Firebird 2.1 Language Reference Update

Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.

9 December 2010, document version 1.0 — covers Firebird 2.1-2.1.4

Firebird 2.1 Language Reference Update

Everything new in Firebird SQL since InterBase 6

9 December 2010, document version 1.0 — covers Firebird 2.1-2.1.4
Paul Vinkenoog et a.

Table of Contents

R 011 0T [F o1 o o I PP SPTP 1
T o = A 1 7= (= PRSP 1
VEISIONS COVEIEAeiieiiiiiie ittt e ettt e sttt e ettt e e e skt e e e ekttt e e s b bt e e e st et e e s aabte e e e e anba e e e e e nbbeeesanbreeeeans 2
U 11 g0 £ g T o PSSR 2

2. Reserved Words and KEYWOITSueiiiieeiiiiciiieee et e e e e e e e e e e e s e et r e e e e e e e e s sanrraneeaaeeenaas 3
Added SINCE INTEIBASE 6 ..ottt e e s st e e e s b e e e s snreeeenn 3

NEWIY FESEIVE WOITS ...t et e e e e s e e e e e e e e s e et rar e e e e e e e s s nnnraaeneeaeeas 3
NEW KEYWOITS ...oeeieeieiiieeee et e e e e e s et e e e e e e e s e et b a e e e e aeessssnanbrbaeeeaaeeeaanes 4
Dropped SINCE INENBASE 6eeeiieeeiiiiiiiiee e e e sttt e e e e e e s e e e e e e e s s s et e e e e e e e s s s satabaaereeaeessannnseees 6
N[O R Lol aTo o g === Y=o O PRPRR 6
NO [ONQEN KEYWOITS ... e e e e e e e s s r e e e e e e s e entaaaeeeeas 6
Possibly reserved inN fULUME VEISIONScuuviiiiiee ettt e e e st e e e e e e s s e eeeaaeeeean 6

3. Miscellaneous [anguage ElEMENLSceiiiiei i e e e e e e e s e e e e e e e e e e s snarrraeeeaeens 7
== (SINGIE-TINE COMMENL) ... e e e e e s e e e e e s e et eeeaeeesssnntaanreeaaeesannes 7
SNOMNBNG CBSES ...t e e ettt e e e bbbt e e e ebb e e e e e sabb e e e e e nbeeeas 7
CASE CONSIIUCT ...ttt e e e ettt ettt e e e e e ettt e e e e e e s e a bbbttt e e e e e e s aanebbb b e e eeeeessannbbeneeeeaeeenanns 8

S 00T 0 Lo 7 SRR 8
SEAICNEA CASE ...uuititiiiiitititetettterererererererraraer aese e ae s eaeseaeseseesaesesesssesssesesssasebesssssesesesesesesessnnnnns 9

4, Data types aNA SUDLYPESeeiiiiiee e e e e ettt e e e e e e et e e e e e e e s e st e e e e e e e e e aaatbeeeeeaaeeessanntbaeeeeaeesaannnees 10
BIGINT QBEA LY .rrveeiieeeiiiiiiitt et e e e e e e e ettt e e e e e e et e e e e e e e e s e s et et e e e eeaesessasabaeeeeaeeesssasnsaaneeeaaessannnes 10
@] R0 = T 1Y/ o L= P EESRSP 10

Text BLOB support in functions and OPEratorSveeeeiiiiciiiiieeee e st e e e e e e e e e 10
VarOUS ENNANCEIMENTSueiiiiiiiiie ettt e et e s s be e e e s b b e e e e e bt e e e e e sbbeeeesnnnneeas 11
NEW ChEFBCIEr SEESeeiie ittt e ettt e e e s et e e e sttt e e s enbbe e e e e nnbeeeeeanes 11
Character set NONE handling Changedoeiiiiiiiiiiiiiiiiee e e e e e e e 12
INEW COHBLIONS ...ttt ettt e ettt e e e bbbt e e e ea bttt e e s sbb e e e e e nb et e e e enbte e e e s annneee s 13
Unicode collations for all CharaCter SatS ..o 14

5. DDLU SEAIEIMENTS ... 15

L0 N N 1\ PP P TP RPRPRPR 15
CREATE COLLATION ittt sttt ettt s e e s st s e st e e st s e r e s e s e e e e e e ennenns 15
DROP COLLATION ettt ettt et st et et e e st e e et et s e e e e e e s e s e e e e e ens 17

L0 1Y 1Y Y PP 17

DA T A B A SE . ettt eas 18
CREATE DA T ABASE .ottt e et e et e et et et et ea et eaaanannns 18
ALTER DA T AB A SE ..ottt e et e et e e et et e e e et e e e nans 19

DOM AN L a e e e a et e a et aaerns 21
CREATE DOM AN ittt et e et e e et e e e e e e e e et e e et eane s annannannns 21
ALTER DOMAIN oottt et e et et e e e et s et s e et e e et s e et s e e e e e e e s e annns 21

E X CEPT ION ettt et et e e et et e e et e e et e e et e e et e e et e e e e a et e e e e e e anenns 22
CREATE EXCEPTION Lottt et e et e et e et e e et e e e e e e e e s e ae e e aesenaenns 22
CREATE OR ALTER EXCEPTION ..uiiiiiiiiiie ettt et et e et e e e s e e e e e eeenaenns 23
RECREATE EXCEPTION .oiiiiiiiiiiiiei e e e et e et s e e e et s et et s et et e et ea s e s en et enaenenennees 23

EXTERNAL FUNGCTION .ttt et et et et s et e et s e e s e e s e e e e e e e e e aeeenaen 23
DECLARE EXTERNAL FUNCTION ...ttt e et s e e et e et s e et ee s s aeesnaenasnannns 23
ALTER EXTERNAL FUNCTION .ottt ettt e e e s s e e s e e e s e s e s ena e e e en 24

1 R I PPN 25
DECLARE FILTER oiiiiiiie ettt ettt e et e et e et et e e e et e e e et e e et e e et aenennenanns 25

I D X ettt ettt ettt e e e e 26

Firebird 2.1 Language Ref. Update

CREATE INDEX ittt e et et et e e s e e e e e e e e et s e et s e et s e s e s e s e s e aenns 26
Privileges: GRANT @Nd REVOKEccociuiiiiiiie e e e e e ettt iee e e e e e s s etibee e e s e e e s e s ssaasaaaeeeaaesssennntbnneeeaaeeesanns 28
REVOKE ADMIN OPTION L.iuititiiteit sttt et et e e s e e e e e s s e s s e s s e s e e e e e aeaeens 28
PROCEDURE ...ttt et e et e et e et s eas 29
CREATE PROCEDURE ...ttt ettt ettt e s e e s e e e s e e e e e e e e e ennenns 29
ALTER PROCEDUREcuiiiiiiii et et e e et s e e e e e e e e e e e e e e e e anannns 32
CREATE OR ALTER PROCEDUREcuiiiiiiiiiiieieee ettt e e ee e e s eas e e e s ene e s e ennenns 33
DROP PROCEDURE ...ttt e e e et e et e et e et e e et e e s et e et ea e aneaaanenaenenenns 33
RECREATE PROCEDURE ...ttt ettt ettt e s et e e e e e e e e e e e e e e e eaaen 33
SEQUENCE OF GENERATOR ..ouiiiiiiitit ettt e et e et e et e e e e et s e e e e et e e e e e e e e aesanaenns 34
CREATE SEQUENCE ...ttt et e et e et e e e et e e e e e s e e e e e e e s e e e e e e e ens 34
CREATE GENERATOR ..ttt ettt ettt e et s e e e e e s e e s et s e e e e e e e anaen 35
ALTER SEQUENCE ...ttt et et e et e et e e e e e et e e e e e e e e e e e anannns 35

SET GENERATOR ..ttt e e e et e et e et e et e et e e e e e e et e e e e e e e e e e e e aensenen 36
DROP SEQUENCEouiiiiiiiitii ittt ettt e st e e st s e st e e st e e s et st e e e e s e r e r e e e e e ens 36
DROP GENERATOR ettt sttt et e e s et s et s s e s e et s e e e e e e e s e e e s enaeans 36

B I = PP PP PP TPPPT 37
CREATE TABLE ..ot e e e e e e e e e e s et e e e e e ea e et en e et eaaenaennenennas 37
ALTER TABLE oottt e e e et e e e et et e et e e e et e e e e anans 42
RECREATE TABLE ...ttt et st e r e s e e e e e e e eas 45
TRIGGER ..ceei it e e et ettt e e 45
CREATE TRIGGER ...ttt et e et e et e et e e e e s e e s et s e e e e e e e e e annns 45
ALTER TRIGGER ... et e e e e e e e e et e e et e e e aeeenaen 50
CREATE OR ALTER TRIGGER ...ttt et e et e et e e et et e e an et eaneaannas 52
DROP TRIGGER ...eiiiiiiiee et e et e e e et e e e e s e e e e e e s e e e e e e e e ens 52
RECREATE TRIGGER ...ttt e et e e e et e e et e e et e e a et e e e s e e et e e e s ennennaen 52

A L PP PRPRPRP 53
CREATE VIEW ettt ettt e et e et e e s et e e e e et e s e e e e s e tnea s et eaa et ea e et eane s ennennennns 53
RECREATE VIEW ettt ettt et e e et s e et st s s e e s e s e e e r e e e eas 55

6. DIMIL SBLEIMIEINES ... 56
[o I PSP PP TP 56
COLLATE subclause for text BLOB COIUMNSuviiieiiiiiieeeiiiiee e siiee e 56
ORDER BY ittt aa e 57
I N PP PP TP PPRPRPPRPRN 57
Relation alias makes real name unavailablecccveveiiiiiiiieinii e 57
RETURNING .ottt ettt e e e e e e e et e e s et e e et e e s et ea s et e a et e e et en et eenanenennaen 57

O 11T T PP PRPPRPRPPRPRR 58
EXECUTE BLOCK ..iiitiiiiiietets et e e et e et e e e et e e et e e et e e et e e et e e et e e e e e e e e et ae e s aneaannenns 59
COLLATE in variable and parameter declarationscccooiiiiiiiiiieeie s 61

NOT NULL in variable and parameter declarationsccceeeeiiiiiiiiiiieeee e 61
Domains inStead Of atalYPESvvvviiiiiee i e e e e st e e e e e s e e eneees 61
EXECUTE PROCEDURE ...ttt ettt e et e et e et e e et e e e e e e e e e e e e e e e e e e aesanannns 62
L St PSP UPTPPPRPS 63
INSERT ... DEFAULT VALUES ...ttt et e e e e e e e e et e e e ennas 64
RETURNING ClAUSE ... 64
UNION alowed in feeding SELECTccuviiiiieeeiiiiiiiieiee e e e e s ssrtree e e e e e e e e s sniare e e e e e e e s snnnneraeeeaeens 64
MERGE ... e e 65
Sl I O PPN 66
Aggregate functions: Extended funCtionalityccccooiiiiiiiiiie e 66
COLLATE subclause for text BLOB COIUMNScuuiiieiiiiiieeeiiiiee e 68
Common Table EXpressions (“WITH ... AS ... SELECT”) .uuuuuiiiieeeeiiiiiiiiieeeeee e eesiivnreeeee e e e ennes 68
Derived tables (“SELECT FROM SELECT”) ...iicciuiieiiieeeeieiiiiieeeeeee e e s seintneeseeeeesssnnsssnneeaaaeesanns 71

Firebird 2.1 Language Ref. Update

(LS =10 JES S L = TR 72

L 0L 1 = S 74
(YA N RS (ot (< g U = 75
N0 I PP 75
LI = = S 77
T PP 80
Relation alias makes real name unavailableoeeiiiiiiiiiiiee e 81

[1YY A T PP 81

L1 N PP 82
KL N L0 LS 83

L1 3 A IS 84
COLLATE subclause for text BLOB COIUMNScoovivuiiiiiieeeeieeeie et e e e eevaaaaa s 85
LI = = S 85
T PP 85
Relation alias makes real name unavailableeeeiiiiiiiiieee e 85
RETURNING .ttt e e e et e e e e e st et e s e e s e st sa e s a s eaeasararararararareransnenenenen 86

[1YY A TP 86
UPDATE OR INSERT .ttt ittt e et e e st s et st s e s s s e s e s s eaeaensasararararararararareaensnenens 87
7. TransaCtion CONEIOl SLALEIMENEScoiiieiiiiiie e ee e ettt e e e e e et et e e e e e s e e e e e s b b eeeesesseesbbbaseeeesseenessnnnes 89
L I AN Y Y = 8 1\ N 89
(I I 7 AN 1 N 89
ROL L BA CK RET AN ottt e et et a e s ea e et a e e e e e s e seasnenrnenrarnrararsraranannns 89
ROLLBACK TO SAVEPOIN T ittt et e e ea s s eaeararararararararererenenenens 90
TN 1 PP 90
INtErN@l SAVEPOINLESeiiiiiei e e et e e e e e e et e e e e e e e s e st b e e rereaeeeseaantbrneeeaaeeaaanns 91

S V= Lo gL ES3 0o [s | PSRRI 92

S I 72 1 Y O 1 10 92
IGNORE LIMBO ittt ittt et e et e e et e e e e e e s e eaeaeaeaeasaeaeaeasseaeaesassssarnrnsnsnenensn 93

I 13 S I 117/ 1= PP 93

NO AUTO UNDO ..ottt ettt et et e e s e e e e e e s e eaeaeaeataeaearaeaearererenenensnsnensnenen 93

T S I = (1 £ 95
BEGIN ... END blockS May D8 EMPLY ...cccoiiiiiiieiee e a s 95
[N PP 95
(O I @ 1 0! U £ o 96
[0 L8 I A PP 96
DECLARE ... CURSOR ..ottt ittt ettt et e e e e e s e e s et eaeaeaeara s rarararerenenenenenens 97
DECLARE [VARIABLE] With iNitialiZationccccooeiiiiiiiii v eaeaees 98
DECLARE with DOMAIN instead Of datatyPeeeeeeeeeiiiiiiiiiiee et 98
COLLATE in Variable deCIaralionccuuuuiiiiiiiiiiieiee et e s e e e e e e 99

NOT NULL in variabl@ deCIarationccoiiiiiiiiiiiiiie ettt e e e e e eeaaae e e e e e s eenees 99

L 8 =t N 1 P 100
Rethrowing a caught EXCEPLIONouiiiiiiieee e e e ee e 100
Providing @ CUStOM ETOI MESSAGEuvvviieeeieeeeiiiiitree e e e e e e s settrer e e e e e e e e s saabrreeeeaeesssennrreeeeaaens 100
EXECUTE PROCEDURE ..ottt ettt ettt e e e e e e e e e e ea e s et eaeaea s eaeaeasssssnssensnenensn 101
[LG U I S I AN I =1V = N N 101
Lo 30 7= 2= (= (U] 41 <o R 101

ONE row Of dafa FEEUMMEAooiiiiiiieee e e e e e e e e e et s e e e e s e e ee s e e eeaeaeanees 102

Any number of data rOWS FEIUMEooieiiiiiiiiiie e a e e 102
CaveatS With EXECUTE STATEMENT ..uutiiieitteeeete e e et e e e eese s e e e etaseeesanaseeeesnaseeeesareesesnareeees 103
= PP 103
L I 1o | TR 103
FOR EXECUTE STATEMENT ... DO ittt e e e e e e s e e s e s e s ea e e e e e s senenensn 104

Vi

Firebird 2.1 Language Ref. Update

FOR SELECT ... INTO ... DO ottt ettt ettt et e e s et s et s e e n e e e e e anans 104
AS CURSOR ClAUSE ..eveiiiee i ittt e et e e e e e e s e et e e e e e e s s s e nttbaeeeaeeeesennnrnees 105

[Y O PP PP PPTPPP 106
L@ I o £ o | RSP 107
PLAN allOWEd iN tHQQEr COUE ...uvviiiiiie et e e e e e et e e e e e e s e et aeeeeaens 107
UDFs callable as vVOid fUNCHIONSc.uuiiiiiiee et e e e e s ae e e e e e e e e eeans 107
WHERE CURRENT OF valid again fOr VIEW CUISOISuvvieiieeeiiiiiiieeeee e e e cstiireee e e e e e e esinnnnneeeae s 108
LS I 00 01 (= A= = o= USRS 109
CURRENT_CONNECTT ON ...ttt ettt et et e et e e eee e e et eae et et eeeese et et eeeeseeeeeeereeseeeeeeeeeeeeeereesaneeeenens 109
(08 N I = T RO 109
CURRENT _TI VE .ottt ettt eee et et ee et e et e e et e aeeaee st e e teeaeeeeeeaeseeeseeeeesaeesreeeesaeeseeesensaeesnneseeas 110
CURRENT _TIMESTANP ..ottt ettt ee ettt e ettt e et e et e et e et e eae e e s et e etesaeesaeeseeseeeseeeeeeeaes 110
CURRENT_TRANSACTT ON ...ttt ettt ee et eee e s et e e ae s e seteeteseessaeeeaesseesaeeseesaeeseeesteeseeseeeseeeaee e 111
CURRENT _USER ...ttt ieteeetseee et e e te s e st eete et eeaeeeeesaeeseeeetesaeeaeeesaesaeeseeeeesaeesreeeesaeeseeesensaeesneesrens 112
[I I N PPN 112
(€ 5700 D PP PRSP 112
I S = T PSP 113
INEWV ettt ettt ettt e e ekttt e e ettt e 4o a bttt oo e Rttt e e oAb et e o4 oA R Rt e e e e e ARttt e e e en R b e e e e e nne e e e e e nar e e e e nnnnes 113
B T PRSPPI 114
@ T PRSP 114
20 11T @ 11 PRSP 115
I 10 5P PPPRPOTPPRR 116
LI T I T N PPN 116
10. Operators and PrediCALEScciiiiiiiiie e e s e e e e e s e e e e e e e s s e e e e e e s s saabebeeeeeeeesssanarrreeeeas 117
NULL literals allowed as OPEIrANASccoiiiiiiiiiiie et e e e e e et e e e e e e e e e saaraneeeeas 117
[Lo o0 = g o) SRR USSR 117
TeXt BLOB CONCALENALTIONuveeiiieeeiiiiiiiiieeee e e e s eeetiite e e e e e e e s e ettt e e e e e e e e s e entreaeeeeaeeessennnreneeeaens 117
ResuUlt type VARCHAR OF BLOBociiieeiiiiiiiiieiiee e e e s ettt e e e e e e e e s saabaaee e e e e s e s senansaaneeaaeeseannenns 117
OVEFIOW CHECKINGvviieiiee e e e e e e e enneees 118

