIN BACKUP command.

Example:
al ter database add difference file 'C: \Firebird\ Databases\ Fruitbase.delta
Notes:

» This statement doesn't really add any file. It just overrides the default path and name for the deltafile that's
going to be created if and when the database enters copy-safe mode.

 If you provide a relative path here (or a bare filename), it will be appended to the current directory as seen
from the server. On Windows, thisis often the system directory.

 If you want to change an existing path and name, DROP the old one first and then ADD the new one.

* When not overridden, the delta file gets the same path and filename as the database itself, but with the ex-
tension. del t a

DROP DIFFERENCE FILE
Availablein: DSQL
Addedin: 2.0

Description: Removes the deltafile path and name that were previously set with ALTER DATABASE ADD DIF-
FERENCE FILE. This statement doesn't really drop afile. It only erases the name and path that would otherwise
have been used the next time around and reverts to the default behaviour.

14

http://www.firebirdsql.org/index.php?op=doc

DDL statements

Example:

al ter database drop difference file

ALTER DOMAIN

Availablein: DSQL, ESQL

Rename domain

Added in: IB

Description: Renaming of adomain is possible with the TO clause. This feature was introduced in InterBase 6,
but left out of the Language Reference.

Example:
alter donmain posint to plusint

e The TO clause can be combined with other clauses and need not come first in that case.

SET DEFAULT to any context variable
Changedin: IB

Description: Any context variable that is assignment-compatible to the domain's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

al ter donmai n DDate
set default current_date

ALTER EXTERNAL FUNCTION

Availablein: DSQL

Added in: 2.0

Description: Altersan external function's module name and/or entry point. Existing dependencies are preserved.
Syntax:

ALTER EXTERNAL FUNCTI ON funcname
<nodi fi cati on> [<nodi fi cati on>]

15

DDL statements

<modi fication> ::= ENTRY_PO NT ' new entry-point'
| MODULE _NAME ' new nodul e- nang'

Example:

alter external function Phi nodul e_name ' Newldf Li b’

ALTER PROCEDURE

Availablein: DSQL, ESQL

Default argument values

Added in: 2.0

Description: You can now provide default values for stored procedure arguments, alowing the caller to omit
one or more items from the end of the argument list.

Syntax:
ALTER PROCEDURE procnane (<inparan> [, <inparanr ...])
<inparam> ::= paramane datatype [{= | DEFAULT} val ue]

Important: If you give a parameter a default value, all parameters coming after it must also get
default values.

Example:

alter procedure TestProc
(aint, bint default 1007, s varchar(12) ="'-")

Restriction on altering used procedures

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

ALTER SEQUENCE

Availablein: DSQL

16

DDL statements

Added in: 2.0

Description: (Re)initializes a sequence or generator to the given value. SEQUENCE is the SQL-compliant term
for what InterBase and Firebird have aways caled agenerator. “ALTER SEQUENCE ... RESTART WITH" isfully
equivalent to “SET GENERATOR ... TO” and is the recommended syntax from Firebird 2.0 onward.

Syntax:
ALTER SEQUENCE sequence-nanme RESTART W TH <newal >
<newal > ::= A signed 64-bit integer val ue.
Example:

al ter sequence seqtest restart with 0

Warning

Careless use of ALTER SEQUENCE is amighty fine way of screwing up your database! Under normal circum-
stances you should only useit right after CREATE SEQUENCE, to set the initial value.

See also: CREATE SEQUENCE

ALTER TABLE

Availablein: DSQL, ESQL

ADD column: Context variables as defaults
Changedin: IB

Description: Any context variable that is assignment-compatible to the new column'’s datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter table MyData
add MyDay date default current_date

ALTER COLUMN: DROP DEFAULT
Availablein: DSQL
Addedin: 2.0

Description: Firebird 2 adds the possibility to drop a column-level default. Once the default is dropped, there
will either be no default in place or — if the column's type is a DOMAIN with a default — the domain default
will resurface.

17

DDL statements

Syntax:

ALTER TABLE t abl enamre ALTER [COLUMN] col nane DROP DEFAULT
Example:

alter table Trees alter Grth drop default

Anerrorisraised if you use DROP DEFAULT on a column that doesn't have a default or whose effective default
is domain-based.

ALTER COLUMN: SET DEFAULT
Availablein: DSQL
Added in: 2.0

Description: Firebird 2 adds the possibility to set/alter defaults on existing columns. If the column already had
adefault, the new default will replace it. Column-level defaults aways override domain-level defaults.

Syntax:
ALTER TABLE tabl ename ALTER [COLUMN] col name SET DEFAULT <def aul t >
<default> ::= literal-value | context-variable | NULL

Example:

alter table Custoners alter EnteredBy set default current_user

Tip

If you want to switch off a domain-based default on a column, set the column default to NULL.

ALTER COLUMN: POSITION now 1-based
Changedin: 1.0
Description: When changing a column's position, the engine now interprets the new position as 1-based. This
isin accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as 0-based.
Syntax:

ALTER TABLE tabl ename ALTER [COLUMN] col nanme POSI Tl ON <newpos>

<newpos> ::= an integer between 1 and the nunber of colums

Example:

alter table Stock alter Quantity position 3

18

DDL statements

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain O-
based.

CHECK accepts NULL outcome

Changedin: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLs pass and only consider the check failed if the
outcomeisf al se. For more information see under CREATE TABLE.

FOREIGN KEY without target column references PK
Changedin: IB

Description: If you create aforeign key without specifying atarget column, it will reference the primary key
of the target table. Thiswas aready the casein InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
aint not null primry key,
b int not null unique

Ik

create table beuk (
b int

Ik

alter table beuk
add constraint fk_beuk
foreign key (b) references eik;

-- beuk.b now references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access

Changedin: 2.0

Description: In Firebird 2.0 and above, adding a foreign key constraint no longer requires exclusive access to
the database.

UNIQUE constraints now allow NULLs

Changedin: 1.5

19

DDL statements

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. For a full discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLS.

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and

» optionaly define the index to be ascending or descending (the default being ascending).

Syntax:
[ADD] [CONSTRAI NT constrai nt - nane]

<constraint-type> <constraint-definition>
[USI NG [ASC] ENDI NG | DESC ENDI NG] | NDEX i ndex_namne]

For afull discussion and examples, see CREATE TABLE :: USING INDEX subclause.

ALTER TRIGGER

Availablein: DSQL, ESQL
Description: Altersan existing trigger. The table or view that the trigger belongs to cannot be changed.
Syntax:

ALTER TRI GGER narme
[ACTI VE | | NACTI VE]
[{BEFORE | AFTER} <action_list>]
[POSI TI ON numnber]
[AS <trigger_body>]

<action> [OR <action> [OR <action>]]
| NSERT | UPDATE | DELETE

<action_list>
<action>

Multi-action triggers

Added in: 1.5

Description: The ALTER TRIGGER syntax (see above) has been extended to support multi-action triggers. For
afull discussion of thisfeature, see CREATE TRIGGER :: Multi-action triggers.

Restriction on altering used triggers
Changedin: 2.0, 2.0.1

20

DDL statements

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER no longer increments table change count

Changedin: 1.0

Description: Each timeyou use CREATE, ALTER or DROP TRIGGER, InterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can still work with the datathough). A backup-restore cycleis needed to reset the counter and perform
metadata operations again.

While this obligatory cleanup after many metadata changesisin itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivatetriggersduring e.g. bulk import operations are forced to backup
and restore much more often then needed.

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the
table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, ater or drop triggers for that table.

COMMENT

Availablein: DSQL
Addedin: 2.0

Description: Allows you to enter comments for metadata objects. The comments will be stored in the various
RDB$DESCRIPTION text BLOB fieldsin the system tables, from where client applications can pick them up.

Syntax:
COMMENT ON <object> IS {"sonmetext’ | NULL}

<obj ect > .. = DATABASE
| <basic-type> objectname
| COLUMWN rel ationnane. fiel dnane
| PARAMETER procnane. par amane

<basi c-type> ::= CHARACTER SET | COLLATION | DOVAIN | EXCEPTI ON
| EXTERNAL FUNCTION | FILTER | GENERATOR | | NDEX
| PROCEDURE | ROLE | SEQUENCE | TABLE | TRIGGER | VIEW

21

DDL statements

Note

If you enter an empty comment ('), it will end up asNULL in the database.

Examples:

conment on database is 'Here''s where we keep all our custoner records.'

comment on table Metals is 'Also for alloys'

coment on columm Metals.IsAlloy is 'O = pure netal,

1 = alloy'

comment on index ix_sales is 'Set inactive during bulk inserts!’

CREATE DATABASE

Availablein: DSQL, ESQL
Syntax (partial):
CREATE { DATABASE | SCHEMA}
t iDAGE_SI ZE [=] <size>]
tbi FFERENCE FILE 'filepath']

<size> ::= 1024 | 2048 | 4096 | 8192 | 16384

16 Kb page size supported

Changedin: 1.0

Description: The maximum database page size has been raised from 8192 to 16384 bytes.

DIFFERENCE FILE parameter

Added in: 2.0

Description: For afull description of this parameter, see ALTER DATABASE :

CREATE DOMAIN

Availablein: DSQL, ESQL

: ADD DIFFERENCE FILE.

22

DDL statements

Context variables as defaults
Changedin: 1B

Description: Any context variable that is assignment-compatibl e to the new domain's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:
create domain DDate as
dat e

default current_date
not null

CREATE EXCEPTION

Availablein: DSQL, ESQL

Message length increased

Changedin: 2.0

Description: In Firebird 2.0 and higher, the maximum length of the exception message has been raised from
78 to 1021.

Example:

create excepti on Ex_TooManyManagers
"Too many nmanagers: An attenpt was nmade to create nore managers than the
maxi mum defined in the Linmts table. If you really need to create nore
managers than you have now, raise the limt first. However, please consult
your departnent''s manager before doing so. Otherw se, your decision may
be overturned later and the additional nanager(s) renoved.'

Note

The maximum exception message length depends on a certain system table field. Therefore, pre-2.0 databases
need to be backed up and restored under Firebird 2.x before they can store exception messages of up to 1021
bytes.

CREATE GENERATOR

Availablein: DSQL, ESQL

23

DDL statements

Better alternative: CREATE SEQUENCE

CREATE SEQUENCE preferred

Changedin: 2.0

Description: From Firebird 2.0 onward, the SQL-compliant CREATE SEQUENCE syntax is preferred.

Maximum number of generators significantly raised

Changedin: 1.0

Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K
pages) — 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

CREATE INDEX

Availablein: DSQL, ESQL

Description: Creates an index on atable for faster searching, sorting and/or grouping.

Syntax:
CREATE [UNI QUE] [ASC[ENDING | [DESC] ENDI NG] | NDEX indexnane
ON t abl enane
{ (<col> [, <col>...]) | COWUTED BY (expression) }
<col> ::= a colum not of type ARRAY, BLOB or COWUTED BY

UNIQUE indices now allow NULLS

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints
now allow NULLS. As far as NULLS are concerned, the rules for unique indices are exactly the same as those
for unique keys.

Indexing on expressions

Added in: 2.0

Description: Instead of one or more columns, you can now also specify asingle COMPUTED BY expression in
an index definition. Expression indices will be used in appropriate queries, provided that the expression in the

24

DDL statements

WHERE, ORDER BY or GROUPBY clause exactly matchesthe expression in the index definition. Multi-segment
expression indices are not supported, but the expression itself may involve multiple columns.

Examples:

create index ix_upnanme on persons conputed by (upper(nane));
comm t;

-- the following queries will use ix_upnane:

select * from persons order by upper(nane);

sel ect * from persons where upper(nane) starting with ' VAN ;
del ete from persons where upper (nane) ' BROMN ;

del ete from persons where upper (nane) ' BROMN and age > 65;

create descending index ix_events_yt
on MyEvents

conputed by (extract(year from StartDate) || Town);
conmi t;
-- the following query will use ix_events_yt:
select * from WEvents

order by extract(year from StartDate) || Town desc;

Maximum index key length increased

Changed in: 2.0

Description: The maximum length of index keys, which used to be fixed at 252 bytes, is now equal to 1/4 of
the page size, i.e. varying from 256 to 4096. The maximum indexable string length in bytes is 9 less than the
key length. The table below shows the indexable string lengths in characters for the various page sizes and
character sets.

Table5.1. Maximum indexable (VAR)CHAR length

Page size Maximum indexable string length per charset type

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char
1024 247 123 82 61
2048 503 251 167 125
4096 1015 507 338 253
8192 2039 1019 679 509
16384 4087 2043 1362 1021

Maximum number of indices per table increased

Changedin: 1.0.3, 1.5, 2.0

25

DDL statements

Description: The maximum number of 65 indices per table has been removed in Firebird 1.0.3, reintroduced at
the higher level of 257 in Firebird 1.5, and removed once again in Firebird 2.0.

Although there is no longer a“hard” ceiling, the number of indices creatable in practice is till limited by the
database page size and the number of columns per index, as shown in the table below.

Table5.2. Max. indices per table, Firebird 2.0

Page size Number of indices depending on column count

1 cal 2cols 3cols
1024 50 35 27
2048 101 72 56
4096 203 145 113
8192 408 291 227
16384 818 584 454

Please be aware that under normal circumstances, even 50 indices is way too many and will drastically reduce
mutation speeds. The maximum was removed to accommodate data-warehousing applications and the like,
which perform lots of bulk operations with the indices temporarily inactivated.

For afull table aso including Firebird versions 1.0-1.5, see the Notes at the end of the book.

CREATE PROCEDURE

Availablein: DSQL, ESQL
Changed in: 2.0

Description: It is now possible to provide default values for stored procedure arguments, allowing the caller to
omit one or more items from the end of the argument list.

Syntax:

CREATE PROCEDURE procnane (<inparan®» [, <inparan» ...])

<inparam> ::= paramane datatype [{= | DEFAULT} val ue]

Important: If you give a parameter a default value, all parameters coming after it must also get
default values.

Example:

create procedure TestProc
(aint, bint default 8, s varchar(12) ="'")

26

DDL statements

CREATE SEQUENCE

Availablein: DSQL
Added in: 2.0

Description: Creates a new sequence or generator. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. CREATE SEQUENCE is fully equivalent to CREATE GENERATOR
and is the recommended syntax from Firebird 2.0 onward.

Syntax:

CREATE SEQUENCE sequence- nanme
Example:

create sequence seqtest

Because internally sequences and generators are the same thing, you can freely mix the generator and sequence
syntaxes, even when operating on the same object. Thisis not recommended however.

Sequences (or generators) are always stored as 64-bit integer val ues, regardl ess of the database dial ect. However:

« |f theclient dialect is set to 1, the server passes generator values as truncated 32-bit values to the client.

» |f generator values are fed into a32-bit field or variable, al goeswell until the actual value exceedsthe 32-bit
range. At that point, adialect 3 database will raise an error whereas adialect 1 database will silently truncate
the value (which could aso lead to an error, e.g. if the receiving field has a unique key defined on it).

See also: ALTER SEQUENCE, NEXT VALUE FOR, DROP SEQUENCE

CREATE TABLE

Availablein: DSQL, ESQL

CHECK accepts NULL outcome

Changedin: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 regject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLS pass and only consider the check failed if the
outcomeisf al se.

Example:

Checks like these:

27

DDL statements

check (value > 10000)

check (Town |ike "Anst %)

check (upper(value) in("A, 'B, "X))
check (M ni mum <= Maxi nmum

al fail in pre-2.0 Firebird versionsif the value to be checked isNULL. In 2.0 and above they succeed.

Warning

This change may cause existing databases to behave differently when migrated to Firebird 2.0+. Carefully
examine your CREATE/ALTER TABLE statements and add “and XXX is not nul | ” predicates to your
CHECKSsiif they should continue to reject NULL input.

Context variables as column defaults
Changed in: 1B

Description: Any context variablethat isassignment-compatibl e to the column datatype can be used as adefaullt.
Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

create table MyData (
idint not null primry key,
record_created tinestanp default current _tinestanp,

FOREIGN KEY without target column references PK
Changedin: IB

Description: If you create aforeign key without specifying atarget column, it will reference the primary key
of the target table. Thiswas aready the case in InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
aint not null primry key,
b int not null unique

)i

create table beuk (
b int references eik

)i

-- beuk.b references eik.a, not eik.b !

28

DDL statements

FOREIGN KEY creation no longer requires exclusive access

Changedin: 2.0

Description: In Firebird 2.0 and above, creating a foreign key constraint no longer requires exclusive access
to the database.

UNIQUE constraints now allow NULLs

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is alittle complicated:

* Multiple rows having all the UK columns NULL are allowed.
» Multiple rows having a different subset of UK colums NULL are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

Oneway of summarizing thisisasfollows: In principle, all NULLs are considered distinct. But if two rows have
exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just asif they constituted the entire unique key.

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and

» optionaly define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraints are named after the constraint (thisis new behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDB$FOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

29

DDL statements

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

Syntax:

[CONSTRAI NT const rai nt - nane]
<constraint-type> <constraint-definition>
[USI NG [ASC] ENDI NG | DESC ENDI NG] | NDEX index_nane]

Examples:

Thefirst example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:

create table custoners (
custno int not null constraint pk_cust primary key using index ix_custno,

This, however:

create table custoners (
custno int not null primary key using index ix_custno,

..will giveyou aPK constraint called INTEG_7 or something similar, and an index IX_CUSTNO.
Some more examples:

create table people (
idint not null,
ni ckname varchar(12) not null,
country char(4),

constraint pk_people primary key (id),
constrai nt uk_ni cknanme uni que (nicknanme) using index ix_nick

)

alter table people
add constraint fk_people_country
foreign key (country) references countries(code)
usi ng desc index ix_people_country

I mportant

If you define a descending constraint-enforcing index on a primary or unigque key, be sure to make any foreign
keys referencing it descending as well.

CREATE TRIGGER

Availablein: DSQL, ESQL

30

DDL statements

Description: Creates atrigger, i.e. a block of PSQL code that is executed automatically before or after certain
mutations to a table or view.

Syntax:

CREATE TRI GGER nane FOR {table | view}
[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <action_list>
[POSI TI ON nunber]
AS
<trigger_body>

<action> [OR <action> [OR <action>]]
| NSERT | UPDATE | DELETE

<action_list>
<action>

Multi-action triggers

Added in: 1.5

Description: Triggers can now be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (I NSERTI NG, UPDATI NG and DELETI NG) have been added so
you can execute code conditionally within the trigger body depending on the type of operation.

Example:

create trigger biu_parts for parts
before insert or update
as
begi n
/* conditional code when inserting: */
if (inserting and new.id is null)
then new.id = gen_id(gen_partrec_id, 1);

/* conmmon code: */
new. part name_upper = upper (nhew. partnane);
end

Note

In multi-action triggers, both context variables OLD and NEW are aways available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

* If you try to read their field values, NULL is returned.
« |f you try to assign values to them, a runtime exception is thrown.