N I PP RP 118
NULL HteralS @llOWEcoeiiiiiiieee e e e e e e e e e e s et eeeeas 118
UNION S SUDSEIECL ...uviieiiiiii it e e e e st e e e e e e e s e et re e e e e e e e e e s satnbraeeeaaeesaananes 118
ANY / SOME ..ot 118
NULL HteralS @llOWE ...t e e e e e e e e s et eeeeas 118
UNION S SUDSEIECL ...uvviiiiiiei it ee e e e e e e e e e e e e e s e et re e e e e e e e s e s satntbaeeeaaeeseananes 119
RSP PPRRP 119
NULL HteralS @llOWE ...t e e e e e e e e s et eeeeas 119
UNION S SUDSEIECLviiiiiiie ittt ee e e e e e e e e e e e e e s e et re e e e e e e e e e e satnbeaeaeaaeesaannnes 119

IS [NOT] DISTINCT FROM ..iuiitiiitiiitiiie ittt st s s et s e e e e e e e et s et s et e eanaea s e e s e e s easeaeean e e aannns 119
NEXT VALUE FOR ..ottt ettt e e et e e e et e et e et e e et e e et e e et e e et e e s e aneenannns 120
S Y PR PRPTPPRR 120
AN o o =0 = (N 0 ot (0] 1P SRPRR 121
[PRSP 121
Y 2 T PP PRI 122
Y TN PRSPPI 122
12, INErNal TUNCLIONS e e e e s e et e e e e e e e e e s s esa b b aeeeeeeessanntrrneeeaens 123
F = | ISP TPPRPRPPTRR 123
@10 | T PP PRPSUPPRR 123
ASCH_CHAR() vttt ettt et et e et e e et e e et e e st e et e e e saeeeeeeaeeeeeeseeeeeesreeeeesaeeseeeeesaeesreeseseaee e 124
ASCH VAL() ettt ettt et e ettt e et e et et e et e ete et e s et e ete e e e eaeeeteeaeeseeeeeeeseesaeeeeereeseeeteeeeereens 124
ASIN(ettt ee ettt e ettt et e ettt e e et ettt e et ete e —eetteete e te et e et e et e et e ete e te et eereeaesreens 125
ATAN(ettt eeee et et ee et et e et e et et et e et e e eeeeaee et e e te et e ea e et e eaeeereeeteeateer e e et et e eteeete e teereeateeteaeenaeas 125

Vii

Firebird 2.1 Language Ref. Update

ATANZ() oottt ee et e ettt e et et e et e et ettt e et et et e et e et et n ettt e ettt r et en et 126
BIN_AND() vttt eeeeeeeeeeeee s eeeeeeeeee et eeee et et e e et eeeeee et eeeees et s e e eeeeeses e et eeee et e e et ee et ener s eee et erenneenas 126
BIN_OR() «.veveteeeeeeeeeeeeseeeeeeees et seeeeeee et eseee et e eesee e eeeee et et ee e e e et e s et e ee et et e e et s e e e ee et et s st e et et en e s enen e, 127
BIN_SHL() «-vrvveeeeeeeeeeeeseseeeeeeteseseseeteeeseseseeeee et et et s e e e eeee et et eeseet et et s se st et et et e et et eser s et ee st eseneneeeeeeees 127
BIN_SHR() vevrveeeeeeeeeeeeseseeeeeseeteseeeeeeeeses s seeeee et s eeeeeeeses e e s et esee e s et et et es s s et ee et et s s e eeeenen e eeeeeneean 127
BIN_XOR() +.eeeeeeeeeeeeeeeeeeeeesese s seeeee et s sees et et et es e eee et et ee e e e et ee et s e st eees et en e et et et et s s e e et ee s e eeeeenan 128
BIT_LENGTH() «vvveveeeeeeeeeeeteeeeeeeeeeseseseseeeeses s seeeeses et eseeeeeesee s e et eeeses s s eseeees s s seee et eneneseseesenenen. 128
CAST() ettt ettt ettt e et et et e et et ettt e e et ettt e et et ettt en ettt et er e, 129
CEIL(), CEILING() «.vvveteeeeeeeeeeeseseeeeeeeeseseeeeeeeeteseeseeeeeeseseseeeeseses s eeeeeees e e seee et et s seeeseeseneneeeesnes 131
CHAR_LENGTH(), CHARACTER _LENGTH() v.vvveveteeeeeeeseeseseseseeeeeeseseeeeseesesesseeeesesesseseesesenenseees 132
COALESCE() vttt eeeeeeeeeeee e eeee et ee e e e e e ee e ee e e et ee et e e e e et ee et et e et et et s e et ee et ee e et e et en s se e e s 133
COS() ettt et e et et et e et e et ettt ettt ettt ettt ettt ettt r e, 133
COSH() vvvreeeeeeeee et et e et et et e e et ettt e e ettt e e et e e et et e e et et et e e et ee et et et et e et eeen e 134
COT() vttt ettt et e et et et e et et et e et et et e et et e e et e s et et et et st e et et e et e et e e et en et eneneeeens 134
DATEADD() .ttt et ee et e et et e e e et e e et e et e e et et s et et et et e e et e e et et e et et et n et et en e, 135
DATEDIFF() . eeeeeeeeee et e e ettt ee et et e e e et et et e e et et e e et et et et e e et e e et et en e et ee et en e et ee e ennsee e en e, 135
DECODE() v.vvveteteeeeeet et e eee et et et es e et et et e e et et et et e et eeee et e e e et e e et ee s e et et et e et et et et erer et enen e 136
EXP() vt eeeeeee et e e e e et et e et et e et et e et ettt ettt et ettt et et e ettt et ettt et en et 137
EXTRACT() «vveeteeeeeeeeeeees e eeeeee et et e et et et es s e et eees e ee e e et et et e eeee et et s e et ee et es s e e eee et eeeseseeeeseneneneeeees 137

IMILLISECOND <.ttt ettt e et s et et e e e et et s e e ee et en s e s es et s e et et eeeneneeeees 138

WEEK 1.ttt ettt et et ee et e et e et e e et ee e e e et e e et e e et e e et e e e et ee et e et en e en s 139
FLOOR() v veeeeteteeeeeeeeees et s seeeee et et seeese et s s e e eeesesee e s et e e et et eeeseeeeeee et s eeeees et es s s st es et s e e eeeeeenennen. 139
GENL_ID() «vveeereeeeeeeeeeeeeeee e e et e e e e e et et e e et e e et e e e et ee et e e e et eeeeen e e et et et e s et ee et s e s et et en s 140
GEN_UUID() .ottt et e e ee et e et et e e e et ee et e e e et et en e e et e et e s seeeeeenen e eeeeen e 140
HASH() vttt ee et e et e ee et et et e e et e e e e ee et e e et ee et e e e et e e et en e e et et ettt e et et en e et et er e eeees 140
TIEQ) +vveeeeeee et ee s e ee et e e et et eeee e s e e et et et et et et ettt e et e e et et e e e et et et et et et et et e et et e e et enen e en e 141
LEFT() «vveeeeeeeeeeeeeee e e e et et e s e e e e e et e e e e e et et s e e e et e e et e e e e e et et ee e e et et et e e et etenen e et et eeen e en e, 141
LINQ) evovee et eeeee et e ettt ee e s et et st et e et e et e e et et e et et et n e e et et e e ettt ettt eten e et en e, 142
LOG() veveeeeeeeeee et e e e et et s e e et ee et e e e et et et s e et et et et e e et e et et e e et et et ettt e ettt e ettt en et eren e 142
LOGILO() vrveeeeeeeeeeeeeee e eeeees e eeeeeeee et eeeee s et et e et et et et e e e e e et et et e et et et et eneee et e et er et e et eeen et eneneeens 143
LOWER() vevveeeeeeeeeeeee s e e eeee et s e et eeee et e e eeee et e e e e e ee et s e e s et es et e e et et et es e st e e e et en e see et enn e eeee e e 143
LPAD() .ottt et e et et et et e et ettt et et et ettt et et et et et ettt en et et et et en e et erer e eeenes 144
IMAXVALUE() ©.vveveeeteeeeeeeeteeeeeeee e et es s ee et es et s eeetes et et neeeeees et s e eeeeeses s e e ee et et s s et eeesenreseeeesenenen. 145
IMINVALUE(©.veeeeeeeeeeee et eee et ee e ee et ee e et et et s s e eeet et s s et et et s s s sees et s e et eeesen e eeeseeseeeneneseeeees 145
IMOD() vttt e et e e e e et e e et et e et et et ee et e et e e et e et et e e ettt e e et et et et ettt er et 146
NULLIF(Q) vveveeeeeeeeee et et eee et s e eeeees s eeeeeeee e e s et eeeees s ee s et esee e ee et et et en s s et es et en e seeeesen s e eeeeen e 146
OCTET_LENGTH() vevetveeeeeeeeeeeseeeeeeeete s e eeeees et seeeeeesee s s eeee et s s eseeeeees s e seeees s s e et et ereseeeseeeenenenen. 147
OVERLAY () cvrveteteteee e eeeee et eeeee et et et e et ee et e et e et ee et s e e e e et et e s e eeee et s e et ee et en e see et et en e e eeeeenennen. 148
PL0) vttt ettt ettt ettt ettt ettt e et ettt et ettt et e ettt et e et et n et enen s 149
POSITION() vevveteeeeeeeeeeeet e s e e e e et s e et e e et ee e e eees et et ee e e e e e s ee e e eeee et ee e et eees et s s eeeees et eneseeeeeereneneneees 149
POWER() vt veeeeeeeeeeseseseeeeeeses s eeeeeeeses s eeeeees et et se e e et et et es et ee et et et s e e sees et et s et et et et e e eeee et enneseeeeses 150
RAND() vvveteeeeeeeeeeee et et ee et e e et et s e e et et ee e eee et et et e et et et et e e et et et et et e et ee e et et et et en ettt en et enenan 151
RDBSGET _CONTEXT() «.veveteteeeeeeeeeeseseeeseeseseseseeeesesesseeeeeeseseseseseeees et seseseeeesen s seseeseeesesesesessenennen. 151
RDBSSET_CONTEXT() cvevvvevereeeseeeeeeseseseeeeeeseseseeeeeseeseseseseseeseseseeseeeeseeeses et esesesesseeeeseneneseseeesenen 152
REPLACE() ..vvtveteeeeeeeeeee et e e eeeeeten s e e e s et st etes et s s et et et et et ee et et en s s st et et ee s st et et eeen s s eeeeenneneeeees 153
REVERSE() .. vvveveeeteeeeeeeeteseeeeeeees et eseseeees et s eeetee et es s et et et et s ee et et et e s st eeetee e se e e et ee s e st eeesenneneeeees 154
RIGHT() vttt e et e e et et e e e et et et e et et et e e e ee e et et e e st et et et s e se e et et en e e e et eeee s e eeeeeerenneeens 155
ROUND() vttt et e eee et et ee et et e et ee et e e e et ee et et e e et ee et e e et et et es e st e e e et e seee et enn e eeee e e 156
RPAD() .ttt et et et e ettt et ee et et e et ee et et e e et et et e et et et et e e e et ettt ettt en ettt e et en e, 156
SIGN() ettt ee et et e et et e et et ee ettt e ettt ettt et et ettt e ettt e ettt en et eren e 157
SIN() vee et eeeee ettt et e e e e ettt ettt ettt ettt et ee et ettt r ettt en e, 158
SINH() et eee et e ettt et et e e e e et ee s e et e e et et e e e et et et e e e et et et et et et e ettt e ettt en et eren e 158

viii

Firebird 2.1 Language Ref. Update

SORT() teeeteteettttiee et e e ettt et e e e e e e et e et e eeeeeeeee ettt aeeeeteee e st aeeeeeeea et areaeaeeeeataraaaaaeeererrraaas 159
SUBSTRING() . evteueeet et et et eeeeeeeeeeeeeeeeeee et et e eeeeeeeeeeeeee et et et et e e eseeeseereeeeeeeseeeeeeeseeseeeeeareeneas 159
T AN () teeiitetttiee et e oottt ettt e e ettt e e eeee ettt e b eeeeeeeeettt——aeeeeeeeettta——aeeeeeetetttaaaeaaeersrrraaaaaaaaaaaees 160
TANH() vttt ettt e e e et e e et et et et e e e e e e e e e eeeeee e et et et e e e e e eeeeee et e eee et et et et et e et e e e eeeeenee e 161
TRIM() et ee oottt et e e e e e e et et et et et e e e e e e e e e eeeee e et et et et e e e eeeeeeeeeeeeeee et e s et e seeeeeereeenaeneneaeas 161
TRUNGC() vt eve et et et e e e e e e e et et et et e e e e e e e e e s eeeeeee e et et e e e e e eeeeeeeeeereeeeeee et et eneeseeeeeseeeeeeeeaeeeaeens 162
UPPER() . vtevteeeeeeeeeeeeeeee et eee et ee e et e eeeeeeeeeeeeeeeeeeeeeeeeet et e e e eeeeeeeeeeae et eteeet et et eeeeeeeereeee et eeeee et eneaes 163
13. EXternal fUNCLIONS (UDFS)cccoiiiiiieies ettt e e e e e e e e e e e et e e e e e e e e e e neareees 164
=Y o 1S 164
=Y o o 1= 164
=0 [1= P 165
=X Lo "o 11 TN 165
=Yoo 1Y I I TS Y= T oo 1 o o 166
=Yoo 1Y I TV < 166
=X [0 1Yo o | A o 1 167
=X [0 =Y o2 oY [167
oY [0 AT Y] TN 168
=X [0 I == | TN 168
=Y o I T o3 ¢ - 1 169
=Y o I £~ | 169
=Y I T 170
o= R 170
o= 0 22T 171
oY1 0 T - Y [N 171
oY1 0 T o 1 PN 172
oY1 0 T | N 172
(o= I T Vo S 173
(o301 173
(o3 0 17 o TR 174
(o0 A 174
[0 [11 S 175
[0 0T 0 11 P 175
L0 T Y 176
(o= = [ol I =13 = Uy 1 N 176
I T o YU g o 177
I A T g Tox=) A =N 177
0 TR 177
o o N 177
o o i 0 N 178
0 11 179
N = Lo PPN 179
I T 0 T 180
160 o T 181
Eal 2 LU T 182
Eal 2174 183
0 TS 184
(= 1 o T 184
T 0 PN 185
(oYU o Yo IS 7 o YU g Yo T 185
[= Lo PPN 186
L T 0 T 187
LYo [0 1 188

Firebird 2.1 Language Ref. Update

£ o 1 PP 188

LS T SRR 189

LS T 1 USSP 189

£ 1 P 190

L3 - La o O URPPTR 190

L= o | L P 191

LY ST 4T 124 o1 o 1 o TS 191

LS S =Y o PP 192
LY] ¢ 1= 0 PP 192
LY] o 13 0 T o P 193

L= L TSR 194

L= L o TSRS 194
ErUNCAL €, 1 BAL I UNCAL © ieniieiiiii ittt et e et e e e et et e e e e e e e b e b s et s eaaseaeseneaenseans 195

F N 0= 010 D A N\ o (== SRR 197
Character set NONE data acCepted “aS IS ...iieiiiiiiiiiieiie ettt et r e e e e e e 197
Understanding the WITH LOCK ClaUSEccuuviiiiiie ettt e e e e ee s 198
SyntaX and DENAVIOULcoiiiiiiiiiiiiec e e e e e e e e e s e et eeeeaeeeaaa 198

How the engine deals With WITH LOCKccuuiiiiiiee i ee e eeciirre e e e e e e s snrnnnee e e e e e 199

The optional “OF <col um- Nanes>" SUD-ClAUSEccooiiiiiiiiiiie e 200

Caveats USING WITH LOCK ..oiiiiiiiiiiiiiieiee e e e e e s ecitee e e e e e e e ettt e e e e e e e s s snatraeaeeaae s s e s sannenaneeaaeens 200

Examples using explicit IOCKINGcccuviiiiiie e 200

A NOtE ON CSTRING PAIAIMELELS ...uvtuiieieeiieeeiiiier e e e et e ettt s e s e e e s e et e s e e e e eeeaeta s s e e e e eeeeaennaaaeaeees 201
Passing NULL t0 UDFS N FIirebird 2ooooiiiiiiiice et 202
“Upgrading” i b_udf functionsin an existing databaseccovviiiiiiiiiiee i 202
Maximum number of indices in different Firebird VErSIONSocoviiiveeiiiiiiiee e 203
AppendiX B: DOCUMENE HISLOMYuveiiiiieeiiiiiiiii e e s e e e e e e e s st re e e e e e e e s e sntbaraeeeaeeeas 204
APPENIX C: LICENSE NOLICE ...uvvieiiie e ittt e e e e s e e e e e e e s et e e e e e e e e s e aantbreeeeaeeseeannssennes 209

List of Tables

4.1. Character SetS NEW iN FIFEDITToooiiiiiiiiie e 11
4.2. Collations NeW iN FIrEDITdoooiiiiie e e e 13
5.1. SPeCific COlAtioN GIITIOULEScuiiiiiiiiie et e e nrne e e 16
5.2. Maximum indexable (VAR)CHAR [ENGENoiiiiii e 27
5.3. Max. indices per table, FIrehird 2.0 ... 28
6.1. NULLS placement in ordered COIUMINSooiiiiiiiiiiiiiie et s e s 79
10.1. Comparison of [NOT] DISTINCT 10 “=" @0 “<>"uiiiiiiiiei e aeee e 120
12,1, POSSIDIE CASTS ittt ettt e e et e e e e e e a e e e e e e e e e e 130
12.2. Types and ranges Of EXTRACT FESUITSuveiiiiiiiieeeiiiiee ettt e e 138
12.3. Context variables in the SYSTEM NAMESPACEuuveiiiiiieie e e st 152
A.1l. How TPB settings affect eXpliCit [OCKINGcvviiiiiiieee e 199
A.2. Max. indices per table in FIrebird 1.0 — 2.0oooiiiiiiiiiiieee e 203

Xi

Chapter 1

Introduction

Subject matter

What's this book about?

This guide documents the changes made in the Firebird SQL language between InterBase 6 and Firebird 2.1.x.
It coversthe following areas:

* Reserved words

» Datatypes and subtypes

» DDL statements (Data Definition Language)

» DML statements (Data Manipulation Language)

» Transaction control statements

» PSQL statements (Procedural SQL, used in stored procedures and triggers)
» Context variables

» Operators and predicates

» Aggregate functions

* Internal functions

» UDFs (User Defined Functions, also known as external functions)

To have acomplete Firebird 2.1 SQL reference, you need:

» ThelInterBase 6.0 beta SQL Reference (LangRef . pdf and/or SQLRef . ht m)
» Thisdocument

Non-SQL topics are not discussed in this document. These include:

» ODSversions

* Buglistings

 Instalation and configuration

» Upgrade, migration and compatibility
» Server architectures

» API functions

» Connection protocols

e Toolsand utilities

Consult the Release Notes for information on these subjects. Y ou can find the Release Notes and other docu-
mentation viathe Firebird Documentation Index at http://www.firebirdsgl.org/index.php?op=doc.

http://www.firebirdsql.org/index.php?op=doc

Introduction

Versions covered

This document covers al Firebird versions up to and including 2.1.4.

Authorship

Most of this document was written by the main author. The remainder (3—4%) was lifted from various Firebird
Release Notes editions, which in turn contain material from preceding sources like the Whatsnew documents.
Authors and editors of the included materia are:

» J Beedey

* Helen Borrie

e Arno Brinkman

* Frank Ingermann

e Vlad Khorsun

» Alex Peshkov

* Nickolay Samofatov

e Adriano dos Santos Fernandes
* Dmitry Yemanov

Chapter 2

Reserved words and keywords

Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. as table or
procedure names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless
you have a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. Y ou can use them as identifiers without double-quoting.

Added since InterBase 6

Newly reserved words

The following reserved words have been added to Firebird:

BIGINT

BIT_LENGTH

BOTH

CASE

CHAR_LENGTH
CHARACTER_LENGTH
CLOSE

CONNECT

CROSS
CURRENT_CONNECTION
CURRENT_ROLE
CURRENT_TRANSACTION
CURRENT_USER
DISCONNECT

FETCH

GLOBAL

INSENSITIVE
LEADING

LOWER
OCTET_LENGTH

OPEN

RECREATE
RECURSIVE

RELEASE
ROW_COUNT

ROWS

SAVEPOINT

Reserved words and keywords

SENSITIVE
START
TRAILING
TRIM
USING

New keywords

Thefollowing words have been added to Firebird as non-reserved keywords. M ost of them are names of internal
functions added between 2.0 and 2.1.

ABS
ACCENT
ACOS
ALWAYS
ASCII_CHAR
ASCII_VAL
ASIN

ATAN
ATAN2
BACKUP
BIN_AND
BIN_OR
BIN_SHL
BIN_SHR
BIN_XOR
BLOCK

CEIL
CEILING
COALESCE
COLLATION
COMMENT
CoSs

COSH

coT
DATEADD
DATEDIFF
DECODE
DELETING
DIFFERENCE
EXP

FLOOR
GEN_UUID
GENERATED
HASH

IF
INSERTING
LAST
LEAVE

LIST

LN

Reserved words and keywords

LOCK
LOG

LOG10
LPAD
MATCHED
MATCHING
MAXVALUE
MILLISECOND
MINVALUE
MOD

NEXT
NULLIF
NULLS
OVERLAY
PAD

Pl

PLACING
POWER
PRESERVE
RAND
REPLACE
RESTART
RETURNING
REVERSE
ROUND
RPAD
SCALAR_ARRAY
SEQUENCE
SIGN

SIN

SINH

SPACE
SQRT
STATEMENT
TAN

TANH
TEMPORARY
TRUNC
WEEK
UPDATING

Reserved words and keywords

Dropped since InterBase 6

No longer reserved
The following words are no longer reserved in Firebird 2.1, but are till recognized as keywords:

ACTION
CASCADE
FREE_IT
RESTRICT
ROLE
TYPE
WEEKDAY
YEARDAY

No longer keywords
The following are no longer keywordsin Firebird 2.1:

BASENAME
CACHE
CHECK_POINT_LEN
GROUP_COMMIT_WAIT
LOG_BUF_SIZE
LOGFILE
NUM_LOG_BUFS
RAW_PARTITIONS

Possibly reserved in future versions

Thefollowing words are not reserved in Firebird 2.1, but are better avoided asidentifiers because they will likely
be reserved — or added as keywords —in future versions:

BOOLEAN
FALSE
TRUE
UNKNOWN

Chapter 3

Miscellaneous
language elements

-- (single-line comment)

Availablein: DSQL, PSQL
Added in: 1.0
Changedin: 1.5

Description: A line starting with “- - (two dashes) is a comment and will be ignored. This also makes it easy
to quickly comment out aline of SQL.

In Firebird 1.5 and up, the “- - ” can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:

- atable to store our valued custoners in:
create table Custoners (

name varchar (32),

added_by varchar (24),

custno varchar(8),

pur chases i nteger -- nunber of purchases

)

Notice that the second comment is only allowed in Firebird 1.5 and up.

Shorthand casts
Availablein: DSQL, ESQL, PSQL
Added in: IB

Description: When converting a string literal to a DATE, TIME or TIMESTAMP, Firebird allows the use of a
shorthand “ C-style” cast. This feature already existed in InterBase 6, but was never properly documented.

Syntax:

dat atype 'date/tinestring'

Miscellaneous language elements

Examples:

updat e People set AgeCat = 'dd'
where BirthDate < date '1-Jan-1943'

i nsert into Appointnents

(Empl oyee_Id, dient_Id, App_date, App_tine)
val ues

(973, 8804, date 'today' + 2, time '16:00")

new. |l astnmod = tinmestanp ' now ;

See also: CAST

CASE construct

Availablein: DSQL, PSQL
Addedin: 1.5

Description: A CASE construct returns exactly one value from anumber of possibilities. There aretwo syntactic
variants:

» Thesimple CASE, comparable to aPascal case oraCswi t ch.

e The searched CASE, which workslikeaseriesof “if ... else if ... else if” clauses.

Simple CASE
Syntax:

CASE <t est - expr>
WHEN <expr> THEN resul t
[WHEN <expr> THEN result ...]
[ELSE defaul tresul t]

END

When thisvariantisused, <t est - expr > iscompared to <expr > 1, <expr > 2 etc., until amatch isfound, upon
which the corresponding result is returned. If there is no match and there is an ELSE clause, def aul tresul t
isreturned. If thereis no match and no ELSE clause, NULL is returned.

The match isdetermined with the“=" operator, soif <t est - expr > iSNULL, it won't match any of the <expr >s,
not even those that are NULL.

The results don't have to be literal values. they may also be field or variable names, compound expressions,
or NULL literals.

A shorthand form of the simple CASE construct is the DECODE() function, available since Firebird 2.1.

Miscellaneous language elements

Example:

sel ect nane,
age,
case upper (sex)
when 'M then ' Mal €'
when 'F' then ' Femal e’
el se ' Unknown'
end,
religion
from peopl e

Searched CASE
Syntax:

CASE
VWHEN <bool _expr> THEN result
[WHEN <bool _expr> THEN result ...]
[ELSE def aul tresult]

END

Here, the<bool _expr >sareteststhat giveaternary boolean result: TRUE, FALSE, or NULL. Thefirst expression
evaluating to TRUE determinestheresult. If no expression is TRUE and thereisan EL SE clause, def aul t r esul t
isreturned. If no expression is TRUE and there is no ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.

Example:

CanVote = case
when Age >= 18 then ' Yes'
when Age < 18 then 'No'
el se ' Unsure'
end;

Chapter 4

Data types and subtypes

BIGINT data type

Addedin: 1.5

Description: BIGINT is the SQL99-compliant 64-bit signed integer type. It isavailablein Dialect 3 only.
BIGINT numbers range from -2%% .. 25%-1, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.
Example:

create tabl e Wol eLott aRecords (
id bigint not null primary key,
description varchar (32)

)

BLOB data type

Text BLOB support in functions and operators

Changedin: 2.1

Description: Text BLOBs of any length and character set (including multi-byte sets) are now supported by prac-
tically every internal text function and operator. In afew cases there are limitations or bugs.

Level of support:

» Full support for:

- = (assignment);

- =, <>, <, <=, >, >= and synonyms (comparison);

- || (concatenation;

- BETWEEN, IS[NOT] DISTINCT FROM, IN, ANY |[SOME and ALL.

10

Data types and subtypes

» Partial support for STARTING [WITH], LIKE and CONTAINING: an error israised if the second argument is
32 KB or longer.

* SELECT DISTINCT, ORDER BY and GROUP BY work on the BLOB 1D, not the contents. This makes them as
good as useless, except that SELECT DISTINCT weeds out multiple NULLS, if present. GROUP BY behaves
oddly in that it groups together equal rowsiif they are adjacent, but not if they are apart.

» Anyissueswith BLOBsininternal functionsand aggregate functionsare discussed in their respective sections.

Various enhancements

Changedin: 2.0

Description: In Firebird 2.0, several enhancements have been implemented for text BLOBS:
» DML COLLATE clauses are now supported.

» Equality comparisons can be performed on the full BLOB contents.

» Character set conversions are possible when assigning aBLOB to aBLOB or a string to aBLOB.
When defining binary BLOBS, the mnemonic bi nar y can now be used instead of the integer 0.

Examples:

sel ect NaneBl ob from MyTabl e
where NameBl ob collate pt_br = 'Joao

create table MyPictures (
idint not null primry key,
title varchar(40),

descri ption varchar (200),
pi cture bl ob sub_type binary

)

New character sets

Addedin: 1.0, 15,20, 2.1

The following table lists the character sets added in Firebird.

Table4.1. Character setsnew in Firebird

Name Max bytes/ch. L anguages Added in
CP943C 2 Japanese 21
DOS737 1 Greek 15
DOS775 1 Baltic 15
DOS858 1 =DOS850 plus€ sign 15

11

Data types and subtypes

Name Max bytes/ch. Languages Added in
DOS862 1 Hebrew 15
DOS864 1 Arabic 15
DOS866 1 Russian 15
DOS869 1 Modern Greek 15
GBK 2 Chinese 21
1SO8859 2 1 Latin-2, Central European 1.0
1SO8859_3 1 Latin-3, Southern European 15
1SO8859 4 1 Latin-4, Northern European 15
1SO8859_5 1 Cyrillic 15
1SO8859 6 1 Arabic 15
1SO8859_7 1 Greek 15
1SO8859 8 1 Hebrew 15
1SO8859 9 1 Latin-5, Turkish 15
1SO8859_13 1 Latin-7, Baltic Rim 15
KOI8R 1 Russian 20
KOI8U 1 Ukrainian 20
T1S620 1 Thai 21
uTrg) 4 Al 2.0
WIN1255 1 Hebrew 15
WIN1256 1 Arabic 15
WIN1257 1 Baltic 15
WIN1258 1 Viethamese 20

®In Firebird 1.5, UTF8 is an alias for UNICODE_FSS. This character set has some inherent problems. In Firebird 2, UTFS is a character set
inits own right, without the drawbacks of UNICODE_FSS.

Character set NONE handling changed

Changedin: 1.5.1

Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer trandliteration errors. For more details, see the Note at
the end of the book.

12

Data types and subtypes

New collations

Addedin: 1.0,15,15.1, 20,21

The following table lists the collations added in Firebird. The “Details’ column is based on what has been
reported inthe Release Notes and other documents. Theinformation in thiscolumnis probably incompl ete; some
collationswith an empty Detailsfield may till be caseinsensitive (ci), accent insensitive (ai) or dictionary-sorted

(dic).

Please note that the default — binary — collations for new character sets are not listed here, as doing so would
add no meaningful information.

Table4.2. Collationsnew in Firebird

Character set Coallation L anguage Details Added in
CP943C CP943C_UNICODE Japanese 21
GBK GBK_UNICODE Chinese 21
1S08859 1 ES ES CI_Al Spanish ci,a 2.0

FR_FR Cl_Al French ci,a 21
PT BR Brazilian Portuguese ci,a 2.0
1SO8859 2 CS Cz Czech 10
ISO_HUN Hungarian 15
1SO_PLK Polish 2.0
1SO8859_13 LT_LT Lithuanian 151
UTF8 UCS BASIC All 2.0
UNICODE All dic 2.0
UNICODE_CI All Ci 21
WIN1250 BS BA Bosnian 2.0
PXW_HUN Hungarian Ci 10
WIN_CZ Czech Ci 2.0
WIN_CZ_CI_Al Czech ci,a 2.0
WIN1251 WIN1251_UA Ukrainian and Russian 15
WIN1252 WIN_PTBR Brazilian Portuguese ci,a 2.0
WIN1257 WIN1257_EE Estonian dic 2.0
WIN1257 LT Lithuanian dic 2.0

13

Data types and subtypes

Character set Coallation Language Details Added in
WIN1257 LV Latvian dic 2.0
KOI8R KOI8R_RU Russian dic 2.0
KOI8U KOI8U_UA Ukrainian dic 20
T1S620 T1S620_UNICODE Thai 21

A note on the UTF8 collations

The UNICODE collation sorts using UCA (Unicode Collation Algorithm): a, A, & b, B...

The UCS_BASIC collation sorts in Unicode code-point order: A, B, a, b, &.. Thisis exactly the same as UTF8
with no collation specified. UCS BASIC was added to comply with the SQL standard.

UNICODE_ClI istruly case-insensitive. Inasearch for e.g. '‘Appl€, it will also find 'appl€', 'APPLE' and 'aPPLE'.

Unicode collations for all character sets

Added in: 2.1

Firebird now comes with UNICODE collations for all the standard character sets. However, except for the ones

listed in the new collations table in the previous section, these collations are not automatically available in your
databases. Instead, they must be added with the CREATE COLLATION statement, like this:

create collation 1S08859 1 UNI CODE for |1S08859 1

Thenew Unicode collationsall havethe name of their character set with_UNICODE added. (Thebuilt-in Unicode

collationsfor UTF8 arethe exception to therule.) They are defined, along with the other collations, in the manifest

filef bi nt1. conf inFirebird'si nt| subdirectory.

Collations may also be registered under a user-chosen name, e.g.:

create collation LAT_UN for 1S08859_1 from external

See CREATE COLLATION for the full syntax.

("1S08859_1_UNI CODE')

14

Chapter 5

DDL statements

The statements in this chapter are grouped by the type of database object they operate on. For instance, ALTER
DATABASE, CREATE DATABASE and DROP DATABASE are all found under DATABASE; DECLARE EXTER-
NAL FUNCTION and ALTER EXTERNAL FUNCTION are under EXTERNAL FUNCTION; etc.

GRANT and REVOKE, which can operate on avariety of object types, are together under Privileges.

COLLATION

CREATE COLLATION
Availablein: DSQL
Added in: 2.1

Description: Adds a collation to the database. The collation must already be present on your system (typically
in a library file) and must be properly registered in a. conf filein thei nt| subdirectory of your Firebird
installation. Y ou may also base the collation on one that is already present in the database.

Syntax:
CREATE COLLATI ON col | nane
FOR char set
[FROM basecol | | FROM EXTERNAL (' extnane')]

[NO PAD | PAD SPACE]

[CASE [| N] SENSI Tl VE]

[ACCENT [| N] SENSI TI VE]
['<specific-attributes>']

col | nane = the nane to use for the new collation

char set = a character set present in the database
basecol | = a collation already present in the database
ext nane = the collation nane used in the .conf file

<specific-attributes> ::= <attribute> [; <attribute> ...]
<attribute> attrname=attrval ue

» If no FROM clauseis present, Firebird will scanthe. conf file(s) inyouri nt | subdirectory for a
collation with the name specified after CREATE COLLATION. That is, omitting the FROM clause
is the same as specifying “FROM EXTERNAL (‘col | nane')”.

» The single-quoted ext nane is case-sensitive and must be exactly equal to the collation name in
the. conf file. Thecol | nane, char set andbasecol | parameters are case-insensitive, unless
surrounded by double-quotes.

15

DDL statements

Soecific attributes: Thetable below liststhe available specific attributes. Not all specific attributes apply to every
collation, even if specifying them doesn't cause an error. Please note that specific attributes are case sensitive.
In the table below, “1 bpc” indicates that an attribute is valid for collations of character sets using 1 byte per
character (so-called narrow character sets). “UNI” stands for “UNICODE and UNICODE_CI”.

Table5.1. Specific collation attributes

Name Values Valid for Comment
DISABLE-COMPRES- |0,1 1 bpc Disables compressions (aka contractions). Compres-
SIONS sions cause certain character sequencesto be sorted as

atomic units, e.g. Spanish c+h asasinglecharacter ch.

DISABLE-EXPAN- 0,1 1 bpc Disables expansions. Expansions cause certain char-

SIONS acters (e.g. ligatures or umlauted vowels) to be treated
as character sequences and sorted accordingly.

ICU-VERSION def aul t UNI Specifies the ICU library version to use. Valid

or Mm values are the ones defined in the applicable

<intl_nodul e> element inintl/fbintl.conf.
Format: either the string literal “def aul t ” or ama
jor+minor version number like“3.0” (both unquoted).

LOCALE XX_YY UNI Specifies the collation locale. Requires complete ver-
sion of ICU libraries. Format: a locale string like
“du_NL" (unquoted).

MULTI-LEVEL 0,1 1 bpc Uses more than one ordering level.

SPECIALS-FIRST 0,1 1 bpc Orders special characters(spaces, symbolsetc.) before
alphanumeric characters.

Examples:
Simplest form, using the name asfound in the. conf file (case-insensitive):

create collation iso08859 1 unicode for iso08859 1

Using a custom name. Notice how the “external” name must now exactly match the name in the
. conf file:

create collation lat_un
for is08859 1
fromexternal ('1SC8859_1 UN CODE')

Based on a collation already present in the database:

create collation es_es_nopad_ci
for is08859 1
fromes_es
no pad
case insensitive

16

DDL statements

With a special attribute (case-sensitivel):

create collation es_es_ci_conpr
for is08859 1
fromes_es
case insensitive
' DI SABLE- COVPRESS| ONS=0'

Tip

If you want to add anew character set with its default collation in your database, declare and run the stored pro-
cedure sp_regi ster_character_set (name, max_bytes_per_character), foundinmsc/intl.
sql under your Firebird installation directory. Please note: in order for thisto work, the character set must be
present on your system and registered ina. conf fileinthei nt| subdirectory.