CREATE TRIGGER no longer increments table change count

Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

31

DDL statements

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

CREATE VIEW

Availablein: DSQL, ESQL

Full SELECT syntax supported

Changedin: 2.0

Description: From Firebird 2.0 onward view definitions are considered full-fledged SELECT statements. Con-
sequently, the following elements are (re)alowed in view definitions: FIRST, SKIP, ROWS, ORDER BY, PLAN
and UNION.

Note

The use of a UNION within aview is currently only supported if you supply a column list for the view (this
list isnormally optiona):

create view vpl anes (make, nodel) as
sel ect nake, nodel fromjets
uni on
sel ect nake, nmodel from props
uni on
sel ect nmake, nodel fromgliders

In Firebird 2.5, the column list will become optional also for views with UNIONS.

PLAN subclause disallowed in 1.5, reallowed in 2.0

Changedin: 1.5, 2.0

Description: Firebird versions 1.5.x forbid the use of a PLAN subclause in aview definition. From 2.0 onward
aPLAN isallowed again.

Triggers on updatable views block auto-writethrough

Changedin: 2.0

32

DDL statements

Description: In versions prior to 2.0, Firebird often did not block the automatic writethrough to the underlying
table if one or more triggers were defined on a naturally updatable view. This could cause mutations to be
performed twice unintentionally, sometimes leading to data corruption and other mishaps. Starting at Firebird
2.0, thismisbehaviour has been corrected: now if you defineatrigger on anaturally updatable view, no mutations
to the view will be automatically passed on to the table; either your trigger takes care of that, or nothing will.
Thisisin accordance with the description in the InterBase 6 Data Definition Guide under Updating views with
triggers.

Warning

Some people have devel oped code that counts on or takes advantage of the prior behaviour. Such code should
be corrected for Firebird 2.0 and higher, or mutations may not reach the table at all.

View with non-participating NOT NULL columns in base table
can be made insertable

Changedin: 2.0

Description: Any view whose base table contains one or more non-participating NOT NULL columns is read-
only by nature. It can be made updatable by the use of triggers, but even with those, all INSERT attempts into
such views used to fail because the NOT NULL constraint on the base table was checked before the view trigger
got a chance to put things right. In Firebird 2.0 and up this is no longer the case: provided the right trigger is
in place, such views are now insertable.

Example:

The view below would give validation errors for any insert attempts in Firebird 1.5 and earlier. In
Firebird 2.0 and up it isinsertable:

create table base (x int not null, y int not null);
create vi ew vbase as sel ect x from base;

set term#;
create trigger bi_base for vbase before insert
as
begi n
if (new.x is null) then new. x = 33;
insert into base val ues (new. x, 0);
end#
set term;#

Notes:

» Please notice that the problem described above only occurred for NOT NULL columns that were left outside
the view.

» Oddly enough, the problem would be gone if the base table itself had a trigger converting NULL input to
something valid. But then there was arisk that the insert would take place twice, due to the auto-writethrough
bug that has also been fixed in Firebird 2.

33

DDL statements

CREATE OR ALTER EXCEPTION

Availablein: DSQL
Addedin: 2.0

Description: If the exception does not yet exigt, it is created just as if CREATE EXCEPTION were used. If it
already exists, it is altered. Existing dependencies are preserved.

Syntax: Exactly the same as for CREATE EXCEPTION.

CREATE OR ALTER PROCEDURE

Availablein: DSQL
Addedin: 1.5

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
aready exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE PROCEDURE.

CREATE OR ALTER TRIGGER

Availablein: DSQL
Added in: 1.5

Description: If the trigger does not yet exigt, it is created just asif CREATE TRIGGER were used. If it already
exigts, it is atered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE TRIGGER.

DECLARE EXTERNAL FUNCTION

Availablein: DSQL, ESQL
Description: This statement makes an external function (UDF) known to the database.
Syntax:

DECLARE EXTERNAL FUNCTI ON | ocal name
[<arg_type_decl > [, <arg_type_decl> ...]]

DDL statements

RETURNS {<return_type_decl > | PARAMETER 1-based_pos} [FREE_IT]
ENTRY_PO NT ' function_name' MODULE _NAME 'library_nane'

<arg_type_decl > .= sqltype [BY DESCRI PTOR] | CSTRI NE | ength)
<return_type_decl > = sqgltype [BY {DESCRI PTOR VALUE}] | CSTRI NE I engt h)

Restrictions

e TheBY DESCRIPTOR passing method is not supported in ESQL .

You may choose | ocal nane freely; this is the name by which the function will be known to your database.
You may also vary thel engt h argument of CSTRING parameters (more about CSTRINGS in the note near the
end of the book).

BY DESCRIPTOR parameter passing
Availablein: DSQL
Addedin: 1.0

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLs in a meaningful way. Notice that this only works if the person who wrote the function
has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work — on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n
Availablein: DSQL, ESQL
Addedin: IB 6

Description: Inorder toreturn aBLOB, an extrainput parameter must be declared and a“RETURNSPARAMETER
n” clause added —n being the position of said parameter. This clause dates back to | nterBase 6 beta, but somehow
didn't make it into the Language Reference (it is documented in the Devel oper's Guide though).

DECLARE FILTER

Availablein: DSQL, ESQL
Changedin: 2.0
Description: Makes aBLOB filter available to the database.
Syntax:

DECLARE FILTER filternane

I NPUT_TYPE <sub_type> OUTPUT_TYPE <sub_type>
ENTRY_PO NT ' function_name' MODULE _NAME 'library_nane'

35

DDL statements

number | <menonic>

binary | text | blr | acl | ranges | summary | fornat
| transaction_description | external file_description
| user_defined

<sub_type>
<menoni c>

* InFirebird 2 and up, no two BLOB filters in a database may have the same combination of input
and output type. Declaring afilter with an already existing input-output type combination will fail.
Restoring pre-2.0 databases that contain such “duplicate” filters will also fail.

» The possibility to indicate the BLOB types with their mnemonics instead of numbers was added
in Firebird 2. The bi nar y mnemonic for subtype 0 was also added in Firebird 2. The predefined
MNemonics are case-insensitive.

Example:
declare filter Funne
i nput _type blr output_type text

entry _point 'blr2asc' nodule _nane 'nyfilterlib’

User-defined mnemonics: If you want to define mnemonics for your own BLOB subtypes, you can add them
to the RDB$TY PES system table as shown below. Once committed, the mnemonics can be used in subsequent
filter declarations.

insert into rdb$types (rdb$field name, rdb$type, rdb$type name)
val ues (' RDB$FI ELD SUB TYPE' , -33, "MD")

The value for r db$f i el d_name must always be 'RDB$SFIELD_SUB_TYPE'. If you define your mnemonicsin
all-uppercase, you can use them case-insensitively and unquoted in your filter declarations.

DROP GENERATOR

Availablein: DSQL
Addedin: 1.0
Better alternative: DROP SEQUENCE

Description: Removes a generator or sequence from the database. Its (very small) storage space will be freed
for re-use after a backup-restore cycle.

Syntax:

DROP GENERATOR gener at or - nane

From Firebird 2.0 onward, the SQL -compliant DROP SEQUENCE syntax is preferred.

DROP PROCEDURE

Availablein: DSQL, ESQL

36

DDL statements

Restriction on dropping used procedures

Changedin: 2.0, 2.0.1
Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

DROP SEQUENCE

Availablein: DSQL
Added in: 2.0
Description: Removes asequence or generator from the database. Its (very small) storage space will be freed for
re-use after abackup-restore cycle. SEQUENCE isthe SQL-compliant term for what InterBase and Firebird have
always called agenerator. DROP SEQUENCE isfully equivalent to DROP GENERATOR and is the recommended
syntax from Firebird 2.0 onward.
Syntax:

DROP SEQUENCE seguence- nane
Example:

drop sequence seqtest

See also: CREATE SEQUENCE

DROP TRIGGER

Availablein: DSQL, ESQL

Restriction on dropping used triggers

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

37

DDL statements

DROP TRIGGER no longer increments table change count
Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

RECREATE EXCEPTION

Availablein: DSQL
Addedin: 2.0

Description: Creates or recreates an exception. If an exception with the same name already exists, RECREATE
EXCEPTION will try to drop it and create a new exception. Thiswilll fail if there are existing dependencies on
the exception.

Syntax: Exactly the same as CREATE EXCEPTION.

Note

If you use RECREATE EXCEPTION on an exception that has dependent objects, you may not get an error
message until you try to commit your transaction.

RECREATE PROCEDURE

Availablein: DSQL
Addedin: 1.0

Description: Creates or recreates a stored procedure. If a procedure with the same name already exists, RECRE-
ATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if the ex-
isting SPisin use.

Syntax: Exactly the same as CREATE PROCEDURE.

Restriction on recreating used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has

38

DDL statements

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE TABLE

Availablein: DSQL
Added in: 1.0

Description: Creates or recreates atable. If atable with the same name already exists, RECREATE TABLE will
try to drop it (destroying all its datain the process!) and create a new table. RECREATE TABLE will fail if the
existing tableisin use.

Syntax: Exactly the same as CREATE TABLE.

RECREATE TRIGGER

Availablein: DSQL
Added in: 2.0

Description: Createsor recreates atrigger. If atrigger with the same name already exists, RECREATE TRIGGER
will try to drop it and create a new trigger. RECREATE TRIGGER will fail if the existing trigger isin use.

Syntax: Exactly the same as CREATE TRIGGER.

Restriction on recreating used triggers

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE VIEW

Availablein: DSQL
Added in: 1.5

Description: Creates or recreates a view. If aview with the same name already exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view isin use.

39

DDL statements

Syntax: Exactly the same as CREATE VIEW.

REVOKE ADMIN OPTION

Availablein: DSQL
Added in: 2.0

Description: Revokes apreviously granted admin option (the right to pass on a granted role to others) from the
grantee, without revoking theroleitself. Multipleroles and/or multiple grantees can be handled in one statement.

Syntax:
REVOKE ADM N OPTI ON FOR <rol e-list> FROM <grant ee-1i st>
<role-list>

<grantee-list>
<gr ant ee>

role [, role ...]
[USER] <grantee> [, [USER] <grantee> ...]
username | PUBLIC

Example:
revoke admin option for manager from john, paul, george, ringo

If auser has received the admin option from several grantors, each of those grantors must revoke it or the user
will still be able to grant the role(s) in question to others.

SET GENERATOR

Availablein: DSQL, ESQL
Better alternative: ALTER SEQUENCE

Description: (Re)initializes a generator or sequence to the given value. From Firebird 2 onward, the SQL-com-
pliant ALTER SEQUENCE syntax is preferred.

Syntax:
SET GENERATOR generator-nanme TO <new- val ue>

<newvalue> ::= A 64-bit integer.

Warning

Once a generator or sequence is up and running, you should not tamper with its value (other than retrieving
next values with GEN_ID or NEXT VALUE FOR) unless you know exactly what you are doing.

40

Chapter 6

DML statements

DELETE

Availablein: DSQL, ESQL, PSQL

Description: Deletes rows from a database table (or from one or more tables underlying a view), depending on
the WHERE and ROWS clauses.

Syntax:

DELETE
[TRANSACTI ON narre]
FROM {t abl enane | viewnanme} [[AS] alias]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort_itens]
[ROAB <> [TO <n>]]

<m», <n> ::= Any expression evaluating to an integer.

Restrictions

e The TRANSACTION directiveisonly available in ESQL.

e Inapure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

¢ ThePLAN, ORDER BY and ROWS clauses are not available in ESQL.

COLLATE subclause for text BLOB columns

Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.

Example:
del ete from MyTabl e
where NameBl ob collate pt_br = 'Joao'
ORDER BY

Availablein: DSQL, PSQL

41

DML statements

Added in: 2.0

Description: DELETE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but is aso valid without it.

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: DELETE now allows aPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aliasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
delete fromCities where nane starting 'Al ex'
delete fromCities where Cities.name starting 'Al ex'
delete fromCities C where nane starting 'Al ex'
delete fromCities C where C nanme starting 'Al ex'
No longer possible:

delete fromCities C where Cities.nane starting 'Al ex'

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limits the amount of rows deleted to a specified number or range.
Syntax:
ROA5 <n» [TO <n>]

<>, <n> ::= Any expression evaluating to an integer.

42

DML statements

With a single argument m the deletion is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

« |f m>thetota number of rows in the dataset, the entire set is deleted.
e |[f m=0, norows are deleted.
e |[fm<O0, anerrorisraised.

With two arguments mand n, the deletion is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

« |f m> thetotal number of rows in the dataset, no rows are deleted.

« |f mlieswithin the set but n doesn't, the rows from mto the end of the set are deleted.
e |[fm<lorn<1,anerrorisrased.

e |f n =m1l, norowsare deleted.

e |fn<ml, anerrorisraised.

ROWS can a'so be used with the SELECT and UPDATE statements.

EXECUTE BLOCK

Availablein: DSQL
Added in: 2.0

Description: Executes ablock of PSQL code asiif it were a stored procedure, optionally with input and output
parametersand variable declarations. Thisallowsthe user to perform “ on-the-fly” PSQL withinaDSQL context.

Syntax:

EXECUTE BLOCK [(<i nparans>)]
[RETURNS (<out parans>)]
AS
[<decl ar ati ons>]
BEA N
[<PSQL st at ement s>]
END

<i npar ans> ::= paramane type = ? [, <inparans>]
<out par ans> .= paramane type [, <outparans>]
<decl ar ati ons> = See PSQL::DECLARE for the exact syntax

Examples:

This example injects the numbers 0 through 127 and their corresponding ASCII characters into the
table ASCIITABLE:

execut e bl ock

as
declare i int = 0;
begi n
while (i < 128) do
begi n

43

DML statements

insert into AsciiTable values (:i, ascii_char(:i));
=0 + 1
end
end

The next example cal cul ates the geometric mean of two numbers and returnsiit to the user:

execute bl ock (x double precision = ?, y double precision = ?)
returns (gnean doubl e precision)
as
begi n
gnean = sqrt(x*y);
suspend;
end

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all — see the notes below.

Our last exampletakestwo integer values, snal | est and| ar gest . For al the numbersin therange
smal | est ..l ar gest , the block outputs the number itself, its square, its cube and its fourth power.

execute block (smallest int = ?, largest int = ?)
returns (nunmber int, square bigint, cube bigint, fourth bigint)
as
begi n
nunber = small est;
whil e (nunber <= largest) do

begi n
square = nunber * nunber;
cube = nunmber * square;
fourth = nunber * cube;
suspend;
nunber = nunber + 1;

end

end

Again, it depends on the client software if and how you can set the parameter values.
Notes:

» Some clients, especially those allowing the user to submit several statements at once, may require you to
surround the EXECUTE BLOCK statement with SET TERM lines, like this:

set term#
execute block (...)
as
begi n
statenent 1;
st at enent 2;
end
#
set term; #
In Firebird'sisgl client you must set the terminator to something other than “; ” before you type in the EXE-
CUTE BLOCK statement. Otherwiseisgl, being line-oriented, will try to execute the part you have entered as
soon as it encounters the first semicolon.

DML statements

» Executing a block without input parameters should be possible with every Firebird client that allows the user
to enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters
must get their values after the statement is prepared but before it is executed. Thisrequires special provisions,
which not every client application offers. (Firebird's own isgl, for one, doesn't.)

» The server only accepts question marks (“?”) as placeholders for the input values, not “: a”, “: MyPar anf
etc., or literal values. Client software may support the “: xxx” form though, which it will preprocess before
sending it to the server.

* If the block has output parameters, you must use SUSPEND or nothing will be returned.

e Output is always returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there's only one result row.

EXECUTE PROCEDURE

Availablein: DSQL, ESQL, PSQL
Changedin: 1.5

Description: Executes a stored procedure. In Firebird 1.0.x aswell asin InterBase, any input parametersfor the
SP must be supplied asliterals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5
and above, input parameters may also be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE procnane
[TRANSACTI ON transacti on]
[<initems [, <in_items ...]]
[RETURNI NG_VALUES <out _itenm» [, <out_itenr ...]]

<in_itenr = <inparan> [<nullind>]
<out _itenp = <outvar> [<nullind>]
<i npar anp = an expression evaluating to the decl ared paraneter type
<out var > = a host | anguage or PSQ. variable to receive the return val ue
<nul | i nd> = [I NDI CATOR] : host _| ang_i ntvar
Notes

e TRANSACTION clauses are not supported in PSQL .
» Expression parameters are not supported in static ESQL , and not in Firebird versions below 1.5.

e NULL indicators are only valid in ESQL code. They must be host language variables of type
integer.

e In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:"). In
PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
NEW.

Examples:

In PSQL (with optional colons):

45

DML statements

execut e procedure MakeFul | Nanme
:FirstNanme, : M ddl eName, :LastNane
returni ng_val ues : Ful | Nane;

The same call in ESQL (with obligatory colons):

exec sql
execut e procedure MakeFul | Nare
:FirstName, : M ddl eNane, :LastNane
ret urni ng_val ues : Ful | Nare;

...and in Firebird's command-line utility isgl (with literal parameters):

execut e procedure MakeFul | Nanme
"J', 'Edgar', 'Hoover';

Note: Inisgl, don't use RETURNING_VALUES. Any output values are shown automatically.
Finally, a PSQL example with expression parameters, only possiblein Firebird 1.5 and up:

execut e procedure NMakeFul | Name
"M./Ms. ' || FirstName, M ddl eNane, upper (Last Name)
returning val ues Ful | Nane;

INSERT

Availablein: DSQL, ESQL, PSQL
Changedin: 2.0

Description: Addsrowsto adatabasetable, or to one or moretables underlying aview. Field values can be given
in the VALUES clause (in which case exactly one row isinserted) or they can come from a SELECT statement.

Syntax:

| NSERT [TRANSACTI ON nane]
I NTO {tabl enane | viewnanme} [(<colums>)]
{VALUES (<val ues>) [RETURNI NG <val ues> [| NTO <vari abl es>]]
| <sel ect _expr>}

colname [, colnane ...]
val ue [, value o]
:varname [, :varname ...]
a SELECT returning a set whose colums fit the target

<col ums>
<val ues>
<vari abl es>
<sel ect _expr >

Restrictions

e The TRANSACTION directiveis only available in ESQL.

¢ The RETURNING clauseisnot availablein ESQL.

e The“INTO <vari abl es>" subclauseisonly availablein PSQL.

« Thetrigger context variables OLD and NEW must not be preceded by acolon (“: 7).
e New in 2.0: No column may appear more than once in theinsert list.

46

DML statements

RETURNING clause

Availablein: DSQL, PSQL

Added in: 2.0

Description: An“INSERT ... VALUES’ query may optionally specify aRETURNING clausein order to return the
valuesthat have actually been stored. The clause, if present, need not contain all of the insert columns and may
also contain other columns or expressions. The returned values reflect any changes that may have been made
in BEFORE tiggers, but not those in AFTER triggers.