DROP COLLATION

Availablein: DSQL

Added in: 2.1

Description: Removes a collation from the database. Only user-added collations can be removed in thisway.

Syntax:

DROP COLLATI ON nane

Tip

If you want to remove an entire character set with all its collations from your database, declare and run the
stored proceduresp_unr egi st er _char act er _set (nane) ,foundinmi sc/int ! . sql underyour Firebird
installation directory.

COMMENT

Availablein: DSQL
Added in: 2.0

Description: Allows you to enter comments for metadata objects. The comments will be stored in the various
RDB$DESCRIPTION text BLOB fields in the system tables, from where client applications can pick them up.

Syntax:
COVMENT ON <object> IS {'sometext' | NULL}

<obj ect > .= DATABASE
| <basic-type> objectnanme

17

DDL statements

| COLUMWN rel ationnane. fi el dnane
| PARAMETER procnane. par amane

<basi c-type> ::= CHARACTER SET | COLLATION | DOVAIN | EXCEPTI ON
| EXTERNAL FUNCTION | FILTER | GENERATOR | | NDEX
| PROCEDURE | ROLE | SEQUENCE | TABLE | TRIGGER | VI EW

Note

If you enter an empty comment ('), it will end up asNULL in the database.

Examples:
conment on database is 'Here''s where we keep all our custoner records.'
comment on table Metals is 'Also for alloys'
conment on columm Metals.IsAlloy is 'O = pure netal, 1 = alloy'

comment on index ix_sales is 'Set inactive during bulk inserts!’

DATABASE

CREATE DATABASE
Availablein: DSQL, ESQL
Syntax (partial):
CREATE { DATABASE | SCHEMA}
[PAGE SI ZE [4] size]
[Dl FFERENCE FILE ' filepath']
size ::= 4096 | 8192 | 16384

 If the user supplies a size smaller than 4096, it will be silently converted to 4096. Other numbers
not equal to any of the supported sizes will be silently converted to the next lower supported size.

16 Kb page size supported, 1 and 2 Kb deprecated

Changedin: 1.0, 2.1

Description: Firebird 1.0 has raised the maximum database page size from 8192 to 16384 bytes. In Firebird 2.1
and up, page sizes 1024 and 2048 are deprecated as inefficient. Firebird will no longer create databases with

these page sizes, but it will connect to existing small-page databases without any problem.

18

DDL statements

DIFFERENCE FILE parameter
Added in: 2.0

Description: The DIFFERENCE FILE parameter was added in Firebird 2.0, but not documented at the time. For
afull description, see ALTER DATABASE :: ADD DIFFERENCE FILE.

ALTER DATABASE
Availablein: DSQL, ESQL
Description: Alters a database's file organisation or togglesits “ safe-to-copy” state.
Syntax:
ALTER { DATABASE | SCHEMA}
[<add_sec_cl ause> [<add_sec_cl ause> ...]]
[ADD DI FFERENCE FI LE 'filepath' | DROP DI FFERENCE FI LE]
[{BEG N | END} BACKUP]
<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]
<sec_file> = FILE '"filepath'
[STARTI NG [AT [PAGE]] pagenuni
[LENGTH [=] num [PACE[S]]

The DIFFERENCE FILE and BACKUP clauses, added in Firebird 2.0, are not availablein ESQL.

BEGIN BACKUP
Availablein: DSQL
Added in: 2.0

Description: Freezes the main database file so that it can be backed up safely by filesystem means, even while
users are connected and perform operations on the data. Any mutations to the database will be written to a
separate file, the delta file. Contrary to what the syntax suggests, this statement does not initiate the backup
itself; it merely creates the conditions.

Example:

al ter dat abase begi n backup

END BACKUP
Availablein: DSQL

Added in: 2.0

19

DDL statements

Description: Merges the delta file back into the main database file and restores the normal state of operation,
thus closing the time window during which safe backups could be made via the filesystem. (Safe backups with
gbak are still possible.)

Example:

al ter database end backup

Tip

Instead of BEGIN and END BACKUP, consider using Firebird's nbackup tool: it can freeze and unfreeze the
main database file as well as make full and incremental backups. A manual for nbackup is available via the
Firebird Documentation Index.

ADD DIFFERENCE FILE
Availablein: DSQL
Added in: 2.0

Description: Presets path and name of the delta file to which mutations are written when the database goesinto
“copy-safe” mode after an ALTER DATABASE BEGIN BACKUP command.

Example:
al ter database add difference file ' C \Firebird\ Dat abases\ Frui t base. delta'
Notes:

» This statement doesn't really add any file. It just overrides the default path and name for the delta file that
will be created if and when the database enters copy-safe mode.

 If you provide arelative path or a bare filename here, it will be appended to the current directory as seen
from the server. On Windows, thisis often the system directory.

 If you want to change an existing setting, DROP the old one first and then ADD the new one.

* When not overridden, the delta file gets the same path and filename as the database itself, but with the ex-
tension. del t a

DROP DIFFERENCE FILE
Availablein: DSQL
Added in: 2.0

Description: Removes the delta file path and name that were previously set with ALTER DATABASE ADD
DIFFERENCE FILE. This statement doesn't really drop afile. It only erases the preset path and/or filename that
would otherwise have been used the next time the database went into copy-safe mode, and reverts to the default
behaviour.

Example:

al ter database drop difference file

20

http://www.firebirdsql.org/index.php?op=doc

DDL statements

DOMAIN

CREATE DOMAIN

Availablein: DSQL, ESQL

Context variables as defaults
Changed in: 1B

Description: Any context variable that is assignment-compatible to the new domain's datatype can be used as a
default. Thiswas already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

create domain DDate as
date
default current _date
not null

ALTER DOMAIN

Availablein: DSQL, ESQL

Warning

If you change adomain's definition, existing PSQL code using that domain may becomeinvalid. If thishappens,
the system table field RDB$VALID_BLR will be set to 0 for any procedure or trigger whose code is no longer
valid. If you have changed a domain, the following query will find the code modules that depend on it and
report the state of RDB$VALID_BLR:

select * from (

sel ect 'Procedure', rdb$procedure_nane, rdb$valid_blr from rdb$procedures

uni on

select 'Trigger', rdb$trigger_nane, rdb$valid blr fromrdb$triggers
) (type, nane, valid)
where exists

(select * fromrdb$dependenci es

wher e rdb$dependent _nane = nane and rdb$depended_on_nanme = ' MYDOVAI N)

/* Repl ace MYDOMAIN with the actual domain nane. Use all-caps if the domain
was created case-insensitively. Otherw se, use the exact capitalisation. */

Unfortunately, not all PSQL invalidations will be reflected in the RDB$VALID_BLR field. It is therefore ad-
visable to look at al the procedures and triggers reported by the above query, even those having a 1 in the
“VALID” column.

21

DDL statements

Please notice that for PSQL modules inherited from earlier Firebird versions (including a number of system
triggers, even if the database was created under Firebird 2.1 or higher), RDB$VALID_BLR iSNULL. This does
not indicate that their BLR isinvalid.

Theisgl commands SHOW PROCEDURES and SHOW TRIGGERS flag modules whose RDB$VALID_BLR field
is zero with an asterisk. SHOW PROCEDURE PROCNANE and SHOW TRIGGER TRI GNAME, which display indi-
vidual PSQL modules, do not signal invalid BLR.

Rename domain

Added in: IB

Description: Renaming of adomain is possible with the TO clause. This feature was introduced in InterBase 6,
but left out of the Language Reference.

Example:
alter donmain posint to plusint

e The TO clause can be combined with other clauses and need not come first in that case.

SET DEFAULT to any context variable
Changed in: 1B

Description: Any context variable that is assignment-compatible to the domain's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter donmmin DDate
set default current _date

EXCEPTION

CREATE EXCEPTION

Availablein: DSQL, ESQL

Message length increased
Changedin: 2.0

Description: In Firebird 2.0 and higher, the maximum length of the exception message has been raised from
780 1021.

22

DDL statements

Example:

create excepti on Ex_TooManyManagers
'Too nmany nmanagers: An attenpt was made to create nore managers than the
maxi mum defined in the Limts table. If you really need to create nore
managers than you have now, raise the linit first. However, please consult
your departnent’''s manager before doing so. OQtherw se, your decision my
be overturned |l ater and the additional manager(s) renoved.'

Note

The maximum exception message length depends on a certain system table field. Therefore, pre-2.0 databases
need to be backed up and restored under Firebird 2.x before they can store exception messages of up to 1021
bytes.

CREATE OR ALTER EXCEPTION
Availablein: DSQL
Added in: 2.0

Description: If the exception does not yet exist, it is created just as if CREATE EXCEPTION were used. If it
already exists, it is altered. Existing dependencies are preserved.

Syntax: Exactly the same asfor CREATE EXCEPTION.

RECREATE EXCEPTION
Availablein: DSQL
Added in: 2.0

Description: Creates or recreates an exception. If an exception with the same name already exists, RECREATE
EXCEPTION will try to drop it and create a new exception. Thiswilll fail if there are existing dependencies on
the exception.

Syntax: Exactly the same as CREATE EXCEPTION.

Note

If you use RECREATE EXCEPTION on an exception that has dependent objects, you may not get an error
message until you try to commit your transaction.

EXTERNAL FUNCTION

DECLARE EXTERNAL FUNCTION
Availablein: DSQL, ESQL

23

DDL statements

Description: This statement makes an external function (UDF) available in the database.
Syntax:

DECLARE EXTERNAL FUNCTI ON | ocal nane
[<arg_type decl> [, <arg type decl> ...]]
RETURNS {<return_type_decl > | PARAMETER 1-based_pos} [FREE_IT]
ENTRY_PO NT ' function_name' MODULE _NAME 'library_nane'

sqgl type [BY DESCRI PTOR] | CSTRI NH | ength)
sql type [BY { DESCRI PTOR| VALUE}] | CSTRI NE | engt h)

<arg_type_decl >
<return_type_decl >

Restrictions

e TheBY DESCRIPTOR passing method is not supported in ESQL.

You may choose | ocal nare freely; this is the name by which the function will be known to your database.
You may also vary thel engt h argument of CSTRING parameters (more about CSTRINGS in the note near the
end of the book).

BY DESCRIPTOR parameter passing

Availablein: DSQL

Addedin: 1.0

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLSsin a meaningful way. Notice that this only worksif the person who wrote the function

has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work —on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n

Availablein: DSQL, ESQL

Added in: IB 6

Description: Inorder toreturnaBLOB, an extrainput parameter must be declared and a“ RETURNSPARAMETER

n” clause added —n being the position of said parameter. This clause dates back to InterBase 6 beta, but somehow
didn't make it into the Language Reference (it is documented in the Devel oper's Guide though).

ALTER EXTERNAL FUNCTION
Availablein: DSQL
Added in: 2.0

Description: Altersan external function's module name and/or entry point. Existing dependencies are preserved.

24

DDL statements

Syntax:

ALTER EXTERNAL FUNCTI ON funcname
<modi fication> [<nodification>]

<modi fication> ::= ENTRY_PO NT ' new entry-point'
| MODULE_NAME ' new nodul e- nane'

Example:

alter external function Phi nodul e _name ' NewlUdf Li b'

FILTER

DECLARE FILTER
Availablein: DSQL, ESQL
Changedin: 2.0
Description: Makes aBLOB filter available to the database.
Syntax:
DECLARE FI LTER filternane

I NPUT_TYPE <sub_type> OUTPUT_TYPE <sub_type>

ENTRY_PO NT ' function_name' MODULE _NAME 'library_nane'
number | <menonic>
binary | text | blr | acl | ranges | summary | fornat

| transaction_description | external file_description
| user_defined

<sub_t ype>
<menoni c>

* InFirebird 2 and up, no two BLOB filters in a database may have the same combination of input
and output type. Declaring afilter with an already existing input-output type combination will fail.
Restoring pre-2.0 databases that contain such “duplicate” filters will also fail.

* The possibility to indicate the BLOB types with their mnemonics instead of numbers was added
in Firebird 2. The bi nar y mnemonic for subtype O was also added in Firebird 2. The predefined
MNemonics are case-insensitive.

Example:

decl are filter Funnel
i nput _type blr output_type text
entry _point 'blr2asc' nodule_nane 'nyfilterlib’

User-defined mnemonics: If you want to define mnemonics for your own BLOB subtypes, you can add them
to the RDBS$TY PES system table as shown below. Once committed, the mnemonics can be used in subsequent
filter declarations.

25

DDL statements

insert into rdb$types (rdb$field name, rdb$type, rdb$type name)
val ues (' RDB$FI ELD SUB TYPE , -33, "MD")

The value for r db$f i el d_name must always be 'RDB$SFIELD_SUB_TYPE'. If you define your mnemonicsin
all-uppercase, you can use them case-insensitively and unquoted in your filter declarations.

INDEX

CREATE INDEX

Availablein: DSQL, ESQL

Description: Creates an index on atable for faster searching, sorting and/or grouping.
Syntax:

CREATE [UNI QUE] [ASC ENDI NG | [DESCI ENDI NG] | NDEX indexnane
ON t abl enane
{ (<col> [, <col>...]) | COWUTED BY (expression) }

<col> ::= a columm not of type ARRAY, BLOB or COVWUTED BY

UNIQUE indices now allow NULLS

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLS — even multiple — are now allowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints

now allow NULLs. As far as NULLSs are concerned, the rules for unique indices are exactly the same as those
for unigue keys.

Indexing on expressions

Added in: 2.0

Description: Instead of one or more columns, you can now also specify asingle COMPUTED BY expression in
an index definition. Expression indices will be used in appropriate queries, provided that the expression in the
WHERE, ORDER BY or GROUPBY clause exactly matchesthe expression in the index definition. Multi-segment
expression indices are not supported, but the expression itself may involve multiple columns.

Examples:

create index ix_upnanme on persons conputed by (upper(nane));
comm t;

26

DDL statements

-- the following queries will use ix_upnane:

sel ect * from persons order by upper(nane);

sel ect * from persons where upper(nane) starting with ' VAN ;
del ete from persons where upper(nanme) = ' BROMNW ;

del ete from persons where upper(nane) = 'BROMW and age > 65;

create descending index ix_events_yt
on MyEvents

conputed by (extract(year from StartDate) || Town);
conmi t;
-- the following query will use ix_events_yt:
select * from WEvents

order by extract(year from StartDate) || Town desc;

Maximum index key length increased

Changedin: 2.0

Description: The maximum length of index keys, which used to be fixed at 252 bytes, is now equal to 1/4 of
the page size, i.e. varying from 256 to 4096. The maximum indexable string length in bytes is 9 less than the
key length. The table below shows the indexable string lengths in characters for the various page sizes and
character sets.

Table5.2. Maximum indexable (VAR)CHAR length

Page size Maximum indexable string length per char set type

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char
1024 247 123 82 61
2048 503 251 167 125
4096 1015 507 338 253
8192 2039 1019 679 509
16384 4087 2043 1362 1021

Maximum number of indices per table increased

Changedin: 1.0.3,1.5, 2.0

Description: The maximum number of 65 indices per table has been removed in Firebird 1.0.3, reintroduced at
the higher level of 257 in Firebird 1.5, and removed once again in Firebird 2.0.

Although there is no longer a “hard” ceiling, the number of indices creatable in practice is still limited by the
database page size and the number of columns per index, as shown in the table below.

27

DDL statements

Table5.3. Max. indices per table, Firebird 2.0

Page size Number of indices depending on column count

1 cal 2cols 3cols
1024 50 35 27
2048 101 72 56
4096 203 145 113
8192 408 291 227
16384 818 584 454

Please be aware that under normal circumstances, even 50 indices is way too many and will drastically reduce
mutation speeds. The maximum was removed to accommodate data-warehousing applications and the like,
which perform lots of bulk operations with the indices temporarily inactivated.

For afull table also including Firebird versions 1.0-1.5, see the Notes at the end of the book.

Privileges: GRANT and REVOKE

REVOKE ADMIN OPTION
Availablein: DSQL
Added in: 2.0

Description: Revokes a previously granted admin option (the right to pass on a granted role to others) from the
grantee, without revoking theroleitself. Multiple roles and/or multiple grantees can be handled in one statement.

Syntax:
REVOKE ADM N OPTI ON FOR <rol e-1ist> FROM <grantee-1list>
<role-list> = role [, role ...]
<grantee-list> ::= [USER] <grantee> [, [USER] <grantee> ...]
<gr ant ee> = username | PUBLIC

Example:

revoke admn option for manager from john, paul, george, ringo

If auser has received the admin option from severa grantors, each of those grantors must revoke it or the user
will still be able to grant the role(s) in question to others.

28

DDL statements

PROCEDURE

A stored procedure (SP) is a code module that can be called by the client, by another stored procedure or by a
trigger. Stored procedures and triggers are written in Procedural SQL (PSQL). Most SQL statements are also
available in PSQL, sometimes with restrictions or extensions. Notable exceptions are DDL and transaction

control statements.

Stored procedures can accept and return multiple parameters.

CREATE PROCEDURE
Availablein: DSQL, ESQL
Description: Creates a stored procedure.

Syntax:

CREATE PROCEDURE procnane
[(<inparan» [, <inparan> ...])]
[RETURNS (<outparan> [, <outparanr ...])]
AS
[<decl ar ati ons>]
BEA N
[<PSQL st at emrent s>]
END

<paramdecl > [{= | DEFAULT} val ue]

<par am decl >

<par am decl > paramanme <type> [NOT NULL] [COLLATE coll ation]
<type> : sql _datatype | [TYPE OF] donain

<declarations> ::= See PSQL::DECLARE for the exact syntax

<i npar anp
<out par anp

/* If sql _datatype is a string type, it may include a character set */

Domains supported in parameter and variable declarations

Changedin: 2.1

Description: Firebird 2.1 and up support the use of domainsinstead of SQL datatypes when declaring input/out-
put parameters and local variables. With the “TYPE OF’" modifier only the domain's type is used, not its NOT
NULL setting, CHECK constraint and/or default value.