Example:

insert into Scholars (firstnanme, |astnane, address, phone, emmil)
values ('Henry', '"Higgins', '27A Wnpole Street', '3231212', null)
returning | astnanme, fullname, id

Note: In Firebird 2.0, the RETURNING clause is only supported for “INSERT ... VALUES® queries. With “IN-
SERT ... SELECT” itisrejected, evenif it concernsasingleton select. Thislimitation will beliftedin version 2.1.

UNION allowed in feeding SELECT

Changed in: 2.0

Description: A SELECT query used in an INSERT statement may now be a UNION.
Example:

insert into Menbers (nunber, nane)
sel ect nunber, nanme from NewMenbers where Accepted = 1
uni on
sel ect nunber, nane from SuspendedMenbers where Vindicated = 1

SELECT

Availablein: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality
Changedin: 1.5
Description: Several types of mixing and nesting aggragate functions are supported since Firebird 1.5. They

will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

47

DML statements

Mixing aggregate functions from different contexts

Firebird 1.5 and up allow the use of aggregate functions from different contexts inside a single expression.

Example:
sel ect
r.rdb$rel ati on_nanme as "Tabl e nane",
(select max(i.rdb$statistics) || ' (" || count(*) |] ")

fromrdb$relation fields rf
where rf.rdb$rel ati on_nanme = r.rdb$rel ati on_nane
) as "Max. IndexSel (# fields)"
from
rdb$rel ations r
join rdb$indices i on (i.rdb$relation_nane = r.rdb$rel ati on_nane)
group by r.rdb$rel ati on_nane
having max(i.rdb$statistics) >0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on atable, followed by the table'sfield count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contextsin asingle expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

SinceFirebird 1.5t is possible to use aggregate functions and/or expressions contained in the GROUPBY clause
inside a subquery.

Examples:

Thisquery returnseach table's|D and field count. Thesubquery referstof | ds. r db$r el ati on_nane,
which isaso a GROUPBY item:

sel ect
flds.rdb$rel ati on_nane as "Rel ati on nane",
(select rels.rdb$relation_id
fromrdb$rel ations rels
where rel s.rdb$rel ati on_nanme = flds.rdb$rel ati on_nane
) as "ID',
count(*) as "Fields"
fromrdb$relation fields flds
group by flds.rdb$rel ati on_nane

The next query showsthe last field from each table and and its 1-based position. It uses the aggregate
function MAX in asubquery.

sel ect
flds. rdb$rel ati on_nane as "Tabl e"

48

DML statements

(select flds2.rdb$field _nane
fromrdb$relation_fields flds2
wher e
flds2.rdb$rel ati on_nanme = flds.rdb$rel ati on_name
and flds2.rdb$field_position = max(flds.rdb$fiel d_position)
) as "Last field",
max(fl ds.rdb$fiel d_position) + 1 as "Last fiel dpos"
fromrdb$relation_fields flds
group by 1

The subquery also contains the GROUPBY itemf | ds. r db$r el ati on_nane, but that's not imme-
diately obvious because in this case the GROUP BY clause uses the column number.

Subqueries inside aggregate functions
Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.
Example:

sel ect
r.rdb$rel ati on_nanme as "Tabl e",
sun((select count(*)
fromrdb$relation_fields rf
where rf.rdb$rel ation_nanme = r.rdb$rel ati on_nane)
) as "Ind. x Fields"
from
rdb$rel ations r
j oin rdb$indi ces
on (i.rdb$relation_nanme = r.rdb$rel ati on_nane)
group by
r.rdb$rel ati on_nane

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from a lower
SQL context. Direct nesting of aggregate function calls, asin “COUNT(MAX(price))", is till forbidden and
punishable by exception.

Example: See under Subqueries inside aggregate functions, where COUNTY() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can be included inthe HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in a HAVING or ORDER BY item contains
acolumn name, it isonly accepted if one of the following is true:

* The column name appearsin an aggregate function call (e.g. “HAVI NG MAX(SALARY) > 10000").

» The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list (by name
or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose there's a
non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”, “STR || 1"

49

DML statements

or “SUBSTRING(STR FROM 4 FOR 2)" in the HAVING clause — even if these expressions don't appear as such
in the SELECT or GROUPBY list.

COLLATE subclause for text BLOB columns

Addedin: 2.0
Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

sel ect NameBl ob from MyTabl e
where NameBl ob collate pt_br = 'Joéo

Derived tables (*SELECT FROM SELECT")

Added in: 2.0

Description: A derived tableistheresult set of aSELECT query, used in an outer SELECT asif it werean ordinary
table. In other words, it is a subquery in the FROM clause.

Syntax:

sel ect - query
(sel)
[[AS] derived-tabl e-alias]
[(<derived-col um-aliases>)]

<derived-colum-aliases> := colum-alias [, colum-alias ...]
Examples:

The derived table in the query below (shown in boldface) contains al the relation names in the
database followed by their field count. The outer SELECT produces, for each existing field count, the
number of relations having that field count.

sel ect fieldcount,
count(relation) as numtabl es
from (select r.rdb$relation_name as relation,
count (*) as fiel dcount
from rdb$relations r
join rdb$relation_fields rf
on rf.rdb$rel ati on_nanme = r.rdb$rel ati on_nane
group by relation)
group by fiel dcount

A trivial example demonstrating the use of a derived table alias and column aliases list (both are
optional):

sel ect dbi nfo. descr,
dbi nf 0. def _charset
from (select * fromrdb$database) dbinfo
(descr, rel _id, sec_class, def_charset)

50

DML statements

Notes:
» Derived tables can be nested.

* Derived tables can be unions and can be used in unions. They can contain aggregate functions, subselects and
joins, and can themselves be used in aggregate functions, subselects and joins. They can aso be or contain
gueries on selectable stored procedures. They can have WHERE, ORDER BY and GROUP BY clauses, FIRST,
SKIP or ROWS directives, €etc. €etc.

» Every columninaderived table must haveaname. If it doesn't have one by nature (e.g. becauseit's aconstant)
it must either be given an diasin the usual way, or a column aliases list must be added to the derived table
specification.

e The column aliases list is optional, but if it is used it must be complete. That is: it must contain an alias for
every column in the derived table.

» The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subquery, then no join order can be made.

FIRST and SKIP
Availablein: DSQL, PSQL
Added in: 1.0

Changedin: 1.5

Better alternative: ROWS

Description: FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return outpuit.

Tip

In Firebird 2.0 and up, use the SQL-compliant ROWS syntax instead.

Syntax:
SELECT [FI RST (<int-expr>)] [SKIP (<int-expr>)] <colums> FROM ...

<i nt - expr > = Any expression evaluating to an integer.
<col ums> ::= The usual output colum specifications.

Note

If <i nt - expr > isan integer literal or aquery parameter, the”() ” may be omitted. Subselects on
the other hand require an extra pair of parentheses.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmost rows of the output
set are discarded and the first mrows of the remainder are returned.

SKIP O is alowed, but of course rather pointless. FIRST 0 is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always result in an error.

51

DML statements

If a SKIP lands past the end of the dataset, an empty set isreturned. If the number of rows in the dataset (or the
remainder after a SKIP) isless than the value given after FIRST, that smaller number of rowsis returned. These
are valid results, not error situations.

Examples:
The following query will return the first 10 names from the Peopl e table:

select first 10 id, nane from Peopl e
order by nane asc

The following query will return everything but the first 10 names:

select skip 10 id, name from Peopl e
order by nane asc

And this one returns the last 10 rows. Notice the double parentheses:
sel ect skip ((select count(*) - 10 from People))

id, nane from People
order by nane asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, nanme from People
order by nane asc

Two Gotchaswith FIRST in subselects
e This
del ete from WTable where IDin (select first 10 ID from MyTabl e)

will deleteall of therowsin thetable. Ouch! The sub-select is evaluating each 10 candidate rowsfor deletion,
deleting them, dipping forward 10 more... ad infinitum, until there are no rows |eft. Beware! Or better: use
the ROWS syntax, available since Firebird 2.0.

e Querieslike:
...wWhere F1 in (select first 5 F2 from Tabl e2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EXISTS predicate shown below. It's obviousthat in this case FIRST N doesn't make any sense:

... Where exists
(select first 5 F2 from Tabl e2
where Tabl e2. F2 = Tabl el. F1
order by 1 desc)

GROUP BY

Description: GROUP BY merges rows that have the same combination of values and/or NULLS in the item list
into a single row. Any aggregate functions in the select list are applied to each group individually instead of
to the dataset as awhole.

52

DML statements

Syntax:
SELECT ... FROM...
GROUP BY <itemr [, <itenmr ...]
<itemr ::= colum-nanme [COLLATE coll ati on-nane]

| colum-alias
| col um-position
| expression

* Only non-negative integer literals will be interpreted as column positions. If they are outside the
rangefrom 1 to the number of columns, an error israised. Integer valuesresulting from expressions
or parameter substitutions are simply invariables and will be used as such in the grouping. They
will have no effect though, as their value is the same for each row.

* A GROUP BY item cannot be a reference to an aggregate function (including one that is buried
inside an expression) from the same context.

» Theselect list may not contain expressions that can have different values within agroup. To avoid
this, the rule of thumb isto include each non-aggregate item from the select list in the GROUPBY
list (whether by copying, aias or position).

Note: If you group by a column position, the expression at that position is copied internally from the select list.
If it concerns a subquery, that subquery will be executed at |east twice.

Grouping by alias, position and expressions
Changedin: 1.0, 1.5, 2.0

Description: In addition to column names, Firebird 2 allows column aliases, column positions and arbitrary
valid expressions as GROUPBY items.

Examples:

These three queries all achieve the same resuilt:

sel ect strlen(lastnane) as | en_nanme, count(*)
from peopl e
group by | en_name

sel ect strlen(lastnane) as | en_name, count(*)
from peopl e
group by 1

select strlen(lastnane) as |en_nane, count(*)
from peopl e
group by strlen(l astnane)

History: Grouping by UDF resultswas added in Firebird 1. Grouping by column positions, CASE outcomes and
alimited number of internal functionsin Firebird 1.5. Firebird 2 added column aliases and expressionsin general
asvalid GROUPBY items (“expressionsin general” absorbing the UDF, CASE and interna functions lot).

53

DML statements

HAVING: Stricter rules

Changedin: 1.5

Description: See Aggregate statements. Stricter HAVING and ORDER BY.

JOIN

Ambiguous field names rejected
Changedin: 1.0

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

sel ect buses. nanme, garages. hane
from buses join garages on buses.garage_id = garage.id
where name = ' Phideaux |11’

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
namesin JOIN statements. Dialect 1 gives awarning but will execute the query anyway.

CROSS JOIN
Added in: 2.0

Description: Firebird 2.0 supports CROSS JOIN, which performs afull set multiplication on the tablesinvolved.
Previously you had to achieve this by joining on a tautology (a condition that is always true) or by using the
comma syntax, now deprecated.

Syntax:

SELECT ...
FROM tabl el CROSS JA N table2
[WHERE . . .]

Note: If you use CROSS JOIN, you can't use ON.
Example:

select * from Men cross join Wnen
order by Men.age, Wnen. age

-- old syntax:
- - select * fromMen join Wonen on 1 =1
-- order by Men. age, Wonen. age

-- conmma synt ax:
-- select * from Men, Wonen
-- order by Men. age, Wonen. age

DML statements

ORDER BY

Syntax:
SELECT ... FROM...
d?bER BY <ordering-itenm> [, <ordering-item> ...]
<ordering-item> ::= {col-name | col-alias | col-position | expression}
[COLLATE col | ati on- nane]

[ASCI ENDI NG| | DESC] ENDI NG]
[NULLS {FI RST| LAST}]

Order by colum alias
Addedin: 2.0
Description: Firebird 2.0 and above support ordering by column alias.
Example:
sel ect rdb$character_set_id as charset_id,
rdb$col lation_id as coll _id,
rdb$col | ati on_nane as name

fromrdb$col | ati ons
order by charset id, coll _id

Ordering by column position causes * expansion
Changed in: 2.0

Description: If you order by column position in a “SELECT *” query, the engine will now expand the * to
determine the sort column(s).

Examples:
The following wasn't possible in pre-2.0 versions:

select * fromrdb$coll ations
order by 3, 2

The following would sort the output set on Fi | ns. Di r ect or in previous versions. In Firebird 2
and up, it will sort on the second column of Books:

sel ect Books.*, Filns.Director from Books, Filns
order by 2

Ordering by expressions

Added in: 1.5

55

DML statements

Description: Firebird 1.5 introduced the possibility to use expressions as ordering items. Please note that ex-
pressions consisting of a single non-negative whole number will be interpreted as column positions and cause
an exception if they're not in the range from 1 to the number of columns.

Example:

select x, y, note fromPairs
order by x+y desc

Note

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedure is
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

Notes:

» Thenumber of function or procedure invocations resulting from a sort based on a UDF or stored procedureis
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

» Only non-negative whole number literalsareinterpreted as column positions. A whole number resulting from
an expression evaluation or parameter substitution is seen as an integer invariable and will lead to a dummy
sort, sinceits value is the same for each row.

NULLS placement
Changedin: 1.5, 2.0

Description: Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST directives to specify
where NULLS appear in the sorted column. Firebird 2.0 has changed the default placement of NULLS.

Unless overridden by NULLS FIRST or NULLS LAST, NULLsin ordered columns are placed as follows:
» InFirebird 1.0 and 1.5: at the end of the sort, regardless whether the order is ascending or descending.
» InFirebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See also the table below for an overview of the different versions.

Table6.1. NULLs placement in ordered columns

Ordering NULLS placement
Firebird 1 Firebird 1.5 Firebird 2
order by Field [asc] bottom bottom top
order by Field desc bottom bottom bottom
order by Field [asc | desc] nulls first — top top
order by Field [asc | desc] nulls last — bottom bottom

56

DML statements

Notes

» Pre-existing databases may need a backup-restore cycle before they show the correct NULL ordering be-
haviour under Firebird 2.0 and up.

* Noindex will be used on columns for which a non-default NULLS placement is chosen. In Firebird 1.5, that
is the case with NULLS FIRST. In 2.0 and higher, with NULLS LAST on ascending and NULLS FIRST on
descending sorts.

Examples:

select * from nsg
order by process_tinme desc nulls first

sel ect * from docunent
order by strlen(description) desc
rows 10

sel ect doc_nunber, doc_date from payorder

uni on all

sel ect doc_nunber, doc_date from budgorder
order by 2 desc nulls last, 1 asc nulls first

Stricter ordering rules with aggregate statements
Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

PLAN
Availablein: DSQL, ESQL, PSQL

Description: Specifies auser plan for the dataretrieval, overriding the plan that the optimizer would have gen-
erated automatically.

Syntax:
PLAN <pl an_expr >
<pl an_expr > o= [JON| [SORT] [MERGE]] (<plan_iten» [, <plan_itenr ...])

<basic_item> | <plan_expr>

<plan_itenr

<basic_itenmr {table | alias}
{ NATURAL
| I NDEX (<indexlist>))

| ORDER index [INDEX (<indexlist>)]}

<i ndexl i st > ::= index [, index ...]

57

DML statements

Handling of user PLANs improved

Changedin: 2.0

Description: Firbird 2 has implemented the following improvements in the handling of user-specified PLANS:
» Planfragmentsare propagated to nested levels of joins, enabling manual optimization of complex outer joins.
» User-supplied planswill be checked for correctnessin outer joins.

» Short-circuit optimization for user-supplied plans has been added.

» A user-specified access path can be supplied for any SELECT-based statement or clause.

ORDER with INDEX

Changedin: 2.0

Description: A single plan item can nhow contain both an ORDER and an INDEX directive (in that order).
Example:

plan (MyTabl e order ix_myfield index (ix_this, ix_that))

PLAN must include all tables
Changedin: 2.0

Description: In Firebird 2 and up, a PLAN clause must handle al the tables in the query. Previous versions
sometimes accepted incomplete plans, but thisis no longer the case.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aliasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:

sel ect pears from Fruit
sel ect Fruit.pears fromFruit
sel ect pears fromFruit F

select F.pears fromFruit F

58

DML statements

No longer possible:

select Fruit.pears fromFruit F

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limitsthe amount of rows returned by the SELECT statement to a specified number or range.
Syntax:
With asingle SELECT:
SELECT <col ums> FROM . ..
[WHERE . . .]
[ORDER BY ...]

RONS <> [TO <n>]

<col umms>
<nP, <n>

The usual output col um specifications.
Any expression evaluating to an integer.

With aUNION:
SELECT [FIRST p] [SKIP g] <colums> FROM ...
[WHERE . . .]
[ORDER BY ...]
UNI ON [ALL | DI STI NCT]
SELECT [FIRST r] [SKIP s] <colums> FROM ...
[WHERE . . .]
[ORDER BY ...]

ROWE <n» [TO <n>]

With asingle argument m the first mrows of the dataset are returned.

Points to note:

* |f m>thetota number of rows in the dataset, the entire set is returned.

e |f m=0, an empty set isreturned.

e |[fm<O0, anerrorisraised.

With two arguments mand n, rows mto n of the dataset are returned, inclusively. Row numbers are 1-based.

Points to note when using two arguments:

» If m> the total number of rowsin the dataset, an empty set is returned.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are returned.
e Ifm<lorn<1, anerrorisraised.

e If n =ml, an empty set isreturned.

59

DML statements

e |If n<ml, an error israised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP without
FIRST, which returnsthe entire remainder of the set after skipping agiven number of rows. (Y ou can often “fake
it” though, by supplying a second argument that you know to be bigger than the number of rowsin the set.)

Y ou cannot use ROWS together with FIRST and/or SKIP in asingle SELECT statement, but isit valid to use one
form in the top-level statement and the other in subselects, or to use the two syntaxes in different subselects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed after
the last SELECT. If you want to limit the output of one or more individual SELECTs within the UNION, you
have two options: either use FIRST/SKIP on those SELECT statements, or convert them to derived tables with
ROWS clauses.

ROWS can aso be used with the UPDATE and DELETE statements.

UNION

Availablein: DSQL, ESQL, PSQL

UNIONS in subqueries
Changedin: 2.0

Description: UNIONs are now alowed in subqueries. This applies not only to column-level subgueries in a
SELECT list, but also to subqueries in ANY|SOME, ALL and IN predicates, as well as the optional SELECT
expression that feeds an INSERT.

Example:

sel ect nanme, phone, hourly rate from cl owns
where hourly rate < all
(select hourly_rate fromjugglers
uni on
sel ect hourly_rate from acrobats)
order by hourly_ rate

UNION DISTINCT
Added in: 2.0

Description: Y ou can now usetheoptional DISTINCT keyword when defining aUNION. Thiswill show duplicate
rows only once instead of every time they occur in one of the tables. Since DISTINCT, being the opposite of
ALL, isthe default mode anyway, this doesn't add any new functionality.

Syntax:

SELECT (...) FROM(...)
UNI ON [DI STINCT | ALL]
SELECT (...) FROM(...)

60

DML statements

Example:

sel ect nane, phone fromtranslators
uni on distinct
sel ect name, phone from proofreaders

Trandators who also work as proofreaders (a not uncommon combination) will show up only once
in the result set, provided their phone number is the same in both tables. The same result would have
been obtained without DISTINCT. With ALL, they would appear twice.

WITH LOCK
Availablein: DSQL, PSQL
Addedin: 1.5

Description: WITH LOCK providesalimited explicit pessimisticlocking capability for cautious usein conditions
where the affected row set is:

a extremely smal (idealy, asingleton), and

b. precisely controlled by the application code.

Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

It isessential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:
SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]
W TH LOCK

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

WITH LOCK can only be used with atop-level, single-table SELECT statement. It is not available:

* inasubquery specification;

» forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
* withaview;

» with the output of a selectable stored procedure;

» with an external table.

61

DML statements

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” isincluded in the Notes. It is a must-read
for everybody who considers using this feature.

UPDATE

Availablein: DSQL, ESQL, PSQL

Description: Changes valuesin atable (or in one or more tables underlying a view). The columns affected are
specified in the SET clause; the rows affected may be limited by the WHERE and ROWS clauses.

Syntax:

UPDATE [TRANSACTI ON nare] {tablenane | viewnane} [[AS] alias]
SET col = newal [, col = newal ...]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort_itens]
[ROAS <> [TO <n>]]

<k, <n> ::= Any expression evaluating to an integer.

Restrictions

e The TRANSACTION directiveis only available in ESQL.

e |napure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

e ThePLAN, ORDER BY and ROWS clauses are not available in ESQL.

¢ New in 2.0: No column may be SET more than once in the same UPDATE statement.

COLLATE subclause for text BLOB columns

Added in: 2.0
Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

update MyTabl e

set NameBl obSp = ' Juan’
wher e NameBl obBr collate pt_br = "'Joao'

ORDER BY
Availablein: DSQL, PSQL
Addedin: 2.0

Description: UPDATE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but isaso valid without it.

62

DML statements

PLAN
Availablein: DSQL, PSQL
Addedin: 2.0

Description: UPDATE now allows aPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
update Fruit set soort = 'pisang' where ...
update Fruit set Fruit.soort = 'pisang' where ...
update Fruit F set soort = 'pisang' where ..
update Fruit F set F.soort = 'pisang where ..

No longer possible:

update Fruit F set Fruit.soort = 'pisang' where ...

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limitsthe amount of rows updated to a specified number or range.
Syntax:
ROAS <n» [TO <n>]
<k, <n> ::= Any expression evaluating to an integer.

With a single argument m the update is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

63

DML statements

Points to note:

» If m> the total number of rows in the dataset, the entire set is updated.
* If m=0, no rows are updated.
* If m<O, anerrorisraised.

With two arguments mand n, the update is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

* If m> thetotal number of rows in the dataset, no rows are updated.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are updated.
e |[fm<lorn<1,anerrorisraised.

e If n =m1, no rows are updated.

e |fn<ml, anerrorisraised.

ROWS can aso be used with the SELECT and DELETE statements.

Chapter 7

Transaction
control statements

RELEASE SAVEPOINT

Availablein: DSQL
Addedin: 1.5

Description: Deletes a named savepoint, freeing up all the resourcesit binds.

Syntax:

RELEASE SAVEPO NT name [ONLY]

Unless ONLY is added, all the savepoints created after the named savepoint are released as well.

For afull discussion of savepoints, see SAVEPOINT.

ROLLBACK
Availablein: DSQL, ESQL

Syntax:

ROLLBACK [WORK]

[TRANSACTI ON tr_nane]

[RETAI N [SNAPSHOT] | TO [SAVEPO NT] sp_nanme | RELEASE]
* The TRANSACTION clauseisonly availablein ESQL.
» TheRELEASE clauseisonly availablein ESQL, and is discouraged.

e RETAIN and TO are only availablein DSQL.

ROLLBACK RETAIN

Availablein: DSQL

65

Transaction control statements

Added in: 2.0

Description: Undoes al the database changes carried out in the transaction without closing it. User variables
set with RDB$SET_CONTEXT() remain unchanged.

Syntax:

ROLLBACK [WORK] RETAI N [SNAPSHOT]

Note

The functionality provided by ROLLBACK RETAIN has been present since InterBase 6, but the only way to
access it wasthrough the API call i sc_r ol | back_r et ai ni ng().

ROLLBACK TO SAVEPOINT
Availablein: DSQL
Addedin: 1.5
Description: Undoes everything that happened in a transaction since the creation of the savepoint.
Syntax:
ROLLBACK [WORK] TO [SAVEPO NT] nane
ROLLBACK TO SAVEPOINT performs the following operations:

» All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, asisthe save-
point itself. This means that you can rollback to the same savepoint several times.

» All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
reguested accessto rowslocked after the savepoint must continueto wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rowsimmediately.

For afull discussion of savepoints, see SAVEPOINT.

SAVEPOINT

Availablein: DSQL
Added in: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “nested transactions”.

66

Transaction control statements

Syntax:
SAVEPO NT <nane>

<npanme> ::= a user-chosen identifier, unique within the transaction

If the supplied name exists already within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:
ROLLBACK [WORK] TO [SAVEPQO NT] nane

ROLLBACK TO SAVEPOINT performs the following operations:

 All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, asisthe save-
point itself. This means that you can rollback to the same savepoint several times.

» All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested accessto rowslocked after the savepoint must continueto wait until the transaction iscommitted or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especialy if you update the same
records multiple timesin one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can del ete the savepoint and free the resources it uses with:

RELEASE SAVEPO NT name [ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
arereleased as well.

Example DSQL session using a savepoint:

create table test (id integer);
conmit;

insert into test values (1);
conmit;

insert into test values (2);
savepoint y;

del ete fromtest;

select * fromtest; -- returns no rows
rol |l back to vy;

select * fromtest; -- returns two rows
rol | back;

select * fromtest; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue aROLLBACK statement, all changes performed in this transaction are backed out via atransac-

67

Transaction control statements

tion-level savepoint and the transaction is then committed. Thislogic reduces the amount of garbage collection
caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (104—106 records
affected), the engine rel eases the transaction-level savepoint and uses the TIP mechanism to roll back the trans-
action if needed.

Tip

If you expect the volume of changesin your transaction to belarge, you can specify the NO AUTO UNDO option
in your SET TRANSACTION statement, or —if you usethe APl —set the TPB flagi sc_t pb_no_aut o_undo.
Both prevent the creation of the transaction-level savepoint.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptions in PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

« undo all actionsin a BEGIN...END block where an exception occurs,

» undo al actions performed by the SP/trigger (or, in the case of a selectable SP, all actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is also bounded by automatic system savepaints.

SET TRANSACTION

Availablein: DSQL, ESQL

Changedin: 2.0

Description: Starts and optionally configures a transaction.
Syntax:

SET TRANSACTI ON
[NAME hostvar]
[READ VRI TE | READ ONLY]
[[1SOLATION LEVEL] { SNAPSHOT [TABLE STABI LI TY]
| READ COW TTED [[NO RECORD _VERSI ON] }]
[WAIT | NO WAIT]
[LOCK TI MEQUT seconds]
[NO AUTO UNDQ
[1 GNORE LI MBQ
[RESERVI NG <t abl es> | USI NG <dbhandl es>]

<t abl es> ::= <table_spec> [, <table_spec> ...]

<tabl e_spec> ::= tablenane [, tablenane ...]

68

Transaction control statements

[FOR [SHARED | PROTECTED] {READ | WRI TE}]

<dbhandl es> ::= dbhandle [, dbhandle ...]

» TheNAME optionisonly availablein ESQL. It must befollowed by apreviously declared and ini-
tialized host-language variable. Without NAME, SET TRANSACTION applies to the default trans-
action.

* The USING optionisaso ESQL-only. It limits the databases that the transaction can accessto the
ones mentioned here.

* IGNORE LIMBO and LOCK TIMEOUT are not supported in ESQL.
e LOCK TIMEOUT and NO WAIT are mutually exclusive.

» Default option settings are: READ WRITE + WAIT + SNAPSHOT.

IGNORE LIMBO
Availablein: DSQL
Added in: 2.0

Description: With this option, records created by limbo transactions are ignored. Transactions are in limbo if
the second stage of a two-phase commit fails.

Note

IGNORE LIMBO surfacesthei sc_t pb_i gnore_| i mbho TPB parameter, availablein the API since InterBase
times and mainly used by dfix.

LOCK TIMEOUT
Availablein: DSQL
Addedin: 2.0

Description: This option is only available for WAIT transactions. It takes a non-negative integer as argument,
prescribing the maximum number of seconds that the transaction should wait when alock conflict occurs. If the
the waiting time has passed and the lock has still not been released, an error is generated.

Note

Thisis abrand new feature in Firebird 2. Its APl equivalent isthe new i sc_t pb_I ock_t i neout TPB pa-
rameter.

NO AUTO UNDO

Availablein: DSQL, ESQL

69

Transaction control statements

Added in: 2.0

Description: With NO AUTO UNDO, the transaction refrains from keeping the log that is normally used to undo
changesin the event of arollback. Should the transaction be rolled back after all, other transactions will pick up
the garbage (eventually). This option can be useful for massive insertions that don't need to be rolled back. For
transactions that don't perform any mutations, NO AUTO UNDO makes no difference at all.

Note

NOAUTO UNDO isthe SQL equivalent of thei sc_t pb_no_aut o_undo TPB parameter, availablein the AP
since InterBase times.

70

Chapter 8

PSQL statements

PSQL — Procedural SQL —isthe Firebird stored procedure and trigger language.

BEGIN ... END blocks may be empty

Availablein: PSQL
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:
create trigger bi_atable for atable
active before insert position O
as

begi n
end

BREAK

Availablein: PSQL
Addedin: 1.0
Better alternative: LEAVE

Description: BREAK immediately terminates aWHILE or FOR loop and continues with the first statement after
the loop.

Example:

create procedure sel phrase(numint)
returns (phrase varchar(40))

as
begi n
for select Phr from Phrases into phrase do
begi n
if (num< 1) then break
suspend;

num = num- 1;

71

PSQL statements

end
phrase = '*** Ready! ***';
suspend;

end

This selectable SP returns at most numrows from the table Phrases. The variable numis decremented
in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues at theline“phrase = ' *** Ready! ***';”.

Important

Since Firebird 1.5, use of the SQL-99 compliant alternative LEAVE is preferred.

CLOSE cursor

Availablein: PSQL
Added in: 2.0

Description: Closes an open cursor. Any cursors still open when the trigger, stored procedure or EXECUTE
BLOCK statement they belong to is exited, will be closed automatically.

Syntax:
CLGSE cur sor nane;

Example: See DECLARE ... CURSOR.

DECLARE

Availablein: PSQL

DECLARE ... CURSOR

Added in: 2.0

Description: Declares anamed cursor and bindsit to itsown SELECT statement. The cursor can later be opened,
used to walk the result set, and closed again. Positioned updates and del etes (using WHERE CURRENT OF) are
also supported. PSQL cursors are available in triggers, stored procedures and EXECUTE BLOCK statements.

Syntax:

DECLARE [VARI ABLE] cursornane CURSCOR FOR (sel ect-statenent);

72

PSQL statements

Example:

execut e bl ock
returns (relation char(31), sysflag int)
as
decl are cur cursor for
(sel ect rdb$rel ati on_nanme, rdb$systemflag fromrdb$rel ations);
begi n
open cur;
while (1=1) do
begi n
fetch cur into relation, sysflag;
if (row_count = 0) then | eave;
suspend;
end
cl ose cur;
end

Notes:

* A “FOR UPDATE”" clauseis alowed in the SELECT statement, but not required for a positioned update or
delete to succeed.

» Make surethat declared cursor names do not clash with any names defined later on in AS CURSOR clauses.

» |f you need a cursor to loop through an output set, it is almost always easier — and |less error-prone — to use
a FOR SELECT statement with an AS CURSOR clause. Declared cursors must be explicitly opened, fetched
from, and closed. Furthermore, you need to check r ow _count after every fetch and break out of the loop
if it iszero. AS CURSOR takes care of all of that automagically. However, declared cursors give you more
control over the sequence of events, and alow you to operate several cursorsin parallel.

e TheSELECT statement may contain named SQL parameters, likein“sel ect nanme || :sfx fromnanes
wher e nurmber = : nunf. Each parameter must be a PSQL variable that has been declared previously (this
includes any in/out params of the PSQL module). When the cursor is opened, the parameter is assigned the
current value of the variable.

o Caution! If the value of a PSQL variable that is used in the SELECT statement changes during execution of
the loop, the statement may (but will not always) be re-evaluated for the remaining rows. In general, this
situation should be avoided. If you really need this behaviour, test your code thoroughly and make sure you
know how variable changes affect the outcome. Also be advised that the behaviour may depend on the query
plan, in particular the use of indices. Asit is currently not strictly defined, it may change in some future
version of Firebird.

See also: OPEN cursor, FETCH cursor, CLOSE cursor

DECLARE [VARIABLE] with initialization
Changedin: 1.5

Description: InFirebird 1.5 and above, aPSQL local variable can beinitialized upon declaration. TheVARIABLE
keyword has become optional .

Syntax:

DECLARE [VARI ABLE] varnane datatype [{= | DEFAULT} val ue];

73

PSQL statements

Example:

create procedure proccie (a int)
returns (b int)
as
declare p int;
declare q int = 8;
declare r int default 9;
declare variable s int;
declare variable t int = 10;
declare variable u int default 11;
begi n
<intelligent code here>
end

EXCEPTION

Availablein: PSQL
Changedin: 1.5

Description: The EXCEPTION syntax has been extended so that the user can
a. Rethrow acaught exception or error.
b. Provide a custom message when throwing a user-defined exception.

Syntax:
EXCEPTI ON [<excepti on- name> [cust om nmessage] |

<exception-name> ::= A previously defined exception nane

Rethrowing a caught exception

Within the exception handling block only, you can rethrow the caught exception or error by giving the EXCEP-
TION command without any arguments. Outside such blocks, this “bare” command has no effect.

Example
when any do
begi n
insert into error_log (...) values (sqlcode, ...);

exception;
end

This example first logs some information about the exception or error, and then rethrows it.

Providing a custom error message

Firebird 1.5 and up alow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

74

PSQL statements

Examples:
exception ex_data_error 'You just |ost sone valuable data';

exception ex_bad_type 'Wong type for record with id "' || new.id;

Note

Starting at version 2.0, the maximum message length is 1021 instead of 78 characters.

EXECUTE PROCEDURE

Availablein: DSQL, PSQL
Changedin: 1.5
Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored

procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

EXECUTE STATEMENT

Availablein: PSQL
Addedin: 1.5

Description: EXECUTE STATEMENT takes asingle string argument and executesit asif it had been submitted as
aDSQL statement. The exact syntax depends on the number of datarowsthat the supplied statement may return.

No data returned
Thisform is used with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.
Syntax:
EXECUTE STATEMENT <st at enent >
<statement> ::= An SQ. statenent returning no data.
Example:

create procedure Dynani cSanpl eOne (ProcNane varchar (100))
as

decl are variable stnt varchar(1024);

decl are variable paramint;

75

PSQL statements

begi n
sel ect min(SoneField) from SoneTabl e i nto param
stnt = 'execute procedure '
| | ProcNane
[
| | cast(param as varchar(20))
)
execute statement stnt;
end
Warning

Although this form of EXECUTE STATEMENT can aso be used with all kinds of DDL strings (except CRE-
ATE/DROP DATABASE), it is generaly very, very unwise to use thistrick in order to circumvent the no-DDL
rulein PSQL.

One row of data returned
Thisform is used with singleton SELECT statements.

Syntax:

EXECUTE STATEMENT <sel ect-statenent> | NTO <var> [, <var> ...]

<select-statenment> ::= An SQ statenent returning at nost one row of data.
<var > ::= A PSQL variable, optionally preceded by “:”
Example:

create procedure Dynani cSanpl eTwo (Tabl eNane varchar (100))

as
decl are variable paramint;
begi n
execut e statenent
'sel ect max(CheckField) from' || TableNane into :param
if (param > 100) then
exception Ex_Overflow 'Overflow in ' || Tabl eNaneg;
end

Any number of data rows returned

This form — analogous to “FOR SELECT ... DO” —is used with SELECT statements that may return a multi-row
dataset.

Syntax:

FOR EXECUTE STATEMENT <sel ect-statement> | NTO <var> [, <var> ...]
DO <compound- st at enent >

<sel ect-statenent> ::= Any SELECT statenent.
<var > 1= A PSQL variable, optionally preceded by “:”

76

PSQL statements

Example:

create procedure Dynani cSanpl eThr ee
(TextField varchar(100),
Tabl eNane varchar (100))

returns
(LongLi ne varchar (32000))
as
decl are vari abl e Chunk varchar (100);
begi n
Chunk ="'
for execute statenent
"select ' || TextField || ' from' || TableNane into : Chunk
do

if (Chunk is not null) then
LongLi ne = LongLine || Chunk || ' ";
suspend;
end

Caveats with EXECUTE STATEMENT

1. Thereisnoway to validate the syntax of the enclosed statement.
2. Thereare no dependency checks to discover whether tables or columns have been dropped.
3. Operationswill be slow because the embedded statement has to be prepared every timeit is executed.

4. The argument string cannot contain any parameters. All variable substitution into the static part of the
DSQL statement should be performed before EXECUTE STATEMENT is called.

5. Returnvauesaredtrictly checked for datatypein order to avoid unpredictable type-casting exceptions. For
example, the string* 1234' would convert to an integer, 1234, but * abc' would give a conversion error.

6. Thesubmitted DSQL statement isalways executed with the privileges of the current user . Privileges grant-
ed to thetrigger or SP that containsthe EXECUTE STATEMENT statement are not in effect whilethe DSQL
statement runs.

All in al, thisfeature is intended only for very cautious use and you should always take the above factors into

account. Bottom line: use EXECUTE STATEMENT only when other methods are impossible, or perform even
worse than EXECUTE STATEMENT.

EXIT

Availablein: PSQL
Changedin: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versions it is only supported in
stored procedures, not in triggers.

77

PSQL statements

FETCH cursor

Availablein: PSQL
Added in: 2.0
Description: Fetchesthe next datarow from acursor's result set and stores the column valuesin PSQL variables.
Syntax:
FETCH cursornane INTO [:]varnanme [, [:]varnane ...];
Notes:

» The ROW COUNT context variable will be 1 if the fetch returned a data row and 0O if the end of the set has
been reached.

» You can do apositioned UPDATE or DELETE on the fetched row with the WHERE CURRENT OF clause.

Example: See DECLARE ... CURSOR.

FOR EXECUTE STATEMENT ... DO

Availablein: PSQL
Added in: 1.5

Description: See EXECUTE STATEMENT :: Any number of data rows returned.

FOR SELECT ... INTO ... DO

Availablein: PSQL

Description: Executes a SELECT statement and retrieves the result set. In each iteration of the loop, the field
values of the current row are copied into local variables. Adding an AS CURSOR clause enables positioned
deletes and updates. FOR SELECT statements may be nested.