Example:

create domai n bool 3
smal | i nt
check (value is null or value in (0,1));

create domai n bi gposnum
bi gi nt
check (value >= 0);

29

DDL statements

/* Determines if Ais a multiple of B: */

set term #,

create procedure isnultiple (a bigposnum b bigposnunm
returns (res bool 3)

as
declare ratio type of bigposnum -- ratio is a bigint
decl are remmi nder type of bigposnum -- so is remainder
begi n

if (ais null or bis null) then res = null;
else if (b = 0) then

begi n
if (a=0) thenres = 1; else res = 0;
end
el se
begi n
ratio = a / b; -- integer division!

remai nder = a - b*rati o;
if (remainder = 0) then res = 1; else res = 0;
end
end#
set term; #

War ning

If you change adomain's definition, existing PSQL code using that domain may becomeinvalid. If thishappens,
the system table field RDB$VALID_BLR will be set to 0 for any procedure or trigger whose code is no longer
valid. If you have changed a domain, the following query will find the code modules that depend on it and
report the state of RDB$VALID_BLR:

select * from(
sel ect ' Procedure', rdb$procedure_nanme, rdb$valid_blr fromrdb$procedures
uni on
select 'Trigger', rdb$trigger_nane, rdb$valid blr fromrdb$triggers
) (type, name, valid)
where exists
(select * fromrdb$dependenci es
wher e rdb$dependent _nane = nane and rdb$depended_on_nanme = ' MYDOVAI N)

/* Replace MYDOVAIN with the actual domain name. Use all-caps if the domain
was created case-insensitively. Otherw se, use the exact capitalisation. */

Unfortunately, not all PSQL invalidations will be reflected in the RDB$VALID_BLR field. It is therefore ad-
visable to look at al the procedures and triggers reported by the above query, even those having a 1 in the
“VALID” column.

Please notice that for PSQL modules inherited from earlier Firebird versions (including a number of system
triggers, even if the database was created under Firebird 2.1 or higher), RDB$VALID_BLR isNULL. This does
not indicate that their BLR isinvalid.

Theisgl commands SHOW PROCEDURES and SHOW TRIGGERS flag modules whose RDB$VALID _BLR field
is zero with an asterisk. SHOW PROCEDURE PROCNANE and SHOW TRIGGER TRI GNAME, which display indi-
vidual PSQL modules, do not signal invalid BLR.

COLLATE in variable and parameter declarations

Changedin: 2.1

30

DDL statements

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example:

create procedure Spani shToDutch
(es_1 varchar (20) character set is08859 1 collate es_es,
es_2 ny_char_domain collate es_es)
returns
(nl _1 varchar(20) character set is08859 1 collate du_nl,
nl_2 ny_char_donmain collate du_nl)
as
declare s_tenp varchar (100) character set utf8 collate unicode;
begi n

end

NOT NULL in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in declarations of input/output parameters and
local variables.

Example:

create procedure Regi sterOrder(order_no int not null, description varchar(200) not nul
returns

(ticket_no int not null)
as
declare tenp int not null;
begi n
end

Default argument values
Changedin: 2.0

Description: It is now possible to provide default values for stored procedure arguments, allowing the caller to
omit one or more items (possibly even al) from the end of the argument list.

Syntax:

CREATE PROCEDURE procnane (<inparan> [, <inparank ...])

<inparam> ::= paramane datatype [{= | DEFAULT} val ue]

Important: If you provide a default value for a parameter, you must do the same for any and all
parameters following it.

31

DDL statements

BEGIN ... END blocks may be empty
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create procedure grab_ints (a integer, b integer)
as

begi n

end

ALTER PROCEDURE

Availablein: DSQL, ESQL

Default argument values
Addedin: 2.0

Description: You can now provide default values for stored procedure arguments, alowing the caller to omit
one or more items from the end of the argument list. See CREATE PROCEDURE for syntax and details.

Example:

alter procedure TestProc
(aint, bint default 1007, s varchar(12) ="'-")

COLLATE in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables. See CREATE PROCEDURE for syntax and details.

Domains supported in parameter and variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up support the use of domainsinstead of SQL datatypes when declaring input/out-
put parameters and local variables. See CREATE PROCEDURE for syntax and details.

32

DDL statements

NOT NULL in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up alow NOT NULL constraints in declarations of input/output parameters and
local variables. See CREATE PROCEDURE for syntax and details.

Restriction on altering used procedures

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

CREATE OR ALTER PROCEDURE
Availablein: DSQL
Addedin: 1.5

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
already exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE PROCEDURE.

DROP PROCEDURE

Availablein: DSQL, ESQL

Restriction on dropping used procedures

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE PROCEDURE

Availablein: DSQL

33

DDL statements

Added in: 1.0

Description: Creates or recreates astored procedure. If a procedure with the same name already exists, RECRE-
ATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if the ex-
isting SPisin use.

Syntax: Exactly the same as CREATE PROCEDURE.

Restriction on recreating used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

SEQUENCE or GENERATOR

CREATE SEQUENCE
Availablein: DSQL
Addedin: 2.0

Description: Creates a new sequence or generator. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. CREATE SEQUENCE is fully equivalent to CREATE GENERATOR
and is the recommended syntax from Firebird 2.0 onward.

Syntax:

CREATE SEQUENCE sequence- nanme
Example:

create sequence seqtest

Because internally sequences and generators are the same thing, you can freely mix the generator and sequence
syntaxes, even when operating on the same object. Thisis not recommended however.

Sequences (or generators) are always stored as 64-bit integer val ues, regardl ess of the database dialect. However:

« |f theclient dialect is set to 1, the server passes generator values as truncated 32-bit values to the client.

» |f generator values are fed into a32-bit field or variable, al goeswell until the actual value exceedsthe 32-bit
range. At that point, adialect 3 database will raise an error whereas adialect 1 database will silently truncate
the value (which could aso lead to an error, e.g. if the receiving field has a unique key defined on it).

See also: ALTER SEQUENCE, NEXT VALUE FOR, DROP SEQUENCE

34

DDL statements

CREATE GENERATOR
Availablein: DSQL, ESQL

Better alternative: CREATE SEQUENCE

CREATE SEQUENCE preferred
Changedin: 2.0

Description: From Firebird 2.0 onward, the SQL-compliant CREATE SEQUENCE syntax is preferred.

Maximum number of generators significantly raised
Changedin: 1.0
Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K

pages) — 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

ALTER SEQUENCE
Availablein: DSQL
Added in: 2.0
Description: (Re)initializes a sequence or generator to the given value. SEQUENCE is the SQL-compliant term
for what InterBase and Firebird have aways caled agenerator. “ALTER SEQUENCE ... RESTART WITH" isfully
equivalent to “SET GENERATOR ... TO” and is the recommended syntax from Firebird 2.0 onward.
Syntax:
ALTER SEQUENCE sequence- name RESTART W TH <newal >
<newal > ::= A signed 64-bit integer val ue.

Example:

al ter sequence seqtest restart with O

Warning

Careless use of ALTER SEQUENCE is amighty fine way of screwing up your database! Under normal circum-
stances you should only use it right after CREATE SEQUENCE, to set the initial value.

See also: CREATE SEQUENCE

35

DDL statements

SET GENERATOR
Availablein: DSQL, ESQL
Better alternative: ALTER SEQUENCE

Description: (Re)initializes a generator or sequence to the given value. From Firebird 2 onward, the SQL-com-
pliant ALTER SEQUENCE syntax is preferred.

Syntax:
SET GENERATOR generator-name TO <new val ue>
<newvalue> ::= A 64-bit integer.
Warning

Once a generator or sequence is up and running, you should not tamper with its value (other than retrieving
next values with GEN_ID or NEXT VALUE FOR) unless you know exactly what you are doing.

DROP SEQUENCE
Availablein: DSQL
Addedin: 2.0
Description: Removes asequence or generator from the database. Its (very small) storage space will be freed for
re-use after abackup-restore cycle. SEQUENCE isthe SQL-compliant term for what InterBase and Firebird have
always called a generator. DROP SEQUENCE isfully equivalent to DROP GENERATOR and is the recommended
syntax from Firebird 2.0 onward.
Syntax:

DROP SEQUENCE sequence- nane
Example:

drop sequence seqtest

See also: CREATE SEQUENCE

DROP GENERATOR
Availablein: DSQL

Added in: 1.0

36

DDL statements

Better alternative: DROP SEQUENCE

Description: Removes a generator or sequence from the database. Its (very small) storage space will be freed
for re-use after a backup-restore cycle.

Syntax:
DROP GENERATCOR gener at or - nane

From Firebird 2.0 onward, the SQL-compliant DROP SEQUENCE syntax is preferred.

TABLE

CREATE TABLE

Availablein: DSQL, ESQL

Global Temporary Tables (GTTs)
Added in: 2.1

Description: Global temporary tables have persistent metadata, but their contents are transaction-bound (the
default) or connection-bound. Every transaction or connection has its own private instance of a GTT, isolated
from all the others. Instances are only created if and whenthe GTT isreferenced, and destroyed upon transaction
end or disconnection. To modify or remove a GTT's metadata, ALTER TABLE and DROP TABLE can be used.

Syntax:
CREATE GLOBAL TEMPORARY TABLE nane

(colum_def [, colum_def | table_constraint ...])
[ON COWM T {DELETE | PRESERVE} RO\

e ON COMMIT DELETE ROWS creates a transaction-level GTT (the default), ON COMMIT PRE-
SERVE ROWS a connection-level GTT.

* AN EXTERNAL [FILE] clauseis not allowed on a global temporary table.

Restrictions: GTTs can be “dressed up” with al the features and paraphernalia of ordinary tables (keys, refer-
ences, indices, triggers...) but there are afew restrictions:

» GTTsand regular tables cannot reference one another.

* A connection-bound (“PRESERVE ROWS’) GTT cannot reference a transaction-bound (“DELETE ROWS”)
GTT.

e Domain constraints cannot reference any GTT.

» Thedestruction of aGTT instance at the end of its life cycle does not cause any before/after delete triggers
to fire.

37

DDL statements

Example:

create global tenporary table MyConnGIT (
idint not null primry key,
txt varchar(32),
ts tinmestanp default current _tinmestanp

)

on conmit preserve rows;
comm t;

create global tenporary table MyTXGIT (
idint not null primary key,
parent _id int not null references MyConnGIT(id),
txt varchar(32),
ts tinmestanp default current _tinmestanp

E
comm t;
Tip
In an existing database, it's not always easy to tell aregular tablefromaGTT, or atransaction-level GTT from
aconnection-level GTT. Use this query to find out a table's type:
sel ect t.rdb$type_nane
fromrdb$rel ations r
join rdb$types t on r.rdb$rel ati on_type = t.rdb$type
where t.rdb$field_name = ' RDBSRELATI ON_TYPE'
and r.rdb$rel ati on_nane = ' TABLENAME
Or, for an overview of al your relations:
select r.rdb$rel ati on_nane, t.rdb$type_nane
fromrdb$rel ations r
join rdb$types t on r.rdb$rel ation_type = t.rdb$type
where t.rdb$fiel d name = ' RDBSRELATI ON TYPE'
and coal esce (r.rdb$systemflag, 0) =0
GENERATED ALWAYS AS
Addedin: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAYSAS for computed fields.

Syntax:
col nanme [col type] GENERATED ALWAYS AS (expression)
Example:
create table Persons (
idint primary key,

firstnane varchar(24) not null,
nm ddl ename var char (24),

38

DDL statements

| ast name varchar (24) not null,
full name varchar(74) generated al ways as

(firstname || coalesce(' ' || middlenanme, "') || ' " || lastnane),
street varchar(32),

)

Note: GENERATED ALWAYSAS s not currently supported in index definitions.

CHECK accepts NULL outcome
Changedin: 2.0
Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 rgject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLs pass and only consider the check failed if the
outcomeisf al se.
Example:

Checks like these:

check (value > 10000)

check (Town like 'Anmst %)

check (upper(value) in ("A, "B, "X))

check (M ni mum <= Maxi mum

all fail in pre-2.0 Firebird versionsif the value to be checked isNULL. In 2.0 and above they succeed.

Warning

This change may cause existing databases to behave differently when migrated to Firebird 2.0+. Carefully
examine your CREATE/ALTER TABLE statements and add “and XXX is not null” predicates to your
CHECKSs if they should continue to reject NULL input.

Context variables as column defaults
Changed in: IB

Description: Any context variablethat isassignment-compatibl e to the column datatype can be used as adefault.
Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:
create table MyData (

idint not null primary key,
record_created timestanp default current_tinestanp,

39

DDL statements

FOREIGN KEY without target column references PK
Changedin: IB

Description: If you create a foreign key without specifying atarget column, it will reference the primary key
of the target table. Thiswas aready the case in InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:
create table eik (

aint not null primry key,
b int not null unique

)

create table beuk (
b int references eik

);

-- beuk.b references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access
Changedin: 2.0

Description: In Firebird 2.0 and above, creating a foreign key constraint no longer requires exclusive access
to the database.

UNIQUE constraints now allow NULLS

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLS — even multiple — are now allowed in columns
with a UNIQUE constraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is alittle complicated:
» Multiplerows having all the UK columns NULL are allowed.
» Multiple rows having a different subset of UK colums NULL are allowed.

* Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

Oneway of summarizing thisisasfollows: In principle, all NULLs are considered distinct. But if two rows have
exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just asif they constituted the entire unique key.

40

DDL statements

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide auser-defined name for the automatically created index that enforces the constraint, and

» optionally define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraints are named after the constraint (thisis new behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDB$FOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

Syntax:
[CONSTRAI NT constrai nt - nane]

<constraint-type> <constraint-definition>
[USI NG [ASC] ENDI NG | DESC ENDI NG] | NDEX index_nane]

Examples:
The first example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:
create table custoners (
custno int not null constraint pk _cust prinmary key using index ix_custno,
This, however:
create table custoners (
custno int not null primary key using index ix_custno,
..will giveyou aPK constraint called INTEG_7 or something similar, and an index 1X_CUSTNO.
Some more examples:
create table people (
idint not null,

ni ckname varchar(12) not null,
country char (4),

41

DDL statements

constrai nt pk_people prinmary key (id),
constrai nt uk_ni cknane uni que (ni cknanme) using index ix_nick

)

alter table people
add constraint fk_people_country
foreign key (country) references countries(code)
usi ng desc index ix_people_country

Important

If you define a descending constraint-enforcing index on aprimary or unique key, be sure to make any foreign
keysreferencing it descending as well.

ALTER TABLE

Availablein: DSQL, ESQL

ADD column: Context variables as defaults
Changedin: IB

Description: Any context variable that is assignment-compatibl e to the new column's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter table MyData
add MyDay date default current_date

ALTER COLUMN: DROP DEFAULT
Availablein: DSQL
Addedin: 2.0
Description: Firebird 2 adds the possibility to drop a column-level default. Once the default is dropped, there
will either be no default in place or — if the column's type is a DOMAIN with a default — the domain default
will resurface.
Syntax:
ALTER TABLE tabl enane ALTER [COLUWN] col name DROP DEFAULT
Example:

alter table Trees alter Grth drop default

Anerrorisraised if you use DROP DEFAULT on acolumn that doesn't have a default or whose effective default
is domain-based.

42

DDL statements

ALTER COLUMN: SET DEFAULT
Availablein: DSQL
Addedin: 2.0

Description: Firebird 2 adds the possibility to set/alter defaults on existing columns. If the column already had
adefault, the new default will replace it. Column-level defaults always override domain-level defaults.

Syntax:

ALTER TABLE tabl ename ALTER [COLUMN] col name SET DEFAULT <def aul t >
<default> ::= literal-value | context-variable | NULL

Example:

alter table Custoners alter EnteredBy set default current _user

Tip

If you want to switch off a domain-based default on a column, set the column default to NULL.

ALTER COLUMN: POSITION now 1-based

Changedin: 1.0
Description: When changing a column's position, the engine now interprets the new position as 1-based. This
isin accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as 0-based.
Syntax:

ALTER TABLE tabl ename ALTER [COLUMN] col nanme POSI TI ON <newpos>

<newpos> ::= an integer between 1 and the nunber of colums

Example:

alter table Stock alter Quantity position 3

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain O-
based.

CHECK accepts NULL outcome

Changedin: 2.0

43

DDL statements

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLS pass and only consider the check failed if the
outcomeisf al se. For more information see under CREATE TABLE.

FOREIGN KEY without target column references PK
Changed in: 1B

Description: If you create a foreign key without specifying atarget column, it will reference the primary key
of the target table. Thiswas already the casein InterBase 6, but the B Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:
create table eik (

a int not null primry key,
b int not null unique

);
create table beuk (
b int
);
alter table beuk

add constraint fk_beuk

foreign key (b) references eik;

-- beuk.b now references eik.a, not eik.b

FOREIGN KEY creation no longer requires exclusive access
Changedin: 2.0

Description: In Firebird 2.0 and above, adding a foreign key constraint no longer requires exclusive access to
the database.

GENERATED ALWAYS AS
Added in: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAY S AS for computed fields.

Syntax:
col nanme [col type] GENERATED ALWAYS AS (expression)
Example:
alter table Friends
add ful I name varchar (74)

generated al ways as
(firstname || coalesce(' ' || mddlename, "') || ' ' || |astnane)

44

DDL statements

UNIQUE constraints now allow NULLS
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. For a full discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLS.

USING INDEX subclause

Availablein: DSQL

Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and
» optionaly define the index to be ascending or descending (the default being ascending).

Syntax:

[ADD] [CONSTRAI NT constrai nt - nane]
<constraint-type> <constraint-definition>
[USI NG [ASC] ENDI NG | DESC ENDI NG] | NDEX index_nane]

For afull discussion and examples, see CREATE TABLE :: USING INDEX subclause.

RECREATE TABLE
Availablein: DSQL
Addedin: 1.0

Description: Creates or recreates atable. If atable with the same name already exists, RECREATE TABLE will
try to drop it (destroying all its datain the process!) and create a new table. RECREATE TABLE will fail if the
existing tableisin use.

Syntax: Exactly the same as CREATE TABLE.

TRIGGER

CREATE TRIGGER

Availablein: DSQL, ESQL

45

DDL statements

Description: Createsatrigger, ablock of PSQL codethat isexecuted automatically upon certain database events
or mutationsto atable or view.

Syntax:

CREATE TRI GGER nane
{<relation_trigger_I| egacy>
| <relation_trigger_sqgl 2003>
| <dat abase_trigger> }
AS
[<decl ar ati ons>]
BEG N
[<st at enent s>]
END

<rel ation_trigger_| egacy> FOR {tabl enane | vi ewnane}
[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <nutation_|ist>

[POSI TI ON nunber]

<rel ation_trigger_sql 2003> [ACTI VE | [NACTI VE]
{BEFORE | AFTER} <nutation_|ist>
[POSI TI ON nunber]

ON {tabl enane | viewnane}

<dat abase_tri gger > ::= [ACTIVE | |NACTI VE]
ON db_event
[POSI TI ON nunber]

<nut ation_list> ::= nutation [OR mutation [OR nmutation]]
mut ati on ::= |INSERT | UPDATE | DELETE
db_event = CONNECT | DI SCONNECT | TRANSACTI ON START
| TRANSACTI ON COMWM T | TRANSACTI ON ROLLBACK
nunber = 0..32767 (default is 0)
<decl ar ati ons> ::= See PSQL::DECLARE for the exact syntax

» “Legacy” and “sgl2003” relation triggers are exactly the same. The only thing that differsisthe
creation syntax.

» Triggers with lower position numbers fire first. Position numbers need not be unique, but if two
or more triggers have the same position, the firing order between them is undefined.

» When defining relation triggers, each mutation type (INSERT, UPDATE or DELETE) may occur
at most once in the mutation list.

SQL-2003-compliant syntax for relation triggers
Addedin: 2.1
Description: Since Firebird 2.1, an aternative, SQL-2003-compliant syntax can be used for triggers on tables

and views. Instead of specifying “FOR r el ati onnane” before the event type and the optional directives sur-
rounding it, you can now put “ON r el at i onnane” after it, as shown in the syntax earlier in this chapter.

46

DDL statements

Example:

create trigger biu_books
active before insert or update position 3
on books
as
begi n
if (new.idis null)
then new.id = next val ue for gen_bookids;
end

Database triggers
Added in: 2.1

Description: Since Firebird 2.1, triggers can be defined to fire upon the database events CONNECT, DISCON-
NECT, TRANSACTION START, TRANSACTION COMMIT and TRANSACTION ROLLBACK. Only the database
owner and SYSDBA can cresate, alter and drop these triggers.

Syntax:

CREATE TRI GGER nane
[ACTI VE | | NACTI VE]

ON db_event
[POSI TI ON numnber]
AS
[<decl ar ati ons>]
BEA N
[<st at enent s>]
END
db_event = CONNECT | DI SCONNECT | TRANSACTI ON START
| TRANSACTI ON COW T | TRANSACTI ON ROLLBACK
nunber = 0..32767 (default is 0)
<decl ar ati ons> 1= See PSQL::DECLARE for the exact syntax
Example:

create trigger tr_connect
on connect
as
begi n
insert into dblog (w e, wanneer, wat)
val ues (current_user, current_timestanp, 'verbind');
end

Execution of database triggers and handling of exceptions:

» CONNECT and DISCONNECT triggers are executed in a transaction created specifically for this purpose. If
all goes well, the transaction is committed. Uncaught exceptions roll back the transaction, and:

- Inthe case of a CONNECT trigger, the connection is then broken and the exception returned to the client.
- With a DISCONNECT trigger, exceptions are not reported and the connection is broken as foreseen.

47

DDL statements

* TRANSACTION triggers are executed within the transaction whose opening, committing or rolling-back
evokes them. The actions taken after an uncaught exception depend on the type:

- InaSTART trigger, the exception is reported to the client and the transaction is rolled back.

- InaCOMMIT trigger, the exception is reported, the trigger's actions so far are undone and the commit
is canceled.

- InaROLLBACK trigger, the exception is not reported and the transaction is rolled back as foreseen.

* Itfollowsfrom the abovethat thereisno direct way of knowing if aDISCONNECT or TRANSACTION ROLL-
BACK trigger caused an exception.

» It aso follows that you can't connect to a database if a CONNECT trigger causes an exception, and that you
can't start a transaction if a TRANSACTION START trigger does so. Both phenomena effectively lock you
out of your database while you need to get in there to fix the problem. See the note below for away around
this Catch-22 situation.

* In the case of a two-phase commit, TRANSACTION COMMIT triggers fire in the prepare, not the commit
phase.

Note

Some Firebird command-line tools have been supplied with new switches to suppress the automatic firing of
database triggers:

gbak -nodbtriggers
i sql -nodbtriggers
nbackup -T

These switches can only be used by the database owner and SY SDBA.

Domains instead of datatypes
Changedin: 2.1

Description: Firebird 2.1 and up alow the use of domainsinstead of SQL datatypeswhen declaring local trigger
variables. See PSQL::DECLARE for the exact syntax and details.

COLLATE in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in local variable declarations. See PSQL::DECLARE
for syntax and details.

NOT NULL in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up alow NOT NULL constraints in local variable declarations. See
PSQL::DECLARE for syntax and details.

48

DDL statements

Multi-action triggers
Addedin: 1.5

Description: Relation triggers can be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (I NSERTI NG, UPDATI NG and DELETI NG) have been added so
you can execute code conditionally within the trigger body depending on the type of operation.

Example:

create trigger biu_parts for parts
before insert or update
as
begi n
/* conditional code when inserting: */
if (inserting and new.id is null)
then new.id = gen_id(gen_partrec_id, 1);

/* common code: */
new. part name_upper = upper (hew. partnane);
end

Note

In multi-action triggers, both context variables OLD and NEW are aways available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

e If youtry to read their field values, NULL is returned.
¢ |f you try to assign values to them, a runtime exception is thrown.

BEGIN ... END blocks may be empty

Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position O

as

begi n

end

CREATE TRIGGER no longer increments table change count
Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

49

DDL statements

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER
Availablein: DSQL, ESQL

Description: Altersan existing trigger. Relation triggers cannot be changed into database triggers or vice versa.
The associated table or view of arelation trigger cannot be changed.

Syntax:
ALTER TRI GGER narme

[ACTI VE | | NACTI VE]

[{BEFORE | AFTER} <nutation_list> | ON db_event]

[POSI TI ON numnber]

[AS
[<decl ar ati ons>]

BEG N

[<st at enent s>]
END]

» See CREATE TRIGGER for the meaning of <nut ati on_| i st > €tc.

Database triggers
Addedin: 2.1

Description: The ALTER TRIGGER syntax (see above) has been extended to support database triggers. For afull
discussion of this feature, see CREATE TRIGGER :: Database triggers.

Domains instead of datatypes

Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypeswhen declaring local trigger
variables. See PSQL.::DECLARE for the exact syntax and details.

COLLATE in variable declarations

Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clausesin local variable declarations. See PSQL::DECLARE
for syntax and details.

50

DDL statements

NOT NULL in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up alow NOT NULL constraints in local variable declarations. See
PSQL.::DECLARE for syntax and details.

Multi-action triggers
Added in: 1.5

Description: The ALTER TRIGGER syntax (see above) has been extended to support multi-action triggers. For
afull discussion of thisfeature, see CREATE TRIGGER :: Multi-action triggers.

Restriction on altering used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

PLAN allowed in trigger code
Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER no longer increments table change count
Changedin: 1.0

Description: Eachtimeyou use CREATE, ALTER or DROP TRIGGER, | nterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can still work with the datathough). A backup-restore cycleis needed to reset the counter and perform
metadata operations again.

While this obligatory cleanup after many metadata changesisin itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivatetriggersduring e.g. bulk import operations are forced to backup
and restore much more often then needed.

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the
table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, ater or drop triggers for that table.

51

DDL statements

CREATE OR ALTER TRIGGER
Availablein: DSQL
Added in: 1.5

Description: If the trigger does not yet exigt, it is created just as if CREATE TRIGGER were used. If it already
exigts, it is atered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same asfor CREATE TRIGGER.

DROP TRIGGER

Availablein: DSQL, ESQL

Restriction on dropping used triggers

Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has

been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

DROP TRIGGER no longer increments table change count
Changedin: 1.0
Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated

table when CREATE, ALTER or DROP TRIGGER is used. For afull discussion, see ALTER TRIGGER no longer
increments table change count.

RECREATE TRIGGER
Availablein: DSQL
Added in: 2.0

Description: Creates or recreatesatrigger. If atrigger with the same name already exists, RECREATE TRIGGER
will try to drop it and create a new trigger. RECREATE TRIGGER will fail if the existing trigger isin use.

Syntax: Exactly the same as CREATE TRIGGER.

52

DDL statements

Restriction on recreating used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

VIEW

CREATE VIEW

Availablein: DSQL, ESQL

Per-column aliases supported in view definition
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of column aliases in the SELECT statement. Y ou can alias none,
some or al of the columns; each alias used becomes the name of the corresponding view column.

Syntax (partial):
CREATE VI EW vi ewnane [<ful | _col umm_li st >]
AS
SELECT <col um_def> [, <colum_def> ...]
FROM . ..
[WTH CHECK OPTI ON|
<full _colum_list> ::= (colname [, colnane ...])
<col unn_def > ::= {source_col | expr} [[AS] colalias]
Notes:

 If the full column list is also present, specifying column aliases is futile as they will be overridden by the
names in the column list.

e The full column list used to be mandatory for views whose SELECT statement contains expression-based
columns or identical column names. Now you can omit the full column list, provided that you aias such
columnsin the SELECT clause.

Full SELECT syntax supported
Changedin: 2.0

53

DDL statements

Description: From Firebird 2.0 onward view definitions are considered full-fledged SELECT statements. Con-
sequently, the following elements are (re)allowed in view definitions: FIRST, SKIP, ROWS, ORDER BY, PLAN
and UNION.

Note

The use of a UNION within aview is currently only supported if you supply a column list for the view (this
list is normally optional):

create view vpl anes (nake, nodel) as
sel ect make, nodel fromjets
uni on
sel ect nake, nodel from props
uni on
sel ect nake, nmodel fromgliders

In Firebird 2.5, the column list will become optional also for views with UNIONS.

PLAN subclause disallowed in 1.5, reallowed in 2.0
Changedin: 1.5, 2.0

Description: Firebird versions 1.5.x forbid the use of a PLAN subclause in a view definition. From 2.0 onward
aPLAN isalowed again.

Triggers on updatable views block auto-writethrough
Changedin: 2.0

Description: In versions prior to 2.0, Firebird often did not block the automatic writethrough to the underlying
table if one or more triggers were defined on a naturally updatable view. This could cause mutations to be
performed twice unintentionally, sometimes leading to data corruption and other mishaps. Starting at Firebird
2.0, thismisbehaviour has been corrected: now if you defineatrigger on anaturally updatable view, no mutations
to the view will be automatically passed on to the table; either your trigger takes care of that, or nothing will.
Thisisin accordance with the description in the InterBase 6 Data Definition Guide under Updating views with
triggers.

Warning

Some people have developed code that counts on or takes advantage of the prior behaviour. Such code should
be corrected for Firebird 2.0 and higher, or mutations may not reach the table at all.

View with non-participating NOT NULL columns in base table can be made
insertable

Changedin: 2.0

Description: Any view whose base table contains one or more non-participating NOT NULL columns is read-
only by nature. It can be made updatable by the use of triggers, but even with those, all INSERT attempts into
such views used to fail because the NOT NULL constraint on the base table was checked before the view trigger

54

DDL statements

got a chance to put things right. In Firebird 2.0 and up this is no longer the case: provided the right trigger is
in place, such views are now insertable.

Example:

The view below would give validation errors for any insert attempts in Firebird 1.5 and earlier. In
Firebird 2.0 and up it isinsertable:

create table base (x int not null, y int not null);
create view vbase as select x from base

set term#
create trigger bi_base for vbase before insert
as
begi n
if (new.x is null) then new x = 33;
insert into base val ues (new. x, 0);
end#
set term;#

Notes:

Please notice that the problem described above only occurred for NOT NULL columns that were |eft outside
the view.

Oddly enough, the problem would be gone if the base table itself had a trigger converting NULL input to
something valid. But then therewas arisk that the insert would take place twice, due to the auto-writethrough
bug that has also been fixed in Firebird 2.

RECREATE VIEW

Availablein: DSQL

Added in: 1.5

Description: Cresates or recreates a view. If aview with the same name aready exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view isin use.

Syntax: Exactly the same as CREATE VIEW.

55

Chapter 6

DML statements

DELETE

Availablein: DSQL, ESQL, PSQL

Description: Deletes rows from a database table (or from one or more tables underlying a view), depending on
the WHERE and ROWS clauses.

Syntax:

DELETE
[TRANSACTI ON nane]
FROM {tabl enane | viewnane} [[AS] alias]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort_itens]
[ROA5 <> [TO <n>]]
[RETURNI NG val ues [I NTO <vari abl es>]]

<np, <n> = Any expression evaluating to an integer.
<variables> ::= <:varnane [, :varnane ...]

Restrictions

e The TRANSACTION directiveisonly available in ESQL.

e Inapure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

e ThePLAN, ORDER BY and ROWS clauses are not available in ESQL.

¢ The RETURNING clauseisnot availablein ESQL.

e The“INTO<vari abl es>" subclauseis only availablein PSQL.

¢ When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

COLLATE subclause for text BLOB columns
Addedin: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

del ete from MyTabl e
where NameBl ob collate pt_br = 'Joao'

56

DML statements

ORDER BY
Availablein: DSQL, PSQL
Addedin: 2.0

Description: DELETE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but is aso valid without it.

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: DELETE now allows aPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aliasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:

delete fromCities where name starting 'Al ex'
delete fromCities where Cties.nane starting 'Al ex'
delete fromCities C where nanme starting 'Al ex'
delete fromCities C where C nanme starting 'Al ex'

No longer possible:

delete fromCities C where Cities.nane starting 'Al ex'

RETURNING
Availablein: DSQL, PSQL

Added in: 2.1

57

DML statements

Description: A DELETE statement removing at most one row may optionally include a RETURNING clausein
order to return values from the deleted row. The clause, if present, need not contain all of the relation's columns
and may also contain other columns or expressions.

Examples:

del ete from Schol ars
where firstnanme = 'Henry' and | astnanme = 'Higgins
returning |lastname, fullnane, id

del ete from Dunbbel | s
order by iq desc
rows 1
returning lastnane, iq into :lnane, :ig;

Notes:

* In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually
deleted, thefieldsinthisrow areall NULL. Thisbehaviour may changein alater version of Firebird. In PSQL,
if no row was deleted, nothing is returned, and the receiving variables keep their existing val ues.

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limits the amount of rows deleted to a specified number or range.
Syntax:
ROWNE <n» [TO <n>]
<nP, <n> ::= Any expression evaluating to an integer.

With a single argument m the deletion is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

* |f m>thetota number of rows in the dataset, the entire set is deleted.
e |f m=0, norows are deleted.
e |f m<O, an error israised.

With two arguments mand n, the deletion is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

e |If m> thetota number of rows in the dataset, no rows are deleted.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are del eted.
e Ifm<lorn<1, anerorisraised.

e If n=m1, norowsare deleted.

e If n<ml, anerror israised.

58

DML statements

ROWS can aso be used with the SELECT and UPDATE statements.

EXECUTE BLOCK

Availablein: DSQL
Added in: 2.0
Changedin: 2.1

Description: Executes ablock of PSQL code as if it were a stored procedure, optionally with input and output
parametersand variable declarations. Thisallowsthe user to perform “ on-the-fly” PSQL withinaDSQL context.

Syntax:

EXECUTE BLOCK [(<i npar ans>)]
[RETURNS (<out par ans>)]

AS

[<decl ar ati ons>]
BEG N

[<PSQL st at enent s>]
END

<i npar ans>
<out par ans>
<par am decl >
<type>

<decl arati ons>

<param decl > = ? [, <inparams>]
<par am decl > [, <outparans>]

paramane <type> [NOT NULL] [COLLATE coll ati on]
sql _datatype | [TYPE OF] domain

See PSQ.:: DECLARE for the exact syntax

Examples:

This example injects the numbers 0 through 127 and their corresponding ASCII characters into the
table ASCIITABLE

execut e bl ock

as
declare i int = 0;
begi n
while (i < 128) do
begi n
insert into AsciiTable values (:i, ascii_char(:i));
i =i + 1;
end
end

The next example calcul ates the geometric mean of two numbers and returnsit to the user:

execute bl ock (x double precision = ?, y double precision = ?)
returns (gnean doubl e precision)
as
begi n
gnean = sqgrt(x*y);
suspend;
end

59

DML statements

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all — see the notes below.

Our last exampletakestwo integer values, smal | est and| ar gest . For al the numbersinthe range
smal | est .1 ar gest , the block outputs the number itself, its square, its cube and its fourth power.

execute block (smallest int = ?, largest int = ?)
returns (nunber int, square bigint, cube bigint, fourth bigint)
as
begi n
nunber = snmal | est;
whil e (nunmber <= largest) do

begi n
square = nunber * nunber;
cube = nunber * square;
fourth = nunmber * cube;
suspend;
nunber = nunber + 1;

end

end

Again, it depends on the client software if and how you can set the parameter values.

Notes:

» Some clients, especially those allowing the user to submit several statements at once, may require you to
surround the EXECUTE BLOCK statement with SET TERM lines, like this:

set term#
execute block (...)
as
begi n
st at enent 1;
st at enent 2;
end
#
set term ;#

In Firebird'sisgl client you must set the terminator to something other than “; ” before you type in the EXE-
CUTE BLOCK statement. Otherwiseisgl, being line-oriented, will try to execute the part you have entered as
soon as it encounters the first semicolon.

» Executing ablock without input parameters should be possible with every Firebird client that alows the user
to enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters
must get their values after the statement is prepared but beforeit is executed. Thisrequires special provisions,
which not every client application offers. (Firebird's own isgl, for one, doesn't.)

» The server only accepts question marks (“?”) as placeholders for the input values, not “: a”, “: MyPar anf
etc., or literal values. Client software may support the “: xxx” form though, which it will preprocess before
sending it to the server.

« If the block has output parameters, you must use SUSPEND or nothing will be returned.

e Output is always returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there's only one result row.

60

DML statements

COLLATE in variable and parameter declarations

Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example:

execut e bl ock
(es_1 varchar (20) character set is08859 1 collate es_es = ?)

returns
(nl _1 varchar (20) character set is08859 1 collate du_nl)
as
declare s_tenp varchar (100) character set utf8 collate unicode;
begi n
end

NOT NULL in variable and parameter declarations

Changedin: 2.1

Description: Firebird 2.1 and up alow NOT NULL constraints in declarations of input/output parameters and
local variables.