Syntax:

FOR <sel ect-stnt >
I NTO <var> [, <var> ...]
[AS CURSOR nane]

DO
<psql -stnt >

<select-stnt> ::= A valid SELECT statenent.
<var > .= A PSQ variable nanme, optionally preceded by “:”
<psql - st nt > = A single statement or a block of PSQ. code.

78

PSQL statements

» The SELECT statement may contain named SQL parameters, likein “sel ect name || :sfx
from nanes where nunber = : nuni. Each parameter must be a PSQL variablethat has been
declared previously (thisincludes any in/out params of the PSQL modul€).

e Caution! If the value of a PSQL variable that is used in the SELECT statement changes during
execution of the loop, the statement may (but will not always) be re-evaluated for the remaining
rows. In general, this situation should be avoided. If you really need this behaviour, test your code
thoroughly and make sure you know how variable changes affect the outcome. Also be advised
that the behaviour may depend on the query plan, in particular the use of indices. Asitiscurrently
not strictly defined, it may change in some future version of Firebird.

Examples:

create procedure shownums
returns (aa int, bb int, smint, df int)
as
begi n
for select distinct a, b fromnunbers order by a, b
into :aa, :bb

do
begin
sm= aa + bb
df = aa - bb;
suspend;
end
end

create procedure relfields
returns (relation char(32), pos int, field char(32))
as
begi n
for select rdb$relation_name fromrdb$rel ati ons
into :relation
do
begi n
for select rdb$field_position + 1, rdb$fiel d_nane
fromrdb$rel ation_fields
where rdb$rel ati on_nane = :relation
order by rdb$field_position
into :pos, :field
do
begi n
if (pos = 2) then relation ="' "'; -- for nicer output
suspend;
end
end
end

AS CURSOR clause
Availablein: PSQL

Added in: IB

79

PSQL statements

Description: The optional AS CURSOR clause creates a named cursor that can be referenced (after WHERE
CURRENT OF) withinthe FOR SELECT loop in order to update or delete the current row. Thisfeature was already
added in InterBase, but not mentioned in the Language Reference.

Example:

create procedure deltown (towntodel ete varchar(24))
returns (town varchar(24), pop int)

as
begi n
for select town, pop fromtowns into :town, :pop as cursor tcur do
begi n
if (town = towntodel ete)
then delete fromtowns where current of tcur;
el se suspend;
end
end
Notes:

* A “FOR UPDATE" clauseis allowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

» Make surethat cursor names defined here do not clash with any names created earlier on in DECLARE CUR-
SOR statements.

* AS CURSOR is not supported in FOR EXECUTE STATEMENT loops, even if the statement to execute is a
suitable SELECT query.

LEAVE

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0

Description: LEAVE immediately terminates the innermost WHILE or FOR loop. With the optional | abel ar-
gument introduced in Firebird 2.0, LEAVE can break out of surrounding loops aswell. Execution continues with
the first statement after the outermost terminated loop.

Syntax:

[1abel :]
{FOR | WHLE} ... DO

(possi bly nested | oops, with or wi thout |abels)
LEAVE [I abel];
Example:

If an error occurs during the insert in the example below, the event islogged and the loop terminated.
The program continues at the line of code reading “c = 0;"”

80

PSQL statements

while (b < 10) do
begi n
insert into Nunmbers(B) values (:b);
b=Db+ 1;
when any do
begi n
execute procedure log error (current_tinestanp, 'Error in B loop');
| eave;
end
end
c = 0;

The next example useslabels. “Leave LoopA” terminatesthe outer loop, “| eave LoopB” theinner
loop. Noticethat aplain “I eave” would also suffice to terminate the inner loop.

stnm1l = 'select Name from Farns';
LoopA:
for execute statenent :stntl into :farmdo
begi n
stnt2 = 'select Name from Animal s where Farm=""";
LoopB:
for execute statenment :stnm2 || :farm]|| '"''" into :aninmal do
begi n
if (animal = "Fluffy') then | eave LoopB
else if (animal = farn) then | eave LoopA
el se suspend;
end
end

OPEN cursor

Availablein: PSQL

Added in: 2.0

Description: Opensapreviously declared cursor, executing its SELECT statement and enabling it to fetch records
from the result set.

Syntax:

OPEN cur sor nane;

Example: See DECLARE ... CURSOR.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

81

PSQL statements

UDFs callable as void functions

Changed in: 2.0

Description: In Firebird 2.0 and above, PSQL code may call UDFs without assigning the result value, i.e. like a
Pascal procedure or C void function. In most cases this is senseless, because the main purpose of almost every
UDF isto produce the result value. Some functions however perform a specific task, and if you're not interested
in the result value you can now spare yourself the trouble of assigning it to a dummy variable.

Note

RDB$GET_CONTEXT and RDB$SET_CONTEXT, though classified in this guide under internal functions, are
actually akind of auto-declared UDFs. Y ou may therefore call them without catching the result. Of course this
only makes sense for RDB$SET_CONTEXT.

WHERE CURRENT OF invalid for view cursors

Changed in: 2.0

Description: Inversions2.0.x, positioned updates and del etes using WHERE CURRENT OF areno longer possible
for view cursors, due to some problems that could make such cursors unreliable. This restriction will be lifted
againin Firebird 2.1, which has an improved validation logic for views.

82

Chapter 9

Context variables

CURRENT _CONNECTI ON

Availablein: DSQL, PSQL
Addedin: 1.5
Description: CURRENT_CONNECTI ON returns a unique identifier for the current connection.
Type: INTEGER
Examples:
sel ect current _connection from rdb$dat abase
execut e procedure P_Logi n(current_connecti on)

The value of CURRENT_CONNECTI ON is stored on the database header page and reset upon restore. Since the
engineitself is not interested in this value, it is only incremented if the client reads it during a session. Hence it
isonly useful asaunique identifier, not as an indicator of the number of connections since the creation or latest
restoration of the database. Please note that thiswill change in Firebird 2.1.

CURRENT ROLE

Availablein: DSQL, PSQL
Added in: 1.0

Description: CURRENT _ROLE is a context variable containing the role of the currently connected user. If there
is no active role, CURRENT _ROLE is NONE.

Type: VARCHAR(31)
Example:
if (current_role <> ' MANACER)
t hen exception only_nanagers_nay_del et e;

el se
del ete from Custonmers where custno = :custno;

CURRENT_ROLE alwaysrepresents avalid role or NONE. If auser connects with a non-existing role, the engine
silently resetsit to NONE without returning an error.

83

Context variables

CURRENT_TI ME

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: CURRENT_TI ME returns the current server time. In versions prior to 2.0, the fractional part used to
be aways “. 0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward you can specify a
precision when polling this variable. The default is still O decimals, i.e. seconds precision.

Type: TIME
Syntax:

CURRENT_TI ME [(precision)]

precision ::= 0] 1| 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

sel ect current tine fromrdb$dat abase
-- returns e.g. 14:20:19.6170

select current_tinme(2) from rdb$dat abase
-- returns e.g. 14:20:23.1200

Notes:

» Unlike CURRENT_TI ME, the default precision of CURRENT_TI MESTAMP has changed to 3 decimals. As a
result, CURRENT_TI MESTAMP is no longer the exact sum of CURRENT_DATE and CURRENT_TI ME, unless
you explicitly specify a precision.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TI ME will remain
constant every timeit is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to measure
timeintervals), use’ NOW .

CURRENT_TI MESTAMP

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: CURRENT_TI MESTAMNP returns the current server date and time. In versions prior to 2.0, the frac-
tional part used to be aways “. 0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward
you can specify a precision when polling this variable. The default is 3 decimals, i.e. milliseconds precision.

Type: TIMESTAMP

Context variables

Syntax:

CURRENT_TI MESTAMP [(preci sion)]

precision ::= 0] 1| 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

select current_timestanp fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

sel ect current _tinestanp(2) fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:23.1200

Notes:

» Thedefault precision of CURRENT_TI MEisstill 0 decimals, so in Firebird 2.0 and up CURRENT_TI MESTAMP
isno longer the exact sum of CURRENT_DATE and CURRENT _TI Mg, unlessyou explicitly specify aprecision.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT _TI MESTAMP will
remain constant every timeit is read. If multiple modules call or trigger each other, the value will remain
constant throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to

measure time intervals), use' NOW .

CURRENT_TRANSACTI ON

Availablein: DSQL, PSQL
Added in: 1.5

Description: CURRENT _TRANSACTI ON contains the unique identifier of the current transaction.

Type: INTEGER
Examples:
sel ect current_transaction from rdb$dat abase

New. Txn_I D = current _transaction

The value of CURRENT_TRANSACTI ON is stored on the database header page and reset upon restore. Unlike
CURRENT_CONNECTI ON, it isincremented with every new transaction, whether the client reads the value or not.

CURRENT USER

Availablein: DSQL, PSQL
Added in: 1.0

85

Context variables

Description: CURRENT_USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)
Example:
create trigger bi_custonmers for customers before insert as
begi n
New. added by = CURRENT USER;
= 0,

New. pur chases
end

DELETI NG

Availablein: PSQL
Addedin: 1.5

Description: Availableintriggersonly, DELETI NGindicatesif thetrigger fired because of a DELETE operation.
Intended for use in multi-action triggers.

Type: boolean
Example:
if (deleting) then
begi n
insert into Removed_Cars (id, nake, nodel, renoved)

val ues (old.id, old.nmke, old.nodel, current_tinestanp);
end

GDSCODE

Availablein: PSQL
Added in: 1.5
Changedin: 2.0

Description: In a WHEN GDSCODE handling block, the GDSCODE context variable contains a numerical repre-
sentation of the current Firebird error code. Starting with Firebird 2.0, the sameistruein aWHEN ANY block if
its execution was triggered by a Firebird error; otherwise it contains 0. GDSCODE is aso 0 in WHEN SQLCODE
and WHEN EXCEPTION handlers, aswell as everywhere else in PSQL.

Type: INTEGER
Example:

when gdscode 335544551, gdscode 335544552,
gdscode 335544553, gdscode 335544707

86

Context variables

do

begi n
execut e procedure | og_grant_error(gdscode);
exit;

end

| NSERTI NG

Availablein: PSQL
Addedin: 1.5

Description: Availablein triggersonly, | NSERTI NGindicates if the trigger fired because of an INSERT opera-
tion. Intended for use in multi-action triggers.

Type: boolean
Example:
if (inserting or updating) then
begi n
if (new.serial_numis null) then

new. serial _num = gen_id(gen_serials, 1);
end

NEW

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: NEWcontains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it isread-only in AFTER triggers.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — NEWis always available. But if the trigger is fired by
a DELETE, there will be no new version of the record. In that situation, reading from NEWwill always return
NULL; writing to it will cause a runtime exception.

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

87

Context variables

Description: ' NOW isnot avariable but astring literal. It is, however, specia in the sense that when you CAST()
it to adate/time type, you will get the current date and/or time. The fractional part of the time used to be always
“. 0000", giving an effective seconds precision. In Firebird 2.0 the precision is 3 decimals, i.e. milliseconds.
' NOW is case-insensitive, and the engine ignores leading or trailing spaces when casting.

Type: CHAR(3)

Examples:

sel ect ' Now from rdb$dat abase
-- returns ' Now

sel ect cast('Now as date) from rdb$dat abase
-- returns e.g. 2008-08-13

sel ect cast('now as tine) from rdb$database
-- returns e.g. 14:20:19.6170

sel ect cast('NOW as tinestanp) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

sel ect date 'Now from rdb$dat abase
select tinme 'now from rdb$dat abase
sel ect tinestanp ' NOW from rdb$dat abase

Notes:

" NOW alwaysreturnsthe actual date/time, even in PSQL modules, where CURRENT _DATE, CURRENT _TI MVE
and CURRENT_TI MESTAMP return the same value throughout the duration of the outermost routine. This
makes' NOW useful for measuring time intervalsin triggers, procedures and executable blocks.

Except in the situation mentioned above, reading CURRENT_DATE, CURRENT_TIME and
CURRENT _TI MESTAMP is generally preferable to casting' NOW . Be aware though that CURRENT _TI ME de-
faults to seconds precision; to get milliseconds precision, use CURRENT _TI ME(3).

CLD

Availablein: PSQL, triggers only

Changedin: 1.5, 2.0

Description: OLD contains the existing version of a database record just before a deletion or update. Starting

with Firebird 2.0 it is read-only.

Type: Datarow

Note

aways return NULL; writing to it will cause a runtime exception.

In multi-action triggers — introduced in Firebird 1.5 — OLD is always available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will

88

Context variables

ROW COUNT

Availablein: PSQL
Added in: 1.5
Changedin: 2.0
Description: The ROW COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) inthe current trigger, stored procedure or executable
block.
Type: INTEGER
Example:

update Figures set Nunber = 0 where id = :id;

if (row_count = 0) then

insert into Figures (id, Nunber) values (:id, 0);

Behaviour with SELECT and FETCH:
» After asingleton SELECT, ROW COUNT is 1 if adatarow wasretrieved and O otherwise.
* InaFOR SELECT loop, ROW COUNT isincremented with every iteration (starting at O before the first).

» After aFETCH from a cursor, ROW COUNT is 1 if a data row was retrieved and O otherwise. Fetching more
records from the same cursor does not increment ROW_ COUNT beyond 1.

* InFirebird 1.5.x, ROW COUNT is O after any type of SELECT statement.

Note

ROW COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or EXE-
CUTE PROCEDURE command.

SQLCODE
Availablein: PSQL
Addedin: 1.5

Description: In a WHEN SQLCODE handling block, the SQLCODE context variable contains the current SQL
error code. The same istrue in aWHEN ANY block if its execution was triggered by an SQL error; otherwise
it contains 0. SQLCODE isaso 0 in WHEN GDSCODE and WHEN EXCEPTION handlers, as well as everywhere
elsein PSQL.

Type: INTEGER

89

Context variables

Example:

when any
do
begi n
if (sqglcode <> 0) then
Msg = ' An SQL error occurred!';
el se

Msg = ' Sonet hi ng bad happened!';
exception ex_custom Msg;
end

UPDATI NG

Availablein: PSQL
Added in: 1.5

Description: Availableintriggersonly, UPDATI NGindicatesif thetrigger fired because of an UPDATE operation.
Intended for use in multi-action triggers.

Type: boolean

Example:

if (inserting or updating) then
begi n
if (new.serial_numis null) then
new. seri al _num = gen_id(gen_serials, 1);
end

90

Chapter 10

Operators and predicates

NULL literals allowed as operands

Changedin: 2.0

Description: Before Firebird 2.0, most operators and predicates did not allow NULL literals as operands. Tests
or operationslike“A <> NULL",“B + NULL” or “NULL < ANY(...)"” would berejected by the parser. Now
they are allowed almost everywhere, but please be aware of the following:

The vast majority of these newly allowed expressions return NULL regardless of the state or value of
the other operand, and are therefore worthless for any practicle purpose whatsoever.

In particular, don't try to determine (non-)nullness of afield or variable by testing with“= NULL” or “<> NULL".
Alwaysuse“l S [NOT] NULL".

Predicates. The IN, ANY/SOME and ALL predicates now also allow NULL literals where they were previously
taboo. Here too, there is no practical benefit to enjoy, but the situation is a little more complicated in that
predicates with NULLS do not always return a NULL result. For details, see the Firebird Null Guide, section
Predicates.

|| (string concatenator)

Availablein: DSQL, ESQL, PSQL

Result type VARCHAR

Changedin: 2.0

Description: The result type of string concatenations used to be CHAR(n). Starting with Firebird 2.0, it is
VARCHAR(n). As aresult, the maximum length of a concatenation outcome is now 32765 instead of 32767.

Overflow checking

Changedin: 1.0, 2.0

91

http://www.firebirdsql.org/manual/nullguide-predicates.html

Operators and predicates

Description: In Firebird versions 1.x, an error would be raised if the sum of the declared string lengths in a
concatenation exceeded 65535 bytes, even if the actual result lay within the maximum string length of 32767
bytes. In Firebird 2.0 and up, the declared string lengths will never cause an error. Only if the actual outcome
exceeds 32765 bytes (the new limit for concatenation results) will an error be raised.

ALL

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

Description: The ALL predicate now allowsaNULL asthetest value. Noticethat thisbrings no practical benefits.
In particular, a NULL test value will not be considered equal to NULLs in the subquery result set. Even if the
entire set isfilled with NULLs and the operator chosen is “=", the predicate will not returnt r ue, but NULL.

UNION as subselect
Changedin: 2.0

Description: The subselect in an ALL predicate may now also be a UNION.

ANY / SOME

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

Description: The ANY (or SOME) predicate now allows a NULL as the test value. Notice that this brings no
practical benefits. In particular, aNULL test value will not be considered equal to aNULL in the subquery result
Set.

UNION as subselect
Changedin: 2.0

Description: The subselect in an ANY (or SOME) predicate may now also be a UNION.

92

Operators and predicates

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

Description: The IN predicate now allows NULL literals, both as the test value and in the list. Notice that this
brings no practical benefits. In particular, “NULL IN (..., NULL, ..., ...)" will not returnt r ue and “NULL NOT IN
(-.y NULL, ..., ...)" Will not returnf al se.

UNION as subselect

Changedin: 2.0

Description: A subselect in an IN predicate may now also be a UNION.

IS [NOT] DISTINCT FROM

Availablein: DSQL, PSQL
Added in: 2.0

Description: Two operands are considered DISTINCT if they have a different value or if one of them is NULL
and the other isn't. They are NOT DISTINCT if they have the same value or if both of them are NULL.

Result type: Boolean
Syntax:

opl IS [NOT] DI STI NCT FROM op2
Examples:

sel ect id, nanme, teacher from courses
where start_day is not distinct fromend_day

if (New. Job is distinct fromdd. Job)
t hen post_event 'job_changed';

IS[NOT] DISTINCT FROM alwaysreturnst r ue or f al se, never NULL (unknown). The“=" and “<>" operators,
by contrast, return NULL if one or both operands are NULL. See also the table below.

93

Operators and predicates

Table 10.1. Comparison of [NOT] DISTINCT to“=" and “<>"

Operand char- Results with the different operators
acteristics
= NOT DISTINCT <> DISTINCT
Same value true true fal se fal se
Different values fal se fal se true true
Both NULL NUL L true NUL L fal se
One NULL NULL fal se NULL true

NEXT VALUE FOR

Available in: DSQL, PSQL
Added in: 2.0
Description: Returns the next value in a sequence. SEQUENCE is the SQL-compliant term for what InterBase

and Firebird have aways called a generator. NEXT VALUE FOR is fully equivalent to GEN_ID(..., 1) and is the
recommended syntax from Firebird 2.0 onward.

Syntax:
NEXT VALUE FOR sequence- name
Example:
new. cust _id = next value for custseq;

NEXT VALUE FOR doesn't support increment values other than 1. If you absolutely need other step values, use
the legacy GEN_ID function.