Example:
execute block (a int not null =2, bint not null = ?)
returns (product bigint not null, message varchar(20) not null)
as
decl are usel ess_dumy tinestanp not nul |
begi n
product = a*b;
if (product < 0) then message = 'This is bel ow zero."';
else if (product > 0) then nmessage = 'This is above zero.';
el se nessage = 'This nust be zero.';
suspend;
end

Domains instead of datatypes

Changedin: 2.1

Description: Firebird 2.1 and up alow the use of domainsinstead of SQL datatypeswhen declaring input/output
parameters and local variables. With the “TYPE OF” modifier only the domain'stypeis used, not its NOT NULL
setting, CHECK constraint and/or default value.

61

DML statements

Example:

execute block (a nmy_domain = ?, b type of ny_other_domain = ?)
returns (p my_third_domain)
as
declare s_tenp type of ny_third_donain;
begi n

end

EXECUTE PROCEDURE

Availablein: DSQL, ESQL, PSQL
Changedin: 1.5

Description: Executes a stored procedure. In Firebird 1.0.x aswell asin InterBase, any input parameters for the
SP must be supplied asliterals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5
and above, input parameters may also be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE procnane
[TRANSACTI ON transacti on]
[<initems [, <in_item> ...]]
[RETURNI NG_VALUES <out _itenm» [, <out_itenr ...]]

<in_itemr = <inparan> [<nullind>]
<out _itenp = <outvar> [<nullind>]
<i npar ane = an expression evaluating to the decl ared paraneter type
<out var > = a host | anguage or PSQ. variable to receive the return val ue
<nul | i nd> = [I NDI CATOR] : host _| ang_i ntvar
Notes

e TRANSACTION clauses are not supported in PSQL .
» Expression parameters are not supported in static ESQL , and not in Firebird versionsbelow 1.5.

e NULL indicators are only valid in ESQL code. They must be host language variables of type
integer.

e In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:"). In
PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
NEW.

Examples:
In PSQL (with optional colons):
execut e procedure MakeFul | Name

:FirstNanme, :Mddl eNane, :LastNane
returni ng_val ues : Ful | Nane;

62

DML statements

The same call in ESQL (with obligatory colons):
exec sql
execut e procedure MakeFul | Nare

:FirstName, : M ddl eNane, :LastNane
ret urni ng_val ues : Ful | Nare;

...and in Firebird's command-line utility isgl (with literal parameters):

execut e procedure MakeFul | Nanme
"J', 'Edgar', 'Hoover';

Note: Inisgl, don't use RETURNING_VALUES. Any output values are shown automatically.
Finally, a PSQL example with expression parameters, only possiblein Firebird 1.5 and up:
execut e procedure NMakeFul | Name

"M./Ms. ' || FirstName, M ddl eNane, upper (Last Name)
returning val ues Ful | Nane;

INSERT

Availablein: DSQL, ESQL, PSQL

Description: Adds rows to a database table, or to one or more tables underlying a view. Field values can be
given in the VALUES clause, they can be totally absent (in both cases, exactly one row isinserted), or they can
come from a SELECT statement (0 to many rows inserted).

Syntax:

| NSERT [TRANSACTI ON nane]
I NTO {tabl enane | viewnane}
{ DEFAULT VALUES | [(<colum_list>)] <val ue_source>}
[RETURNI NG <val ue_list> [I NTO <vari abl es>]]

<col um_li st > = colnane [, colnane ...]

<val ue_sour ce> = VALUES (<value_list>) | <select_stnt>
<val ue_list> = value [, value ...]

<vari abl es> ;= varnane [, :varnane ...]

<sel ect _stnt > a SELECT whose result set fits the target colums

Restrictions

e The TRANSACTION directiveisonly available in ESQL.

e The RETURNING clauseisnot availablein ESQL.

e The®INTO <vari abl es>" subclauseisonly available in PSQL.

* When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

e Sincev. 2.0, no column may appear more than once in the insert list.

63

DML statements

INSERT ... DEFAULT VALUES
Availablein: DSQL, PSQL
Addedin: 2.1

Description: The DEFAULT VALUES clause allows insertion of a record without providing any values at all,
neither directly nor from a SELECT statement. Thisisonly possibleif every NOT NULL or CHECKed columnin
the table either has a valid default declared or gets such a value from a BEFORE INSERT trigger. Furthermore,
triggers providing required field values must not depend on the presence of input val ues.

Example:

insert into journal default val ues
returning entry_id

RETURNING clause
Availablein: DSQL, PSQL
Addedin: 2.0

Changedin: 2.1

Description: An INSERT statement adding at most one row may optionally include a RETURNING clause in
order to return values from the inserted row. The clause, if present, need not contain all of the insert columns
and may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE tiggers, but not those in AFTER triggers.

Examples:
insert into Scholars (firstname, |astnane, address, phone, emuil)

values ('Henry', '"Higgins', '27A Wnpole Street', '3231212', null)
returning | astnane, fullname, id

insert into Dunmbbells (firstnanme, |astnane, iq)
sel ect fnane, Iname, iq fromFriends order by iq rows 1
returning id, firstnane, iq into :id, :fname, :iq;
Notes:
e RETURNING isonly supported for VALUES inserts and — since version 2.1 — singleton SELECT inserts.

* InDSQL, astatement with a RETURNING clause always returns exactly one row. If no record was actually
inserted, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was inserted, nothing is returned, and the receiving variables keep their existing values.

UNION allowed in feeding SELECT

Changedin: 2.0

DML statements

Description: A SELECT query used in an INSERT statement may now be a UNION.

Example:

insert into Menbers (nunber, nane)

sel ect nunber, nane from NewiMenbers where Accepted = 1
uni on

sel ect nunber, nane from SuspendedMenbers where Vindicated = 1

MERGE

Availablein: DSQL, PSQL
Added in: 2.1

Description: Mergesdatainto atable or view. The source may atable, view or derived table (i.e. aparenthesized
SELECT statement or CTE). Each source record will be used to update one or more target records, insert a new
record in thetarget table, or neither. The action taken depends on the provided condition and the WHEN clause(s).
The condition will typically contain a comparison of fieldsin the source and target relations.

Syntax:

MERGE | NTO {tabl enane | viewnanme} [[AS] alias]

USI NG {tabl ename | viewnanme | (select_stnt)} [[AS] alias]
ON condition

VWHEN MATCHED THEN UPDATE SET col nane = value [, colnane = value ...]
WHEN NOT MATCHED THEN | NSERT [(<col ums>)] VALUES (<val ues>)

<colums> ::= colnanme [, colnanme ...]
<val ues> = val ue [, value o]

Note: It is allowed to provide only one of the WHEN cl auses
Examples:

nmerge i nto books b
usi ng purchases p
on p.title = b.title and p.type = 'bk'
when mat ched t hen
update set b.desc = b.desc || '; " || p.desc
when not mat ched then
insert (title, desc, bought) values (p.title, p.desc, p.bought)

nmerge into custoners c
using (select * fromcustoners_delta where id > 10) cd
on (c.id = cd.id)
when nmat ched then update set nane = cd. nane
when not matched then insert (id, name) values (cd.id, cd.nane)

Note

WHEN NOT MATCHED should be interpreted from the point of view of the source (the relation in the USING
clause). That is: if a source record doesn't have a match in the target table, the INSERT clause is executed.
Conversely, records in the target table without a matching source record don't trigger any action.

65

DML statements

Warning

If the WHEN MATCHED clauseis present and multiple source records match the same record in the target table,
the UPDATE clause is executed for al the matching source records, each update overwriting the previous one.
Thisis non-standard behaviour: SQL -2003 specifies that in such a case an exception must be raised.

SELECT

Availablein: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality
Changedin: 1.5

Description: Several types of mixing and nesting aggragate functions are supported since Firebird 1.5. They
will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

Mixing aggregate functions from different contexts

Firebird 1.5 and up allow the use of aggregate functions from different contexts inside a single expression.

Example:
sel ect
r.rdb$rel ati on_nanme as "Tabl e nane",
(select max(i.rdb$statistics) || ' (" || count(*) || ")

fromrdb$relation_fields rf
where rf.rdb$rel ati on_nanme = r.rdb$rel ati on_nane
) as "Max. IndexSel (# fields)"
from
rdb$rel ations r
join rdb$indices i on (i.rdb$relation_nane = r.rdb$rel ati on_nane)
group by r.rdb$rel ati on_nane
havi ng max(i.rdb$statistics) >0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on atable, followed by thetable'sfield count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contextsin asingle expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

66

DML statements

Aggregate functions and GROUP BY items inside subqueries

SinceFirebird 1.5it ispossibleto use aggregate functions and/or expressions contained in the GROUPBY clause
inside a subquery.

Examples:

Thisquery returnseach table's I D and field count. The subquery referstof | ds. r do$r el ati on_nane,
which isaso a GROUP BY item:

sel ect
flds.rdb$rel ati on_nane as "Rel ati on nane",
(select rels.rdb$relation_id
fromrdb$relations rels
where rels.rdb$rel ati on_nanme = flds.rdb$rel ati on_nane
) as "ID',
count (*) as "Fields"
fromrdb$rel ation_fields flds
group by flds.rdb$rel ati on_nane

The next query showsthe last field from each table and and its 1-based position. It uses the aggregate
function MAX in asubquery.

sel ect
flds.rdb$rel ati on_nane as "Tabl e"
(select flds2.rdb$fiel d_name
fromrdb$rel ation_fields flds2
wher e
flds2.rdb$rel ati on_nane = flds.rdb$rel ati on_nane
and flds2.rdb$field_position = max(flds.rdb$fiel d_position)
) as "Last field",
max(flds.rdb$field position) + 1 as "Last fiel dpos”
fromrdb$rel ation_fields flds
group by 1

The subquery also containsthe GROUPBY itemf | ds. r db$r el ati on_nane, but that's not imme-
diately obvious because in this case the GROUPBY clause uses the column number.

Subqueries inside aggregate functions
Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.
Example:

sel ect
r.rdb$rel ati on_nanme as "Tabl e",
sun((select count(*)
fromrdb$relation_fields rf
where rf.rdb$rel ation_name = r.rdb$rel ati on_nane)
) as "Ind. x Fields"
from
rdb$rel ations r
j oin rdb$i ndi ces

67

DML statements

on (i.rdb$relation_name = r.rdb$rel ati on_nane)

group by
r.rdb$rel ati on_nane

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from alower
SQL context. Direct nesting of aggregate function calls, asin “COUNT(MAX(price))", is till forbidden and
punishable by exception.

Example: See under Subqueries inside aggregate functions, where COUNTY() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can beincluded inthe HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in aHAVING or ORDER BY item contains
acolumn name, it isonly accepted if one of the following is true:

» The column name appears in an aggregate function call (e.g. “HAVI NG MAX(SALARY) > 10000").

» The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list (by name
or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose there's a
non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”, “STR || "
or “SUBSTRING(STR FROM 4 FOR 2)” in the HAVING clause — even if these expressions don't appear as such
in the SELECT or GROUP BY list.

COLLATE subclause for text BLOB columns

Added in: 2.0
Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

sel ect NaneBl ob from MyTabl e
where NaneBl ob collate pt_br = 'Joao

Common Table Expressions (“WITH ... AS ... SELECT")
Availablein: DSQL, PSQL
Added in: 2.1

Description: A common table expression or CTE can be described asavirtual tableor view, defined in apreamble
to a main query, and going out of scope after the main query's execution. The main query can reference any
CTEsdefined in the preamble asif they were regular tables or views. CTES can berecursive, i.e. self-referencing,
but they cannot be nested.

68

DML statements

Syntax:
<cte-construct> ::= <cte-defs>
<mai n- query>
<ct e- def s> ;.= WTH [RECURSI VE] <cte> [, <cte> ...]
<cte> ::= name [(<colum-list>)] AS (<cte-stnt>)
<col um-1list> ::= colum-alias [, colum-alias ...]
<cte-stmnt> ::= any SELECT statement or UNION
<mai n- query> ;.= the nmain SELECT statenent, which can refer to the
CTEs defined in the preanble
Example:

wi th dept _year budget as (
sel ect fiscal _year
dept _no,
sun(proj ect ed_budget) as budget
from proj _dept budget
group by fiscal year, dept_no

sel ect d. dept_no,
d. depart nent,
dyb_2008. budget as budget 08,
dyb_2009. budget as budget 09
from departnent d
| eft join dept_year budget dyb 2008
on d.dept_no = dyb_2008. dept _no
and dyb _2008.fiscal _year = 2008
left join dept_year_ budget dyb_2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009.fiscal _year = 2009
where exists (
select * from proj _dept_budget b
where d.dept _no = b.dept_no
)

Notes:

A CTE definition can contain any legal SELECT statement, as long as it doesn't have a “WITH...” preamble
of its own (no nesting).

» CTEsdefined for the same main query can reference each other, but care should be taken to avoid loops.
* CTEs can be referenced from anywhere in the main query.
» Each CTE can be referenced multiple times in the main query, possibly with different aliases.

* When enclosed in parentheses, CTE constructs can be used as subqueries in SELECT statements, but also in
UPDATES, MERGES €tc.

* InPSQL, CTEs are also supported in FOR loop headers:

69

DML statements

for with my_rivers as (select * fromrivers where owner = 'ne')
sel ect nane, length fromny_rivers into :rname, :rlen

do

begi n

end

Recursive CTES

A recursive (self-referencing) CTE is a UNION which must have at least one non-recursive member, called the
anchor. The non-recursive member(s) must be placed before the recursive member(s). Recursive members are
linked to each other and to their non-recursive neighbour by UNION ALL operators. The unions between non-
recursive members may be of any type.

Recursive CTEs require the RECURSIVE keyword to be present right after WITH. Each recursive union member
may referenceitsalf only once, and it must do so in a FROM clause.

A great benefit of recursive CTESs is that they use far less memory and CPU cycles than an equivalent recursive
stored procedure.

The execution pattern of arecursive CTE is asfollows:
» The engine begins execution from a non-recursive member.

» For each row evaluated, it starts executing each recursive member one-by-one, using the current values from
the outer row as parameters.

* If the currently executing instance of arecursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

Example with a recursive CTE:

with recursive
dept _year budget as (
sel ect fiscal _year,
dept _no,
sun{ proj ect ed_budget) as budget
from proj _dept _budget
group by fiscal year, dept_no
)
dept _tree as (
sel ect dept_no,
head_dept,
depart nment,
cast('' as varchar(255)) as indent
from depart nent
where head_dept is nul

uni on al

sel ect d. dept_no,
d. head_dept,
d. depart nent,
h.indent ||

from departnent d
join dept _tree h on d.head_dept = h.dept_no

70

DML statements

sel ect d. dept_no,
d.indent || d.departnment as departnent,
dyb_2008. budget as budget 08,
dyb_2009. budget as budget 09
fromdept _tree d
| eft join dept_year budget dyb 2008
on d.dept_no = dyb_2008. dept _no
and dyb _2008.fiscal _year = 2008
left join dept_year_ budget dyb_2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009. fiscal _year = 2009

Notes on recursive CTES:

» Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are not
alowed in recursive union members.

* A recursive reference cannot participate in an outer join.

* The maximum recursion depth is 1024.

Derived tables (* SELECT FROM SELECT")
Addedin: 2.0

Description: A derived tableistheresult set of aSELECT query, used in an outer SELECT asif it werean ordinary
table. Put otherwise, it isasubguery in the FROM clause.

Syntax:

(sel ect-query)
[[AS] derived-table-alias]
[(<derived-col um-aliases>)]

<derived-colum-aliases> := colum-alias [, colum-alias ...]
Examples:

The derived table in the query below (shown in boldface) contains al the relation names in the
database followed by their field count. The outer SELECT produces, for each existing field count, the
number of relations having that field count.

sel ect fieldcount,
count(relation) as numtabl es
from (select r.rdb$relation_name as relation,
count (*) as fiel dcount
from rdb$relations r
join rdb$relation_fields rf
on rf.rdb$relati on_name = r.rdb$rel ati on_nane
group by relation)
group by fiel dcount

A trivial example demonstrating the use of a derived table alias and column aliases list (both are
optional):

71

DML statements

sel ect dbi nfo. descr,
dbi nf 0. def _char set
from (select * fromrdb$database) dbinfo
(descr, rel _id, sec_class, def_charset)

Notes:

» Derived tables can be nested.

Derived tables can be unions and can be used in unions. They can contain aggregate functions, subselectsand
joins, and can themselves be used in aggregate functions, subselects and joins. They can also be or contain
gueries on selectable stored procedures. They can have WHERE, ORDER BY and GROUP BY clauses, FIRST,
SKIP or ROWS directives, etc. etc.

» Every columninaderived table must have aname. If it doesn't have one by nature (e.g. becauseit's aconstant)
it must either be given an dias in the usual way, or a column aliases list must be added to the derived table
specification.

» Thecolumn aliases list is optional, but if it is used it must be complete. That is: it must contain an alias for
every column in the derived table.

» The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subquery, then no join order can be made.

FIRST and SKIP

Availablein: DSQL, PSQL
Added in: 1.0

Changedin: 1.5

Better alternative: ROWS

Description: FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

Tip

In Firebird 2.0 and up, use the SQL-compliant ROWS syntax instead.

Syntax:
SELECT [FI RST (<int-expr>)] [SKIP (<int-expr>)] <colums> FROM ...

<i nt - expr > = Any expression evaluating to an integer.
<col ums> ::= The usual output colum specifications.

Note

If <i nt - expr > isan integer literal or aquery parameter, the“() ” may be omitted. Subselects on
the other hand require an extra pair of parentheses.

72

DML statements

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmost rows of the output
set are discarded and the first mrows of the remainder are returned.

SKIP O is alowed, but of course rather pointless. FIRST 0 is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always result in an error.

If a SKIP lands past the end of the dataset, an empty set isreturned. If the number of rows in the dataset (or the
remainder after a SKIP) isless than the value given after FIRST, that smaller number of rowsis returned. These
are valid results, not error situations.