See also: CREATE SEQUENCE, GEN_ID()

SOME

See ANY

94

Chapter 11

Internal functions

BIT_LENGTH()

Availablein: DSQL, PSQL
Added in: 2.0

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less
than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” bit length, not counting the trailing spaces,
right-TRIM the argument before passing it to BIT_LENGTH.

Result type: INTEGER
Syntax:

BI T_LENGTH (str)
Examples:

select bit_length('Hello!') fromrdb$dat abase
-- returns 48

select bit_length(_is08859 1 'Gul di!') fromrdb$dat abase
-- returns 64: 0 and B take up one byte each in | S08859 1

select bit_length

(cast (_iso8859_1 'GuR di!"'" as varchar(24) character set utf8))
from rdb$dat abase

-- returns 80: U and B take up two bytes each in UTF8

select bit_length
(cast (_iso08859_1 'GuR di!' as char(24) character set utf8))
from rdb$dat abase
-- returns 208: all 24 CHAR positions count, and two of themare 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH

95

Internal functions

CAST()

Availablein: DSQL, ESQL, PSQL
Changedin: 2.0

Description: CAST converts an expression to the desired datatype. If the conversion is not possible, an error
isthrown.

Result type: User-chosen.
Syntax:
CAST (expression AS dat atype)
Shorthand syntax:
Alternative syntax, supported only when casting a string literal to aDATE, TIME or TIMESTAMP:
datatype 'date/tinmestring'
This syntax was already availablein InterBase, but was never properly documented.
Examples:
A full-syntax cast:
select cast ('12' || '-June-' || '1959' as date) from rdb$database

A shorthand string-to-date cast:

updat e People set AgeCat = 'dd
where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the engine will under-
stand from the context (comparison to a DATE field) how to interpret the string:

updat e People set AgeCat = 'dd'
where BirthDate < '1-Jan-1943

But thisis not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

sel ect date 'today' - 7 from rdb$dat abase

The following table shows the type conversions possible with CAST.

96

Internal functions

Table11.1. Possible CASTs

From

To

Numeric types

Numeric types
[VAR]CHAR

[VAR]CHAR

[VAR]CHAR
Numeric types
DATE

TIME
TIMESTAMP

DATE
TIME

[VAR]CHAR
TIMESTAMP

TIMESTAMP

[VAR]CHAR
DATE
TIME

Keep in mind that sometimesinformation islost, for instance when you cast aTIMESTAMPto aDATE. Also, the
fact that types are CAST-compatible isin itself no guarantee that a conversion will succeed. “ CAST (123456789
as SMALLINT)” will definitely result in an error, aswill “ CAST('Judgement Day' as DATE)”.

New in Firebird 2.0: Y ou can how cast statement parameters to a datatype, asin:

cast (? as integer)

This givesyou control over the type of input field set up by the engine. Please notice that with statement param-
eters, you always need a full-syntax cast — shorthand casts are not supported.

CHAR_LENGTH(), CHARACTER_LENGTHY()

Availablein: DSQL, PSQL
Added in: 2.0

Description: Givesthe length in characters of the input string.

Note

With arguments of type CHAR, thisfunction returnstheformal string length (i.e. the declared length of afield or
variable). If you want to obtain the “logical” length, not counting the trailing spaces, right-TRIM the argument
before passing it to CHAR[ACTER]_LENGTH.

Result type: INTEGER
Syntax:

CHAR LENGTH (str)
CHARACTER_LENGTH (str)

97

Internal functions

Examples:

sel ect char_length('Hello!') fromrdb$dat abase
-- returns 6

sel ect char _length(_iso8859 1 'GiaR di!') from rdb$dat abase
-- returns 8

sel ect char_Il ength
(cast (_iso08859 1 'GuB di!' as varchar(24) character set utf8))
from rdb$dat abase

-- returns 8; the fact that 0 and B take up two bytes each is irrel evant

sel ect char_l ength
(cast (_iso08859 1 'Gul di!' as char(24) character set utf8))
from rdb$dat abase

returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH

COALESCE()

Availablein: DSQL, PSQL

Added in:

15

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result is NULL.

Result type: Depends on input.

Syntax:
COALESCE (<expl>, <exp2> [, <expN> ...])
Example:
sel ect
coal esce (N cknarme, FirstNanme, "M./Ms."') || " ' || LastNane

as Ful | Name
from Per sons

This example picks the Nickname from the Persons table. If it happensto be NULL, it goes on to FirstName. If
that too isNULL, “Mr./Mrs.” isused. Finaly, it adds the family name. All in all, it triesto use the available data
to compose afull name that is asinformal as possible. Notice that this scheme only works if absent nicknames
and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the *nvl external
functions.

98

Internal functions

EXTRACT()

Availablein: DSQL, ESQL, PSQL
Addedin: IB 6

Description: Extracts and returns an element from a DATE, TIME or TIMESTAMP expression. It was aready
added in InterBase 6, but not documented in the Language Reference at the time.

Result type: SMALLINT or DECIMAL(6,4)
Syntax:

EXTRACT (<part> FROM <dat eti ne>)

<part> ;2= YEAR | MONTH | DAY | WEEKDAY | YEARDAY
| HOUR | M NUTE | SECOND
<datetime> ::= An expression of type DATE, TIME or TI MESTAMP

Thereturned datatypeis DECIMAL (6,4) for the SECOND part and SMALLINT for all others. Therangesare shown
in the table below.

If you try to extract a part that isn't present in the date/time argument (e.g. SECOND from a DATE or YEAR
from aTIME), an error occurs.

Table 11.2. Rangesfor EXTRACT results

Part Range Comment
YEAR 19999

MONTH 1-12

DAY 1-31

WEEKDAY 0-6 0 = Sunday
YEARDAY 0-365 0 = January 1
HOUR 0-23

MINUTE 0-59

SECOND 0.0000-59.999

99

Internal functions

GEN_ID()

Availablein: DSQL, ESQL, PSQL

Description: Increments agenerator or sequence and returnsits new value. From Firebird 2.0 onward, the SQL -
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

Result type: BIGINT

Syntax:

GEN_I D (generator-name, <step>)

<step> ::= An integer expression.
Example:

new.rec_id = gen_id(gen_recnum 1);

Warning

Unlessyou know very well what you are doing, using GEN_ID() with step values lower than 1 may compromise
your data's integrity.

See also: NEXT VALUE FOR, CREATE GENERATOR

F()

Availablein: DSQL, PSQL
Addedin: 2.0

Description: 11F takesthree arguments. If thefirst evaluatestot r ue, the second argument is returned; otherwise
thethird is returned.

Result type: Depends on input.

Syntax:
I1'F (<condition> ResultT, ResultF)
<condition> ::= A bool ean expression.
Example:
select iif(sex ="'M, "'Sir', '"Madam) from Custoners

100

Internal functions

IIF(Cond, Resul t 1, Resul t 2) is a shortcut for “CASE WHEN Cond THEN Resul t 1 ELSE Resul t 2 END”.
Y ou can also compare IIF to the ternary “? : operator in C-like languages.

LOWER()

Availablein: DSQL, ESQL, PSQL
Added in: 2.0
Description: Returns the lower-case equivalent of the input string. This function also correctly lowercases non-
ASCII characters, even if the default (binary) collation is used. The character set must be appropriate though:
with ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is
returned unchanged.
Result type: (VAR)CHAR
Syntax:

LOVER (str)

Example:

sel ect Sheriff from Towns
where | ower (Nanme) = 'cooper''s valley'

See also; UPPER

NULLIF()

Availablein: DSQL, PSQL
Addedin: 1.5

Description: NULLIF returns the value of the first argument, unlessit is equal to the second. In that case, NULL
is returned.

Result type: Depends on input.
Syntax:

NULLI F (<expl>, <exp2>)
Example:

sel ect avg(nullif(Wight, -1)) from Fat Peopl e

101

Internal functions

This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,
since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note

In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nul |'i f external
functions.

OCTET_LENGTH()

Availablein: DSQL, PSQL
Addedin: 2.0
Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may

be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” byte length, not counting the trailing spaces,
right-TRIM the argument before passing it to OCTET_LENGTH.

Result type: INTEGER
Syntax:

OCTET_LENGTH (str)
Examples:

sel ect octet length('Hello!') fromrdb$dat abase
-- returns 6

sel ect octet length(_iso08859 1 'GuR di!') fromrdb$dat abase
-- returns 8: 0 and [take up one byte each in | S08859 1

sel ect octet_length

(cast (_iso08859 1 'GuB di!' as varchar(24) character set utf8))
from rdb$dat abase

-- returns 10: 0 and B take up two bytes each in UTF8

sel ect octet_length

(cast (_iso08859_1 'GuR di!' as char(24) character set utf8))
from rdb$dat abase

-- returns 26: all 24 CHAR positions count, and two of themare 2-byte

See also: BIT_LENGTH(), CHARACTER_LENGTH

102

Internal functions

RDB$GET_CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SSET_CONTEXT are actually predeclared UDFs. They are listed
here asinternal functions because they are aways present — the user doesn't have to do anything to make them
available.

Availablein: DSQL, ESQL, PSQL
Added in: 2.0

Description: Retrieves the value of a context variable from one of the namespaces SY STEM, USER_SESSION
and USER_TRANSACTION.

Result type: VARCHAR(255)
Syntax:

RDB$SCET_CONTEXT (' <nanespace>', ' <varname>')

<nanespace> = SYSTEM | USER SESSI ON | USER TRANSACTI ON
<var nane> = A case-sensitive string of max. 80 characters
The namespaces:

The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can create and set
variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$SGET_CONTEXT(). The SYSTEM
namespace is read-only. It contains a number of predefined variables, shown in the table below.

Table 11.3. Context variablesin the SY STEM namespace

DB_NAME Either the full path to the database or — if connecting via the path is disallowed
—itsalias.

NETWORK _PROTOCOL The protocol used for the connection. Can be ' TCPv4' , ' WNET' , ' XNET' or

NULL.

CLI ENT_ADDRESS For TCPv4, thisisthe IP address. For XNET, the local process ID. For all other
protocols this variableis NULL.

CURRENT_USER Same as global CURRENT _USER variable.

CURRENT_ROLE Same as global CURRENT _ROLE variable.

SESSION_I D Same as global CURRENT_CONNECT! ON variable.

TRANSACTI ON_I D Same as global CURRENT _TRANSACTI ON variable.

| SOLATI ON_LEVEL The isolation level of the current transaction; can be ' READ COVWM TTED ,

' SNAPSHOT" or ' CONSI STENCY" .

103

Internal functions

Returnvaluesand error behaviour: If the polled variable existsin the given namespace, itsvaluewill bereturned
as astring of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing variable
in the SY STEM namespace, an error israised. If you poll anon-existing variable in one of the other namespaces,

NULL isreturned. Both namespace and variable names must be given as single-quoted, case-sensitive, non-NULL
strings.

Examples:
sel ect rdb$get context(' SYSTEM, 'DB NAME) from rdb$dat abase
New. User Addr = rdb$get _context (' SYSTEM, ' CLI ENT_ADDRESS');

insert into MyTabl e (TestField)
val ues (rdb$get _context (' USER_ SESSION, 'MVar'))

See also: RDB$SET_CONTEXT()

RDB$SET_CONTEXT()

Note

RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actually predeclared UDFs. They are listed

here asinternal functions because they are aways present — the user doesn't have to do anything to make them
available.

Availablein: DSQL, ESQL, PSQL
Addedin: 2.0

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

Result type: INTEGER
Syntax:
RDB$SET_CONTEXT (' <nanespace>', '<varname>', <value> | NULL)

<namespace> = USER_SESSI ON | USER_TRANSACTI ON

<var nanme> 1= A case-sensitive string of max. 80 characters

<val ue> .= A value of any type, as long as it's castable
to a VARCHAR(255)

The namespaces.

TheUSER_SESSION and USER_TRANSACTION namespacesareinitially empty. The user can create and set vari-
ables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The USER_SESSION
context is bound to the current connection. Variables in USER_TRANSACTION only exist in the transaction in
which they have been set. When the transaction ends, the context and all the variablesdefined in it are destroyed.

Return values and error behaviour:

Thefunction returns 1 if the variable already existed before the call and O if it didn't. To remove avariable from
acontext, set it to NULL. If the given namespace doesn't exist, an error is raised. Both namespace and variable
names must be entered as single-quoted, case-sensitive, non-NULL strings.

104

Internal functions

Examples:
sel ect rdb$set context (' USER SESSION , 'MyVar', 493) from rdb$dat abase
rdb$set context (' USER_SESSI ON' , ' RecordsFound', RecCounter);

sel ect rdb$set _context (' USER_TRANSACTI ON', 'Savepoints', 'Yes')
from r db$dat abase

Notes:
» The maximum number of variablesin any single context is 1000.

* AIl USER_TRANSACTION variableswill survive aROLLBACK RETAIN or ROLLBACK TO SAVEPOINT un-
atered, no matter at which point during the transaction they were set.

* DuetoitsUDF-likenature, RDB$SET_CONTEXT can—in PSQL only —be called like avoid function, without
assigning the result, asin the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

SUBSTRING()

Availablein: DSQL, PSQL
Addedin: 1.0
Changedin: 2.0

Description: Returns a substring starting at the given position, either to the end of the string or with a given
length.

Result type: (VAR)CHAR(n)

Syntax:
SUBSTRI NG (str FROM pos [FOR len])
str

pos
| en

a string expression
an integer expression
an integer expression

This function returns the substring starting at character position pos (the first position being 1). Without the
optional FOR argument, it returns all the remaining charactersin the string. With it, it returns| en characters or
the remainder of the string, whichever is shorter.

Since Firebird 2.0, SUBSTRING fully supports multi-byte character sets.

In Firebird 1.x, pos and | en had to be be integer literals. In 2.0 and above they can be any valid integer ex-
pression.

Theresult typeis VARCHAR for aVARCHAR or BLOB argument, and CHAR for a CHAR or literal argument.

105

Internal functions

The width —in characters — of the result field is always equal to the length of st r, regardless of pos and | en.
So, substring(' pi nhead' from 4 for 2) will return aCHAR(7) containing the string ' he' .

SUBSTRING can be used with:

* Any string, (var)char or text BLOB argument, regardless of its character set;
* Subtype O (binary) BLOBS.

Example:

i nsert into AbbrNames(Abbr Nane)
sel ect substring(LongName from1 for 3) from LongNanes

Effect of NULLS

e |f str iSNULL, the function returns NULL.

If str isavalid string but pos and/or | en isNULL, the function returns NULL but describes the result field
as non-nullable. Asaresult, most clients (including isgl) will incorrectly show the result as an empty string.

TRIM()

Availablein: DSQL, PSQL

Added in: 2.0

Description: Removes leading and/or trailing spaces (or optionaly other strings) from the input string. The
result isaVARCHAR(n) with n the formal length of the input string.

Result type: VARCHAR(n)

Syntax:

TRI M ([<adj ust>] str)

<adjust> ::= {[where] [what]} FROM

wher e = BOTH | LEADING | TRAILING /* default is BOTH */

what = The substring to be renmoved (repeatedly if necessary)

fromstr's head and/or tail. Default is ' ' (space).
Examples:

select trim (' Waste no space ') from rdb$dat abase
-- returns 'Waste no space'

select trim(leading from' \Waste no space ') from rdb$dat abase
-- returns 'Waste no space

select trim(leading '." from' \WAste no space ') from rdb$dat abase
-- returns ' Waste no space

106

Internal functions

select trim(trailing '!" from'Help!!!!') fromrdb$dat abase
-- returns ' Hel p'

select trim('la" from'lalala | love you Ella') fromrdb$database
-- returns ' | love you El''

select trim('la" from'Lalala | love you Ella') fromrdb$database
-- returns 'Lalala | love you El'

UPPER()

Available in: DSQL, ESQL, PSQL
Changedin: 2.0

Description: Returns the upper-case equivalent of the input string. Since Firebird 2 this function also correctly
uppercases non-ASCII characters, even if the default (binary) collation is used. The character set must be ap-
propriate though: with ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the

entire string is returned unchanged.
Result type: (VAR)CHAR
Syntax:
UPPER (str)
Examples:
sel ect upper(_iso8859 1 'Débécle')
from rdb$dat abase
-- returns 'DEBACLE (before Firebird 2.0: 'DéBACLE)
sel ect upper(_iso8859 1 'Débacle' collate fr_fr)
from rdb$dat abase

-- returns ' DEBACLE' , followi ng French uppercasing rules

See also; LOWER

107

Chapter 12

External functions (UDFs)

External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two external function libraries:

* i b_udf —inherited from InterBase;
e fbudf —anew library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can aso create their own UDF libraries or acquire them from third parties.

addDay

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returnsthe first argument with nunber days added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addday (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addDay

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addDay' MODULE_NAME ' f budf'

addHour

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the first argument with nunber hours added. Use negative numbers to subtract.
Result type: TIMESTAMP

Syntax:

addhour (atinmestanp, nunber)

108

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON addHour
TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addHour' MODULE_NAME ' f budf'

addM | I | Second

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber milliseconds added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addmi | I i second (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM | |i Second

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT 'addM | 1i Second" MODULE_NAME ' f budf"'

addM nut e

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber minutes added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addmi nute (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM nute

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addM nute' MODULE _NAME ' f budf'

109

External functions (UDFs)

addMont h

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber months added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addnont h (ati nmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addMont h

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addMont h* MODULE _NAME ' f budf'

addSecond

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber seconds added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addsecond (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addSecond

TI MESTAVP, | NT

RETURNS Tl MESTAMP
ENTRY_PO NT 'addSecond' MODULE NAME ' f budf'

110

External functions (UDFs)

addWeek

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber weeks added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addweek (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addWeek

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addWeek' MODULE _NAME ' f budf'’

addYear

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber years added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addyear (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addYear

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addYear' MODULE_NAME ' f budf'’

111

External functions (UDFs)

ascii _char

Library: ib_udf
Changedin: 1.0, 2.0
Description: Returns the ASCII character corresponding to the integer value passed in.
Result type: VARCHAR(1)
Syntax (unchanged):
ascii_char (intval)
Declaration:

DECLARE EXTERNAL FUNCTI ON ascii _char
| NTEGER NULL
RETURNS CSTRI NG(1) FREE I T
ENTRY_POI NT ' | B_UDF_ascii_char' MODULE_NAME 'ib_udf'

The declaration reflects the fact that the UDF as such returns a 1-character C string, not an SQL
CHAR(1) as stated in the InterBase declaration. The engine will pass the result to the caller as a
VARCHAR(1) though.

TheNULL after INTEGER isan optional addition that becameavailablein Firebird 2. When declared
with the NULL keyword, theenginewill passaNULL argument unchanged to the function. Thiscauses
aNULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULL is passed to the function as 0 and the result is an empty string.
For more information about passing NULLS to UDFs, see the note at the end of this book.

Notes:

* ascii_char (0) returnsan empty string in all versions, not a character with ASCII value O.

» Before Firebird 2.0, the result type was CHAR(1).

dow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the day of the week from atimestamp argument. The returned name may be localized.

Result type: VARCHAR(15)

112

External functions (UDFs)

Syntax:
dow (atinestanp)
Declaration:
DECLARE EXTERNAL FUNCTI ON dow
TI MESTAWP,

VARCHAR(15) RETURNS PARAMETER 2
ENTRY_PO NT ' DOW MODULE_NAME ' f budf"’

See also; sdow

dpower

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns x to the y'th power.
Result type: DOUBLE PRECISION
Syntax:
dpower (x, y)
Declaration:
DECLARE EXTERNAL FUNCTI ON dPower
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR,
DOUBLE PRECI SI ON BY DESCRI PTOR

RETURNS PARAMETER 3
ENTRY_PO NT ' power' MODULE_NAME ' f budf’

get Exact Ti nest anp

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative; CURRENT _TI MESTAMP or ' NOW

Description: Returns the system time with milliseconds precision. This function was added because in pre-2.0
versions, CURRENT _TI MESTAMP always had . 0000 in the fractional part of the second. In Firebird 2.0 and up
it is better to use CURRENT _TI MESTAMP, which now also defaults to milliseconds precision. To measure time
intervalsin PSQL modules, use' NOW .

Result type: TIMESTAMP

113

External functions (UDFs)

Syntax:
get exactti mest anp()
Declaration:
DECLARE EXTERNAL FUNCTI ON get Exact Ti mest anp

TI MESTAMP RETURNS PARAMETER 1
ENTRY_PO NT ' get Exact Ti mest anp’ MODULE_NAME ' f budf"'

| 64r ound
Seer ound.
| 64t runcat e
Seetruncate.
| og
Library: ib_udf
Changedin: 1.5

Description: In Firebird 1.5 and up, | og(x, y) returns the the base-x logarithm of y. In Firebird 1.0.x and
InterBase, it erroneously returns the base-y logarithm of x.

Result type: DOUBLE PRECISION
Syntax (unchanged):
log (x, y)
Declaration (unchanged):
DECLARE EXTERNAL FUNCTI ON | og
DOUBLE PRECI SI ON, DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_| og' MODULE_NAME 'ib_udf"

Warning

If any of your pre-1.5 databases use | og, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get
the wrong results.

114

External functions (UDFs)

| ower

Library: ib_udf
Changedin: 2.0
Better alternative: Internal function LOWER()

Description: Returns the lower-case version of the input string. Please notice that only ASCII characters are
handled correctly. If possible, use the new, superior internal function LOWER instead. Just dropping the decla
ration of thel ower UDF should do thetrick, unless you gave it an alternative name.

Result type: VARCHAR(n)
Syntax:
"LOWER' (str)
Declaration:
DECLARE EXTERNAL FUNCTI ON " LOVZER®
CSTRI NG 255) NULL
RETURNS CSTRI NG 255) FREE IT
ENTRY_PO NT ' | B_UDF_| ower' MODULE _NAME 'ib_udf’

The above declaration is from the file i b_udf 2. sgl . “LOWER” has been surrounded by dou-
ble-quotes to avoid confusion with the new internal function LOWER.

The NULL after CSTRING(255) is an optional addition that became available in Firebird 2. When
declared with the NULL keyword, the engine will pass a NULL argument unchanged to the function.
Thisleadsto aNULL result, whichis correct. Without the NULL keyword (your only optionin pre-2.0
versions), NULL is passed to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

115

External functions (UDFs)

| pad
Library: ib_udf
Addedin: 1.5
Changedin: 1.5.2, 2.0
Description: Returns the input string left-padded with padchar s until endl engt h isreached.
Result type: VARCHAR(n)
Syntax:
| pad (str, endlength, padchar)
Declaration:
DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG 255) NULL, | NTEGER, CSTRING(1) NULL
RETURNS CSTRI NG 255) FREE | T

ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

The above declaration is from the filei b_udf 2. sgl . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the enginewill passaNULL argument value unchanged to thefunction. Thisleadsto aNULL
result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULLS
are passed to the function as empty strings and the result isa string with endl engh padchars (if st r

iSNULL) or acopy of st r itsdlf (if padchar isNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» When calling this function, make sure endl engt h does not exceed the declared result length.

* If endl engt h islessthan st r's length, str is truncated to endl engt h. If endl engt h is negative, the
result isNULL.

* A NULL endl engt h istreated asif it were 0.

* If padchar isempty, or if padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r isreturned unchanged (or truncated to endl engt h).

» Before Firebird 2.0, the result type was CHAR(n).
* A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

116

External functions (UDFs)

[trim

Library: ib_udf
Changedin: 1.5,1.5.2,2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any leading space characters removed. In new code, you are advised
to usethe internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(n)
Syntax (unchanged):
[trim(str)
Declaration:
DECLARE EXTERNAL FUNCTION Itrim
CSTRI N 255) NULL
RETURNS CSTRI NG 255) FREE_IT
ENTRY_POINT ' IB_UDF_Itrim MODULE _NAME 'ib_udf"

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLS to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

» InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

*nul I'if

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function NULLIF()

117

External functions (UDFs)

Description: Thefour *nul I'i f functions—for integers, bigints, doubles and strings, respectively — each return
the first argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Result type: Varies, see declarations.
Syntax:
inullif (intl, int2)
i 64nul lif (bigintl, bigint2)
dnul I'i f (doubl e1, doubl e2)

snullif (stringl, string2)

Asfrom Firebird 1.5, use of theinternal function NULLIF is preferred.

Warnings

e Thesefunctionsreturn NULL when the second argument isNULL, eveniif thefirst argument isaproper value.
Thisisawrong result. The NULLIF internal function doesn't have this bug.

e i64nullif anddnul I'if will return wrong and/or bizarre resultsif it is not 100% clear to the engine that
each argument is of theintended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both
explicitly to the declared type (see declarations below).

Declarations;

DECLARE EXTERNAL FUNCTION inullif
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "i Nul ['1f' MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64nul |if
NUMVERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS NUMERI C(18, 4) BY DESCRI PTCR
ENTRY_PO NT "i Nul ['1f' MODULE_NAME ' f budf’

DECLARE EXTERNAL FUNCTI ON dnul i f
DOUBLE PREC!I SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTCR
ENTRY_PO NT " dNul ['1f' MODULE_NAME ' f budf'’
DECLARE EXTERNAL FUNCTI ON snul |i f
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,

VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT "sNul ['1f' MODULE_NAME ' f budf'’

*nvi

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function COALESCE()

118

External functions (UDFs)

Description: Thefour nvl functions—for integers, bigints, doubles and strings, respectively —are NULL replac-
ers. They each return the first argument's value if it isnot NULL. If the first argument is NULL, the value of the
second argument is returned.

Result type: Varies, see declarations.
Syntax:
i nvl (intl, int2)
i 64nvl (bigintl, bigint2)
dnvl (doubl el, doubl e2)

snvl (stringl, string2)

Asfrom Firebird 1.5, use of the internal function COALESCE is preferred.

Warning

i 64nvl and dnvl will return wrong and/or bizarre results if it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTI ON i nvl
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT 'idNvl' MODULE _NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64nvl
NUMERI C(18, 0) BY DESCRI PTOR, NUMERI C(18, 0) BY DESCRI PTOR
RETURNS NUMERI C(18, 0) BY DESCRI PTCR
ENTRY_PO NT "idNvl' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON dnvl
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT "idNvl' MODULE _NAME ' f budf®

DECLARE EXTERNAL FUNCTI ON snvl
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'sNvl' MODULE_NAME ' f budf’

r and

Library: ib_udf
Changedin: 2.0

Description: Returns a pseudo-random number. Before Firebird 2.0, this function would first seed the random
number generator with the current time in seconds. Multipler and() callswithin the same second would there-
fore return the same value. If you want that old behaviour in Firebird 2 and up, use the new function sr and() .

119

External functions (UDFs)

Result type: DOUBLE PRECISION

Syntax:

rand ()

Declaration:

DECLARE EXTERNAL FUNCTI ON rand
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_rand’ MODULE_NAME 'ib_udf’

Seesright.

right

round, i 64r ound

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Changedin: 1.5, 2.0.6

Description: Thesefunctionsreturn thewhole number that isnearest to their (scaled numeric/decimal) argument.
They do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18,4)

Syntax:

round

(nunber)

i 64round (bi gnunber)

Caution

Halves are aways rounded upward, i.e. away from zero for positive numbers and toward zero for negative
numbers. For instance, 3. 5 isrounded to 4, but - 3. 5 isrounded to - 3.

Bug alert

In versions 2.0 through 2.0.5, these functions are broken for negative numbers:

Anything between 0 and -0.6 (that's right: -0.6, not -0.5) is rounded to 0.
Anything between -0.6 and -1 is rounded to +1 (plus 1).

Anything between -1 and -1.6 is rounded to -1.

Anything between -1.6 and -2 is rounded to -2.

Etcetera

Fixed in 2.0.6 (backport from 2.5).

120

External functions (UDFs)

Declarations:
In Firebird 1.0.x, the entry point for both functionsisr ound:
DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR

RETURNS PARAMETER 2
ENTRY_PO NT ' round' MODULE NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PQO NT 'round’ MODULE_NAME ' f budf’
In Firebird 1.5, the entry point has been renamed to f br ound:
DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PQO NT ' f bround' MODULE_NAME ' f budf'
DECLARE EXTERNAL FUNCTI ON i 64Round
NUVERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PQ NT ' f bround' MODULE_NAME ' f budf'
If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound and

*t r uncat e declarations and declare them anew, using the updated entry point names. From Firebird
2.0 onward you can aso perform this update with ALTER EXTERNAL FUNCTION.

r pad

Library: ib_udf
Added in: 1.5
Changedin: 1.5.2, 2.0
Description: Returns the input string right-padded with padchar suntil endl engt h isreached.
Result type: VARCHAR(n)
Syntax:

rpad (str, endlength, padchar)
Declaration:

DECLARE EXTERNAL FUNCTI ON r pad
CSTRI NG(255) NULL, | NTEGER, CSTRING(1) NULL
RETURNS CSTRI NG(255) FREE | T
ENTRY_POI NT ' | B_UDF_rpad’ MODULE_NAME 'ib_udf"

121

External functions (UDFs)

The above declaration is from the filei b_udf 2. sgl . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the enginewill passaNULL argument value unchanged to thefunction. Thisleadsto aNULL
result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULLS
are passed to the function as empty strings and the result isa string with endl engh padchars (if st r

iSNULL) or acopy of st r itself (if padchar isSNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» When calling this function, make sure endl engt h does not exceed the declared result length.

* If endl engt h isless than st r's length, str is truncated to endl engt h. If endl engt h is negative, the
result isNULL.

* A NULL endl engt h istreated asif it were Q.

» If padchar isempty, or if padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r isreturned unchanged (or truncated to end| engt h).

» Before Firebird 2.0, the result type was CHAR(n).
* A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

rtrim

Library: ib_udf
Changedin: 1.5,1.5.2, 2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any trailing space characters removed. In new code, you are advised
to usethe internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(n)
Syntax (unchanged):
rtrim(str)
Declaration:
DECLARE EXTERNAL FUNCTION rtrim
CSTRI NG 255) NULL

RETURNS CSTRI NG(255) FREE I T
ENTRY_POINT ' IB_UDF rtrim MODULE_NAME 'ib_udf'

122

External functions (UDFs)

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

» InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

sdow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Result type: VARCHAR(5)
Syntax:

sdow (ati mest anp)
Declaration:

DECLARE EXTERNAL FUNCTI ON sdow
TI MESTAMP,
VARCHAR(5) RETURNS PARAMETER 2
ENTRY_PO NT ' SDOWN MODULE_NAME ' f budf '

See also: dow

sr and

Library: ib_udf

Added in: 2.0

123

External functions (UDFs)

Description: Seeds the random number generator with the current time in seconds and then returns the first
number. Multiplesr and() callswithinthe same second will return the samevalue. Thisisexactly how r and()
behaved before Firebird 2.0.

Result type: DOUBLE PRECISION
Syntax:
srand ()
Declaration:
DECLARE EXTERNAL FUNCTI ON srand

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_srand’ MODULE_NAME 'ib_udf"

sright

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the rightmost nunchar s characters of the input string. Only works with 1-byte character
sets.

Result type: VARCHAR(100)
Syntax:
sright (str, nunchars)
Declaration:
DECLARE EXTERNAL FUNCTI ON sri ght
VARCHAR(100) BY DESCRI PTOR, SMALLI NT,

VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'right' MODULE NAME ' f budf'

string2bl ob

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the input string as a BLOB.
Result type: BLOB

Syntax:

string2bl ob (str)

124

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON string2bl ob
VARCHAR(300) BY DESCRI PTOR,

BLOB RETURNS PARAMETER 2
ENTRY_PO NT ' string2bl ob’ MODULE_NAME ' f budf'

strl en

Library: ib_udf
Added in: IB
Better alternatives. Internal functions BIT_LENGTH(), CHAR[ACTER]_LENGTH and OCTET_LENGTH()
Description: Returns the length of the argument string.
Result type: INTEGER
Syntax:

strlen (str)
Declaration:

DECLARE EXTERNAL FUNCTION strlen

CSTRI N§ 32767)

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_strlen' MODULE_NAME 'ib_udf'

substr

Library: ib_udf
Changedin: 1.0,1.5.2,2.0

Description: Returnsastring'ssubstring fromst ar t pos toendpos, inclusively. Positionsare 1-based. If end-
pos ispast theend of the string, subst r returnsall the charactersfrom st ar t pos to the end of the string. This
function only works correctly with single-byte characters.

Result type: VARCHAR(n)
Syntax (unchanged):

substr (str, startpos, endpos)
Declaration:

DECLARE EXTERNAL FUNCTI ON substr
CSTRI NG 255) NULL, SMALLI NT, SMALLI NT

125

External functions (UDFs)

RETURNS CSTRI NG(255) FREE I T
ENTRY_PO NT ' | B_UDF_substr' MODULE_NAME 'ib_udf’

The above declaration is from the filei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL resullt,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLS to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

e IninterBase, subst r returned NULL if endpos lay past the end of the string.

Tip

Although the function arguments are slightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility and multi-byte character set support.

substrl en

Library: ib_udf

Added in: 1.0

Changedin: 1.5.2, 2.0

Better alternative: Internal function SUBSTRING()

Description: Returns the substring starting at st ar t pos and having | engt h characters (or less, if the end of
the string is reached first). Positions are 1-based. If either st art pos or | engt h is smaller than 1, an empty
string is returned. This function only works correctly with single-byte characters.

Result type: VARCHAR(n)
Syntax:
substrlen (str, startpos, |ength)
Declaration:
DECLARE EXTERNAL FUNCTI ON substrl en
CSTRI NG 255) NULL, SMALLINT, SMALLI NT

RETURNS CSTRI NG 255) FREE IT
ENTRY PO NT ' I B _UDF substrlen' MODULE NAME 'ib_udf'

126

External functions (UDFs)

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

Tip

Firebird 1.0 has also implemented the internal SQL function SUBSTRING, effectively rendering substr | en
obsolete in the same version in which it was introduced. SUBSTRING also supports multi-byte character sets.
In new code, use SUBSTRING.

truncat e, i 64truncat e

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5, 2.0.6

Description: These functionsreturn the whole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18)
Syntax:

truncate (nunber)
i 64t runcat e (bi gnunber)

Caution

Both functions round to the nearest whole number that islower than or equal to the argument. This means that
negative numbers are also “truncated” downward. For instance, t r uncat e(- 2. 37) returns- 3.

Bug alert

Contrary to what's mentioned above, in versions 2.0 through 2.0.5 anything between -1 and 0 is truncated to O.
This anomaly has been corrected in Firebird 2.0.6 and above (as a backport from 2.5).

127

External functions (UDFs)

Declarations:
In Firebird 1.0.x, the entry point for both functionsist r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Truncat e
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' f budf'’

In Firebird 1.5, the entry point has been renamed to f bt r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Truncat e
NUMERI C(18) BY DESCRI PTOR, NUVERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'fbtruncate' MODULE NAME ' f budf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing * r ound and
*t r uncat e declarations and declare them anew, using the updated entry point names. From Firebird
2.0 onward you can aso perform this update with ALTER EXTERNAL FUNCTION.

128

Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer trandliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets — such as SIS (Japanese) and WIN1251 (Russian) — even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “asis’ and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese data
columns using either parameterized queries or literal strings without introducer syntax would fail with tranglit-
eration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
aretill stored “asis’ but what is stored is an exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no transliteration
error. When the connection character set isNONE, no attempt is made in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw atrandliteration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sql subt ype field in the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still required when handling heteroge-
neous character sets from a client context that is anything other than NONE. Both methods are shown below,
using character set 1S08859_1 as an example target. Notice the “_" prefix in the introducer syntax.

Introducer syntax:
_1SCB859 1 nystring

Casting:
CAST (nystring AS VARCHAR(n) CHARACTER SET | SC8859 1)

129

Notes

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides alimited explicit pessimistic locking capability for cautious use in conditions where the
affected row setis:

a. extremely small (idedly, asingleton), and

b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. Thisis an expert feature, intended for use by those who thor-
oughly understand its consequences. Knowledge of the various levels of transaction isolation is essential. WITH
LOCK isavailablein DSQL and PSQL, and only for top-level, single-table SELECTSs. As stated in the reference
part of this guide, WITH LOCK is not available:

* inasubquery specification;

» for joined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
e withaview;

» with the output of a selectable stored procedure;

* with an externa table.

Syntax and behaviour

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]

[WTH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

Asthe engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardiess of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

130

Notes

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and areig-
nored.

isc_tpb_concurrency If arecord is modified by any transaction that was committed since the trans-

_ _ action attempting to get explicit lock started, or an active transaction has per-

+isc_tpb_nowait formed a modification of this record, an update conflict exception israised im-
mediately.

isc_tpb_concurrency If the record is modified by any transaction that has committed since the transac-

_ _ tion attempting to get explicit lock started, an update conflict exception is raised
+isc_tpb_wait immediately.

If an active transaction is holding ownership on this record (viaexplicit locking
or by anormal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This meansthat, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read committed | If thereis an active transaction holding ownership on this record (via explicit

locking or normal update), an update conflict exception is raised immediately.
+isc_tpb_nowait

isc_tpb_read committed | If thereis an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the ex-
+isc_tpb_wait plicit lock waits for the outcome of blocking transation and when it finishes, at-
temptsto get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement triesto accessarecord that islocked by another transaction, it either raisesan update
conflict exception or waits for the locking transaction to finish, depending on TPB mode. Engine behaviour here
isthe same asif this record had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, viajoins, subqueries, etc. It also guaranteesthat rows not meeting the search conditionswill not belocked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, paralel transactions commit their changes during the course of the locking
statement's execution.

131

Notes

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches’). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

The optional “OF <col um- nanes>" sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<col um- nanes>" subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. Thiswould
enableyou to processthe currently-locked row before the next isfetched and locked, or to handle errorswithout
rolling back your transaction.

Caveats using WITH LOCK

Rolling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

Most applications do not need explicit locks at al. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to arelational database in aclustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

Explicit locking is an advanced feature; do not misuseit! While solutions for these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking

Simple:
SELECT * FROM DOCUMENT WHERE | D=? W TH LOCK
Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT VWHERE PARENT_I D=7
FOR UPDATE W TH LOCK

132

Notes

A note on CSTRING parameters

External functionsinvolving strings often use the type CSTRING(n) in their declarations. Thistype represents a
zero-terminated string of maximum length n. Most of the functions handling CSTRINGs are programmed in such
away that they can accept and return zero-terminated strings of any length. So why the n? Because the Firebird
engine has to set up space to process the input an output parameters, and convert them to and from SQL data
types. Most strings used in databases are only dozens to hundreds of byteslong; it would be awaste to reserve
32 KB of memory each time such a string is processed. Therefore, the standard declarations of most CSTRING
functions—asfound in thefilei b_udf . sql — specify alength of 255 bytes. (In Firebird 1.5.1 and below, this
default length is 80 bytes.) As an example, here's the SQL declaration of | pad:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255), | NTEGER, CSTRI NG&(1)
RETURNS CSTRI NG(255) FREE | T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or causeit to return astring longer than the declared output length. But the standard declarations are
just reasonabl e defaults; they're not cast in concrete, and you can change them if you want to. If you haveto | eft-
pad strings of up to 500 byteslong, then it's perfectly OK to change both 255'sin the declaration to 500 or more.

A specia caseiswhen you usually operate on short strings (say lessthen 100 bytes) but occasionally haveto call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that all the callswill be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that mgjority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(100), | NTEGER, CSTRI NG 1)
RETURNS CSTRI NG(100) FREE I T
ENTRY_POI NT ' | B_UDF_| pad' MODULE NAME 'ib_udf';

DECLARE EXTERNAL FUNCTI ON | padbi g
CSTRI NG(32000), | NTEGER CSTRI NG 1)
RETURNS CSTRI NG(32000) FREE | T
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME ' i b_udf';

Now you can call | pad() for al the small stringsand | padbi g() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

133

Notes

Passing NULL to UDFs in Firebird 2

If apre-2.0 Firebird engine must pass an SQL NULL argument to a user-defined function, it always converts it
to azero-equivalent, e.g. anumerical 0 or an empty string. The only exception to this rule are UDFs that make
use of the “BY DESCRIPTOR” mechanism introduced in Firebird 1. Thef budf library uses descriptors, but the
vast mgjority of UDFs, including thosein Firebird'sstandardi b_udf library, till usethe old style of parameter
passing, inherited from InterBase.

As a conseguence, most UDFs can't tell the difference between NULL and zero input.

Firebird 2 comes with a somewhat improved calling mechanism for these old-style UDFs. The engine will now
pass NULL input as anull pointer to the function, if the function has been declared to the database with a NULL
keyword after the argument(s) in question, e.g. likethis:

declare external function Itrim
cstring(255) null
returns cstring(255) free it
entry point "IB UDF Itrim nodul e nane 'ib_udf';

This requirement ensures that existing databases and their applications can continue to function like before.
Leave out the NULL keyword and the function will behave like it did under Firebird 1.5 and earlier.

Please note that you can't just add NULL keywordsto your declarations and then expect every function to handle
NULL input correctly. Each function has to be (re)written in such a way that NULLS are dealt with correctly.
Alwayslook at the declarations provided by the function implementor. For the functionsin thei b_udf library,
consult i b_udf 2. sql in the Firebird UDF directory. Notice the 2 in the file name; the old-style declarations
areini b_udf. sql .

These arethei b_udf functions that have been updated to recognise NULL input and handle it properly:

e ascii_char

e | ower

e | padandrpad

e [trimandrtrim

e substr andsubstrl en

Mosti b_udf functionsremain asthey were; in any case, passing NULL to an old-style UDF is never possible
if the argument isn't of areferenced type.

On aside note: don't usel ower, . tri mand subst r* in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

“Upgrading” i b_udf functions in an existing database

If you are using an existing database with one or more of the functions listed above under Firebird 2, and you
want to benefit from theimproved NULL handling, runthescripti b_udf _upgr ade. sql against your database.
Itislocated inthe Firebird mi sc\ upgr ade\i b_udf directory.

134

Notes

Maximum number of indices
In different Firebird versions

Between Firebird 1.0 and 2.0 there have been quite a few changes to the maximum number of indices per
database table. The table below sums them al up.

Table A.2. Max. indices per tablein Firebird 1.0-2.0

Page Firebird version(s)
Size

1.0,1.0.2 1.03 1.5.x 2.0

lcol | 2cols| 3cols| 1col | 2cols | 3cols| 1col | 2cols| 3cols| 1col | 2cols| 3cols

1024 62 50 41 62 50 41 62 50 41 50 35 27

2048 65 65 65 126 101 84 126 101 84 101 72 56

4096 65 65 65 254 203 169 254 | 203 169 203 145 113

8192 65 65 65 510 408 340 257 257 257 408 291 227

16384 | 65 65 65 1022 | 818 681 257 257 257 818 584 454

135

Appendix B:
Document History

Theexact file history isrecorded inthemanual modulein our CV Stree; see http://sourceforge.net/cvs/?group
id=9028

Revision History
0.9 24 Sep2008 PV First publication, based on the Firebird 1.5 Language Reference Up-
date with al the changes for 2.0 added (roughly doubling the size).

1.0 9 Dec 2010 PV GLOBAL: Renamed all “Deprecated in” section headers to “ Better al-
ternative”. This also required editing the text immediately following the
header and in some cases additional text in the section (if the “depreca
tion” was discussed in the section body).

Bookinfo: Added 2.0.6 to covered versions.

Introduction :: Versions covered: Added 2.0.6.

Introduction :: Authorship: Edited first paragraph. Added Frank Inger-
mann to contributor list.

Miscellaneous language el ements: Added section Shorthand casts.
Data types and subtypes :: BLOB data type: In Description, BLOBS ->
text BLOBs. Also added information on new bi nar y mnemonic + ex-
traexample.

Data types and subtypes :: New collations. Edited paragraph above ta-
ble. Improved the two paragraphs below the table and moved them into
aNote.

DDL statements:: ALTER DATABASE: Merged difference file clauses
onto one line in Syntax.

DDL statements :: ALTER DOMAIN: Added section Rename domain.
DDL statements :: ALTER TABLE: Added section FOREIGN KEY without
target column references PK.

DDL statements:: ALTER TRIGGER: Corrected formal syntax (can be
called with just the trigger name and no modifications).

DDL statements :: CREATE DATABASE: Moved Syntax one level up,
marked it as partial and added DIFFERENCE FILE clause. Added new
subsection DIFFERENCE FILE parameter.

DDL statements: Added section CREATE EXCEPTION.

DDL statements:: CREATE INDEX: Edited Description and Syntax.
DDL statements:: CREATE INDEX :: Indexing on expressions: Edited
Description.

DDL statements:: CREATE INDEX :: Maximum number of indices per
table increased: Edited paragraph under table.

DDL statements :: CREATE TABLE: Added section FOREIGN KEY with-
out target column references PK.

DDL statements:: CREATE VIEW :: Full SELECT syntax supported:
Added Note about the necessity of afull column list when using a
union within aview (to become optional in 2.5).

DDL statements :: CREATE VIEW :: PLAN subclause disallowed in 1.5:
Changed title to PLAN subclause disallowed in 1.5, reallowed in 2.0.

136

http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028

Document History

DDL statements :: CREATE VIEW: Added subsection View with non-
participating NOT NULL columnsin base table can be made insertable.
DDL statements :: DECLARE EXTERNAL FUNCTION: Added Note under
Syntax.

DDL statements :: DECLARE EXTERNAL FUNCTION :: BY DESCRIPTOR
parameter passing: Added “Availablein”.

DDL statements :: DECLARE EXTERNAL FUNCTION :: RETURNS PA-
RAMETER n: Added “Availablein”. Changed subcl ause ->cl ause
in Description (2x).

DDL statements:: DECLARE FILTER: Edited Description. Added

user _def i ned to Syntax. Added more info under Syntax block and
made it an itemizedlist. Converted Tip to formal para User-defined
mnemonics.

DML statements :: DELETE: Added [AS] to Syntax. Corrected syntax
note on WHERE CURRENT OF.

DML statements :: DELETE: Added subsection COLLATE subclause for
text BLOB columns.

DML statements :: DELETE: Added subsection Relation alias makes re-
al name unavailable.

DML statements :: EXECUTE BLOCK: Edited Syntax block.

DML statements :: INSERT: Added definition of <sel ect _expr>to
Syntax.

DML statements :: INSERT :: RETURNING clause: Edited Description.
Added formalpara“Note".

DML statements :: SELECT :: Aggregate functions: Extended function-
ality :: Aggregate statements. Sricter HAVING and ORDER BY: Edited
second listitem. Edited last paragraph.

DML statements :: SELECT :: FIRST and SKIP: Added “Availablein”.
DML statements :: SELECT :: Table alias must be used if present: Re-
named to Relation alias makes real name unavailable. Also changed
Description and paragraph before last example.

DML statements :: UPDATE: Added [AS] to Syntax. Corrected syntax
note on WHERE CURRENT OF.

DML statements :: UPDATE: Added subsection COLLATE subclause for
text BLOB columns.

DML statements :: UPDATE: Added subsection Relation alias makes
real name unavailable.

Transaction control statements :: SET TRANSACTION: Edited 2nd lis-
titem after Syntax block.

PSQL statements :: DECLARE :: DECLARE ... CURSOR: Edited Descrip-
tion. Added Notes formalpara.

PSQL statements :: DECLARE [VARIABLE] with initialization: Indented
var declarations in Example.

PSQL statements :: EXCEPTION :: Providing a custom error message:
Added note about max message length.

PSQL statements :: EXECUTE STATEMENT :: Caveats with EXECUTE
STATEMENT: Changed SQL -> DSQL initem 4. Rewrote item 6.

PSQL statements: Added section FOR SELECT ... INTO ... DO.

PSQL statements: Added section WHERE CURRENT OF invalid for view
Cursors.

Context variables :: CURRENT_CONNECTI ON: Improved Description.
Added note about upcoming change in 2.1 to last paragraph.

137

Document History

Context variables :: CURRENT _TI ME: Edited description. Removed
Note and added Notes formalpara.

Context variables :: CURRENT_TI MESTAMP: Edited description. Re-
moved Note and added Notes formalpara.

Context variables :: CURRENT_TRANSACTI ON: Improved Description.
Context variables :: ' NOW : Added shorthand cast examples. Removed
Note and added Notes formalpara.

Operators and predicates :: || (string concatenator): New subsection
Result type VARCHAR.

Operators and predicates :: || (string concatenator) :: Overflow check-
ing: Corrected “Changed in” and Description.

Internal functions:: BIT_LENGTH(): Edited Note after Syntax block and
placed it after Description.

Internal functions:: CAST(): Added introductory paragraphs before 1st
and 2nd example. Gave table rows top alignment. Added paragraph af-
ter“cast (? as integer)” example.

Internal functions:: CHAR _LENGTH(), CHARACTER LENGTHY(): Edited
Note after Syntax block and placed it after Description.

Internal functions:: LOWER(): Corrected Result type: VAR(CHAR) ->
(VAR)CHAR.

Internal functions:: OCTET_LENGTH(): Edited Note after Description.
Internal functions:: RDB$GET_CONTEXT(): Added Note after title. Re-
placed “general” with “global” (4x) in System namespace table.
Internal functions:: RDB$SET_CONTEXT(): Added Note after title. Al-
tered 3rd listitem in Notes formal para.

Internal functions:: SUBSTRING(): Edited Result type, Syntax and
much of the text in the rest of this section.

Internal functions:: TRIM(): Edited/corrected Description, Result type
and Syntax.

Internal functions :: UPPER(): Corrected Result type: VAR(CHAR) ->
(VAR)CHAR. Corrected “ See also” link: UPPER -> LOWER.

External functions:: get Exact Ti mest anp: Edited “Better aterna-
tive” and Description.

External functions:: | og: Changed | og ->1 og(x, y) in Description.
External functions:: ri ght : movedtosri ght andleft asymlink in
place.

External functions:: r ound, i 64r ound: Added 2.0.6 to Changed in.
Added Caution box. Edited and extended Bug warning box. Extended
last paragraph.

External functions: Added section st r 1 en.

External functions:: t runcat e, i 64t r uncat e: Added 2.0.6 to
Changed in. Added Caution box. Edited Warning box. Extended last
paragraph.

Notes :: Understanding the WITH LOCK clause :: Syntax and be-
haviour: In table, aligned 1st column left, al rowstop, and added peri-
odsto sentencesin first two rows.

License notice: Added Frank Ingermann as contributor. Copyright end
year now 2010.

138

Appendix C:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this License. Copies of the Li-
cense are available at http://www.firebirdsgl.org/pdf manual/pdl.pdf (PDF) and http://www.firebirdsgl.org/man-
ual/pdl.html (HTML).

The Original Documentation istitled Firebird 2.0 Language Reference Update.
The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.
Copyright (C) 2008—2010 All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writersand Editors of included PDL -licensed material (the“al.”) are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Alex Peshkov, Nickolay Samofatov, Dmitry Y emanov.

Included portions are Copyright (C) 2001-2007 by their respective authors. All Rights Reserved.

139

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 2.0 Language Reference Update
	Table of Contents
	Introduction
	Versions covered
	Authorship

	Reserved words and keywords
	Added since InterBase 6
	Newly reserved words
	New keywords

	Dropped since InterBase 6
	No longer reserved
	No longer keywords

	Possibly reserved in future versions

	Miscellaneous language elements
	-- (single-line comment)
	Shorthand casts
	CASE construct
	Simple CASE
	Searched CASE

	Data types and subtypes
	BIGINT data type
	BLOB data type
	New character sets
	Character set NONE handling changed
	New collations

	DDL statements
	ALTER DATABASE
	BEGIN BACKUP
	END BACKUP
	ADD DIFFERENCE FILE
	DROP DIFFERENCE FILE

	ALTER DOMAIN
	Rename domain
	SET DEFAULT to any context variable

	ALTER EXTERNAL FUNCTION
	ALTER PROCEDURE
	Default argument values
	Restriction on altering used procedures

	ALTER SEQUENCE
	ALTER TABLE
	ADD column: Context variables as defaults
	ALTER COLUMN: DROP DEFAULT
	ALTER COLUMN: SET DEFAULT
	ALTER COLUMN: POSITION now 1-based
	CHECK accepts NULL outcome
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive
 access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TRIGGER
	Multi-action triggers
	Restriction on altering used triggers
	PLAN allowed in trigger code
	ALTER TRIGGER no longer increments table change count

	COMMENT
	CREATE DATABASE
	16 Kb page size supported
	DIFFERENCE FILE parameter

	CREATE DOMAIN
	Context variables as defaults

	CREATE EXCEPTION
	Message length increased

	CREATE GENERATOR
	CREATE SEQUENCE preferred
	Maximum number of generators significantly raised

	CREATE INDEX
	UNIQUE indices now allow NULLs
	Indexing on expressions
	Maximum index key length increased
	Maximum number of indices per table increased

	CREATE PROCEDURE
	CREATE SEQUENCE
	CREATE TABLE
	CHECK accepts NULL outcome
	Context variables as column defaults
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive
 access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	CREATE TRIGGER
	Multi-action triggers
	CREATE TRIGGER no longer increments table change
 count
	PLAN allowed in trigger code

	CREATE VIEW
	Full SELECT syntax supported
	PLAN subclause disallowed in 1.5, reallowed in 2.0
	Triggers on updatable views block auto-writethrough
	View with non-participating NOT NULL columns in base
 table can be made insertable

	CREATE OR ALTER EXCEPTION
	CREATE OR ALTER PROCEDURE
	CREATE OR ALTER TRIGGER
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	DECLARE FILTER
	DROP GENERATOR
	DROP PROCEDURE
	Restriction on dropping used procedures

	DROP SEQUENCE
	DROP TRIGGER
	Restriction on dropping used triggers
	DROP TRIGGER no longer increments table change count

	RECREATE EXCEPTION
	RECREATE PROCEDURE
	Restriction on recreating used procedures

	RECREATE TABLE
	RECREATE TRIGGER
	Restriction on recreating used triggers

	RECREATE VIEW
	REVOKE ADMIN OPTION
	SET GENERATOR

	DML statements
	DELETE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	ROWS

	EXECUTE BLOCK
	EXECUTE PROCEDURE
	INSERT
	RETURNING clause
	UNION allowed in feeding SELECT

	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside
 subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	COLLATE subclause for text BLOB columns
	Derived tables (“SELECT FROM SELECT”)
	FIRST and SKIP
	GROUP BY
	Grouping by alias, position and expressions

	HAVING: Stricter rules
	JOIN
	Ambiguous field names rejected
	CROSS JOIN

	ORDER BY
	Order by colum alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	Relation alias makes real name unavailable
	ROWS
	UNION
	UNIONs in subqueries
	UNION DISTINCT

	WITH LOCK

	UPDATE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	ROWS

	Transaction control statements
	RELEASE SAVEPOINT
	ROLLBACK
	ROLLBACK RETAIN
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	SET TRANSACTION
	IGNORE LIMBO
	LOCK TIMEOUT
	NO AUTO UNDO

	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	CLOSE cursor
	DECLARE
	DECLARE ... CURSOR
	DECLARE [VARIABLE] with initialization

	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Caveats with EXECUTE STATEMENT

	EXIT
	FETCH cursor
	FOR EXECUTE STATEMENT ... DO
	FOR SELECT ... INTO ... DO
	AS CURSOR clause

	LEAVE
	OPEN cursor
	PLAN allowed in trigger code
	UDFs callable as void functions
	WHERE CURRENT OF invalid for view cursors

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	UPDATING

	Operators and predicates
	NULL literals allowed as operands
	|| (string concatenator)
	Result type VARCHAR
	Overflow checking

	ALL
	NULL literals allowed
	UNION as subselect

	ANY / SOME
	NULL literals allowed
	UNION as subselect

	IN
	NULL literals allowed
	UNION as subselect

	IS [NOT] DISTINCT FROM
	NEXT VALUE FOR
	SOME

	Internal functions
	BIT_LENGTH()
	CAST()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	COALESCE()
	EXTRACT()
	GEN_ID()
	IIF()
	LOWER()
	NULLIF()
	OCTET_LENGTH()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	SUBSTRING()
	TRIM()
	UPPER()

	External functions (UDFs)
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	dow
	dpower
	getExactTimestamp
	i64round
	i64truncate
	log
	lower
	lpad
	ltrim
	*nullif
	*nvl
	rand
	right
	round, i64round
	rpad
	rtrim
	sdow
	srand
	sright
	string2blob
	strlen
	substr
	substrlen
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters
	Passing NULL to UDFs in Firebird 2
	“Upgrading” ib_udf functions in an existing database

	Maximum number of indices in different Firebird
 versions

	B. Document History
	C. License notice