Examples:

The following query will return the first 10 names from the Peopl e table:

select first 10 id, nane from Peopl e
order by nane asc

The following query will return everything but the first 10 names:

select skip 10 id, name from Peopl e
order by nane asc

And this one returns the last 10 rows. Notice the double parentheses:
sel ect skip ((select count(*) - 10 from People))

id, nane from People
order by nane asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, nanme from People
order by nane asc

Two Gotchaswith FIRST in subselects
e This
del ete from WTabl e where IDin (select first 10 ID from MyTabl e)

will deleteall of therowsin thetable. Ouch! The sub-select is evaluating each 10 candidate rowsfor deletion,
deleting them, dipping forward 10 more... ad infinitum, until there are no rows |eft. Beware! Or better: use
the ROWS syntax, available since Firebird 2.0.

e Querieslike:
...wWhere F1 in (select first 5 F2 from Tabl e2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EX1STS predicate shown below. It's obviousthat in this case FIRST N doesn't make any sense:

... Where exists
(select first 5 F2 from Tabl e2
where Tabl e2. F2 = Tabl el. F1
order by 1 desc)

73

DML statements

GROUP BY

Description: GROUP BY merges rows that have the same combination of values and/or NULLS in the item list
into a single row. Any aggregate functions in the select list are applied to each group individually instead of
to the dataset as awhole.

Syntax:
SELECT ... FROM...
GROUP BY <itenr [, <itenr ...]
<item> ::= colum-nanme [COLLATE coll ation-nane]

| colum-alias
| col um-position
| expression

* Only non-negative integer literals will be interpreted as column positions. If they are outside the
rangefrom 1to the number of columns, an error israised. Integer valuesresulting from expressions
or parameter substitutions are simply invariables and will be used as such in the grouping. They
will have no effect though, astheir value is the same for each row.

* A GROUP BY item cannot be a reference to an aggregate function (including one that is buried
inside an expression) from the same context.

» Theselect list may not contain expressions that can have different values within agroup. To avoid
this, the rule of thumb is to include each non-aggregate item from the select list in the GROUPBY
list (whether by copying, alias or position).

Note: If you group by a column position, the expression at that position is copied internally from the select list.
If it concerns a subquery, that subquery will be executed at |east twice.

Grouping by alias, position and expressions
Changedin: 1.0, 1.5, 2.0

Description: In addition to column names, Firebird 2 allows column aliases, column positions and arbitrary
valid expressions as GROUP BY items.

Examples:
These three queries all achieve the same resullt:
select strlen(lastnane) as |en_nane, count(*)
from peopl e
group by | en_nane
sel ect strlen(lastnane) as | en_nane, count(*)

from peopl e
group by 1

74

DML statements

sel ect strlen(lastnane) as | en_name, count(*)
from peopl e
group by strlen(lastnane)

History: Grouping by UDF resultswas added in Firebird 1. Grouping by column positions, CASE outcomes and
alimited number of internal functionsin Firebird 1.5. Firebird 2 added column aliases and expressionsin general
asvalid GROUPBY items (“expressionsin general” absorbing the UDF, CASE and internal functions lot).

HAVING: Stricter rules

Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

JOIN

Ambiguous field names rejected
Changedin: 1.0

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

sel ect buses. nane, garages. hane
from buses join garages on buses.garage_id = garage.id
where name = ' Phideaux I11*

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
names in JOIN statements. Dialect 1 gives awarning but will execute the query anyway.

CROSS JOIN
Added in: 2.0
Description: Firebird 2.0 and up support CROSS JOIN, which performs a full set multiplication on the tables

involved. Previously you had to achieve this by joining on a tautology (a condition that is always true) or by
using the comma syntax, now deprecated.

Syntax:
SELECT ...
FROM <rel ati on> CROSS JO N <rel ati on>
<relation> ::= {table | view | cte | (select_stnt)} [[AS] alias]

Note: If you use CROSS JOIN, you can't use ON.

75

DML statements

Example:

select * from Men cross join Wnen
order by Men.age, Wnen. age

-- old syntax:

- - select * fromMen join Wonen on 1 =1
-- order by Men. age, Wonen. age

-- comma syntax:

- - select * from Men, Wonen
-- order by Men. age, Wonen. age

Named colums JOIN

Addedin: 2.1

Description: A named colums join is an equi-join on the columns named in the USING clause. These columns
must exist in both relations.

Syntax:
SELECT ...
FROM <rel ation> [<join_type>] JON <rel ati on>
USI NG (col nane [, colnane ...])

{table | view | cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RIGHT | FULL} [QUTER]

<rel ation>
<j oi n_type>

Example:
sel ect *

from books join shel ves
usi ng (shel f, bookcase)

The equivalent in traditional syntax:
sel ect *

from books b join shelves s
on b.shelf = s.shelf and b. bookcase = s. bookcase

Notes:

» Thecolumnsinthe USING clause can be selected without qualifier. Be aware, however, that doing so in outer
joins doesn't lways give the same result as selecting | ef t .col nane or ri ght .col nane. One of the latter
may be NULL while the other isn't; plain col nane always returns the non-NULL alternative in such cases.

e SELECT * from anamed columns join returns each USING column only once. In outer joins, such a column
always contains the non-NULL alternative except for rows where the field is NULL in both tables.

Natural JOIN

Added in: 2.1

76

DML statements

Description: A natural join is an automatic equi-join on all the columns that exist in both relations. If there are
no common column names, a CROSS JOIN is produced.

Syntax:

SELECT ...
FROM <rel ati on> NATURAL [<join_type>] JO N <rel ati on>

{table | view | cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RIGHT | FULL} [QUTER

<rel ati on>
<join_type>

Example:
select * fromPupils natural left join Tutors

Assuming that the Pupils and Tutors tables have two field names in common: TUTOR and CLASS,
the equivalent traditional syntax is:

select * fromPupils p left join Tutors t
on p.tutor = t.tutor and p.class = t.class

Notes:

» Common columns can be selected from a natural join without qualifier. Beware, however, that doing so in
outer joins doesn't always gives the same result as selecting | ef t .col nanme or ri ght .col nane. One of the
latter may be NULL whiletheother isn't; plain col name alwaysreturnsthe non-NULL alternativein such cases.

* SELECT * from anatural join returns each common column only once. In outer joins, such a column aways
contains the non-NULL alternative except for rows where the field is NULL in both tables.

ORDER BY

Syntax:
SELECT ... FROM ...
bébER BY <ordering-iten» [, <ordering-itenr ...]
<ordering-item» ::= {col-name | col-alias | col-position | expression}

[COLLATE col | ati on- nane]

[ASCI ENDI NG | DESC] ENDI NG]
[NULLS { FI RST| LAST}]

Order by colum alias
Added in: 2.0

Description: Firebird 2.0 and above support ordering by column alias.

77

DML statements

Example:
sel ect rdb$character_set _id as charset_id,
rdb$col lation_id as coll _id,
rdb$col | ati on_nane as name

from rdb$col | ati ons
order by charset _id, coll_id

Ordering by column position causes * expansion
Changed in: 2.0

Description: If you order by column position in a “SELECT *” query, the engine will now expand the * to
determine the sort column(s).

Examples:
The following wasn't possible in pre-2.0 versions:

select * fromrdb$coll ations
order by 3, 2

The following would sort the output set on Fi | ns. Di r ect or in previous versions. In Firebird 2
and up, it will sort on the second column of Books:

sel ect Books.*, Filns.Director from Books, Filns
order by 2

Ordering by expressions
Addedin: 1.5

Description: Firebird 1.5 introduced the possibility to use expressions as ordering items. Please note that ex-
pressions consisting of a single non-negative whole number will be interpreted as column positions and cause
an exception if they're not in the range from 1 to the number of columns.

Example:

select x, y, note fromPairs
order by x+y desc

Note

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedure is
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

Notes:

» The number of function or procedureinvocations resulting from a sort based on a UDF or stored procedureis
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

78

DML statements

» Only non-negative whole number literalsareinterpreted as column positions. A whole number resulting from
an expression evaluation or parameter substitution is seen as an integer invariable and will lead to a dummy
sort, since its value is the same for each row.

NULLS placement
Changedin: 1.5, 2.0

Description: Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST directives to specify
where NULLSs appear in the sorted column. Firebird 2.0 has changed the default placement of NULLS.

Unless overridden by NULLS FIRST or NULLSLAST, NULLs in ordered columns are placed as follows:
* InFirebird 1.0 and 1.5: at the end of the sort, regardless whether the order is ascending or descending.
» InFirebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See also the table below for an overview of the different versions.

Table6.1. NULLS placement in ordered columns

Ordering NULLS placement
Firebird 1 Firebird 1.5 Firebird 2
order by Field [asc] bottom bottom top
order by Field desc bottom bottom bottom
order by Field [asc | desc] nulls first — top top
order by Field [asc | desc] nulls last — bottom bottom
Notes

» Pre-existing databases may need a backup-restore cycle before they show the correct NULL ordering be-
haviour under Firebird 2.0 and up.

* Noindex will be used on columns for which a non-default NULLS placement is chosen. In Firebird 1.5, that
is the case with NULLS FIRST. In 2.0 and higher, with NULLS LAST on ascending and NULLS FIRST on
descending sorts.

Examples:

select * from nsg
order by process_tinme desc nulls first

sel ect * from docunent
order by strlen(description) desc
rows 10

sel ect doc_nunber, doc_date from payorder

uni on all

sel ect doc_nunber, doc_date from budgorder
order by 2 desc nulls last, 1 asc nulls first

79

DML statements

Stricter ordering rules with aggregate statements
Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

PLAN
Availablein: DSQL, ESQL, PSQL

Description: Specifies auser plan for the dataretrieval, overriding the plan that the optimizer would have gen-
erated automatically.

Syntax:

PLAN <pl an_expr >

<pl an_expr > [JON | [SORT] [MERGE]] (<plan_iten» [, <plan_itenmr ...])

<pl an_i tenp <basic_itenr | <pl an_expr>

<basic_item> ::= {table | alias}
{ NATURAL
| I NDEX (<indexlist>))
| ORDER index [INDEX (<indexlist>)]}

<i ndexl i st > ::= index [, index ...]

Handling of user PLANs improved

Changedin: 2.0

Description: Firbird 2 has implemented the following improvements in the handling of user-specified PLANS:
» Planfragmentsare propagated to nested levels of joins, enabling manual optimization of complex outer joins.
o User-supplied planswill be checked for correctnessin outer joins.

» Short-circuit optimization for user-supplied plans has been added.

» A user-specified access path can be supplied for any SELECT-based statement or clause.

ORDER with INDEX
Changedin: 2.0

Description: A single plan item can how contain both an ORDER and an INDEX directive (in that order).

80

DML statements

Example:

plan (MyTable order ix_myfield index (ix_this, ix_that))

PLAN must include all tables
Changedin: 2.0

Description: In Firebird 2 and up, a PLAN clause must handle all the tables in the query. Previous versions
sometimes accepted incomplete plans, but thisis no longer the case.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
sel ect pears from Fruit
sel ect Fruit.pears fromFruit
sel ect pears fromFruit F
sel ect F.pears fromFruit F

No longer possible:

select Fruit.pears fromFruit F

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limitsthe amount of rows returned by the SELECT statement to a specified number or range.
Syntax:
With asingle SELECT:
SELECT <col ums> FROM . ..

[WHERE . ..]
[ORDER BY ...]

81

DML statements

RONS <> [TO <n>]

<col ums> = The usual output colum specifications.
<ne, <n> ;.= Any expression evaluating to an integer.
With aUNION:

SELECT [FIRST p] [SKIP g] <colums> FROM ...
[WHERE . . .]
[ORDER BY ...]

UNION [ALL | DI STI NCT]

SELECT [FIRST r] [SKIP s] <col ums> FROM ...
[WHERE . ..]
[ORDER BY ...]

ROWE <n» [TO <n>]
With a single argument m the first mrows of the dataset are returned.
Points to note:
* |f m>thetota number of rows in the dataset, the entire set is returned.
e |f m=0, an empty set is returned.
e |[fm<O0, anerrorisraised.
With two arguments mand n, rows mto n of the dataset are returned, inclusively. Row numbers are 1-based.

Points to note when using two arguments:

* If m> thetotal number of rowsin the dataset, an empty set is returned.

e If mlieswithin the set but n doesn't, the rows from mto the end of the set are returned.
e Ifm<lorn<1, anerorisraised.

e If n =ml, an empty set isreturned.

e If n<ml, anerror israised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP without
FIRST, which returnsthe entire remainder of the set after skipping agiven number of rows. (Y ou can often “fake
it” though, by supplying a second argument that you know to be bigger than the number of rowsin the set.)

Y ou cannot use ROWS together with FIRST and/or SKIP in asingle SELECT statement, but isit valid to use one
form in the top-level statement and the other in subselects, or to use the two syntaxes in different subselects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed after
the last SELECT. If you want to limit the output of one or more individual SELECTs within the UNION, you
have two options: either use FIRST/SKIP on those SELECT statements, or convert them to derived tables with
ROWS clauses.

ROWS can aso be used with the UPDATE and DELETE statements.

UNION

Availablein: DSQL, ESQL, PSQL

82

DML statements

UNIONS in subqueries
Changedin: 2.0

Description: UNIONs are now allowed in subqueries. This applies not only to column-level subqueriesin a
SELECT list, but aso to subqueries in ANY|SOME, ALL and IN predicates, as well as the optional SELECT
expression that feeds an INSERT.

Example:

sel ect name, phone, hourly_rate from cl owns
where hourly rate < all
(select hourly rate fromjugglers
uni on
select hourly_ rate from acrobats)
order by hourly rate

UNION DISTINCT

Added in: 2.0

Description: Y ou can now usetheoptional DISTINCT keyword when defining aUNION. Thiswill show duplicate
rows only once instead of every time they occur in one of the tables. Since DISTINCT, being the opposite of
ALL, isthe default mode anyway, this doesn't add any new functionality.

Syntax:
SELECT (...) FROM (...)

UNI ON [DI STINCT | ALL]
SELECT (...) FROM(...)

Example:
sel ect name, phone fromtranslators

uni on di stinct
sel ect nanme, phone from proofreaders

Translators who also work as proofreaders (a not uncommon combination) will show up only once
in the result set, provided their phone number is the samein both tables. The same result would have
been obtained without DISTINCT. With ALL, they would appear twice.

WITH LOCK
Availablein: DSQL, PSQL
Added in: 1.5

Description: WITH LOCK providesalimited explicit pessimistic locking capability for cautious usein conditions
where the affected row set is:

a. extremely small (ideally, asingleton), and

b. precisely controlled by the application code.

83

DML statements

Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

It isessential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:
SELECT ... FROM single_ table
[WHERE . . .]
[FOR UPDATE [OF ...]]
W TH LOCK

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

WITH LOCK can only be used with atop-level, single-table SELECT statement. It is not available:

* inasubquery specification;

» forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
* withaview;

» with the output of a selectable stored procedure;

» with an external table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” isincluded in the Notes. It is a must-read
for everybody who considers using this feature.

UPDATE

Availablein: DSQL, ESQL, PSQL

Description: Changes values in atable (or in one or more tables underlying a view). The columns affected are
specified in the SET clause; the rows affected may be limited by the WHERE and ROWS clauses.

Syntax:

UPDATE [TRANSACTI ON nane] {tablenanme | viewnane} [[AS] alias]
SET col = newal [, col = newal ...]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_i t ens]
[ORDER BY sort_itens]
[ROAB <> [TO <n>]]
[RETURNI NG val ues [I NTO <vari abl es>]]

<P, <n> = Any expression evaluating to an integer.
<variables> ::= :varname [, :varnane ...]

DML statements

Restrictions

e The TRANSACTION directiveis only available in ESQL.

¢ Inapure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

The PLAN, ORDER BY and ROWS clauses are not available in ESQL.

Sincev. 2.0, no column may be SET more than once in the same UPDATE statement.

The RETURNING clauseis not available in ESQL.

The“INTO <vari abl es>" subclauseisonly availablein PSQL.

When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

L] L] L] L] L]

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

update MyTabl e
set NameBl obSp = ' Juan’
wher e NameBl obBr collate pt_br = 'Joao'

ORDER BY
Availablein: DSQL, PSQL
Added in: 2.0

Description: UPDATE now alows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: UPDATE now alows aPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changedin: 2.0

85

DML statements

Description: If you give atable or view an adliasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
update Fruit set soort = 'pisang' where ...
update Fruit set Fruit.soort = 'pisang' where ..
update Fruit F set soort = 'pisang' where ..
update Fruit F set F.soort = 'pisang' where ..

No longer possible:

update Fruit F set Fruit.soort = 'pisang' where ..

RETURNING
Availablein: DSQL, PSQL
Added in: 2.1

Description: An UPDATE statement modifying at most one row may optionally include a RETURNING clause
in order to return values from the updated row. The clause, if present, need not contain all the modified columns
and may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE tiggers, but not thosein AFTER triggers. OLD.f i el dnare and NEW.f i el dnane may both be
used in the list of columnsto return; for field names not preceded by either of these, the new value is returned.

Example:
updat e Schol ars
set firstnane = 'Hugh', lastnane = 'Pickering'
where firstnane = 'Henry' and | astname = 'Higgins

returning id, old.Ilastnane, new. | astnanme

Notes:
* In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually

updated, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was updated, nothing is returned, and the receiving variables keep their existing values.

ROWS
Availablein: DSQL, PSQL

Added in: 2.0

86

DML statements

Description: Limitsthe amount of rows updated to a specified number or range.
Syntax:

ROA5 <n» [TO <n>]

<m», <n> ::= Any expression evaluating to an integer.

With a single argument m the update is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

* If m> thetotal number of rowsin the dataset, the entire set is updated.
e If m=0, no rows are updated.
e If m<O, an error israised.

With two arguments mand n, the update is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

* If m> thetotal number of rows in the dataset, no rows are updated.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are updated.
e Ifm<lorn<1, anerrorisraised.

e If n =m1, no rows are updated.

e |If n<ml, anerror israised.

ROWS can a'so be used with the SELECT and DELETE statements.

UPDATE OR INSERT

Availablein: DSQL, PSQL
Added in: 2.1

Description: UPDATE OR INSERT checks if any existing records already contain the new values supplied for
the MATCHING columns. If so, those records are updated. If not, a new record is inserted. In the absence of a
MATCHING clause, matching is done against the primary key. If aRETURNING clauseis present and more than
one matching record is found, an error is raised.

Syntax:

UPDATE OR | NSERT | NTO
{tabl enane | viewnane} [(<colums>)]
VALUES (<val ues>)
[MATCHI NG (<col ums>)]
[RETURNI NG <val ues> [I NTO <vari abl es>]]

<col ums> = colnane [, colname ...]
<val ues> = value [, value B
<vari abl es> = :varnane [, :varname ...]

87

DML statements

Restrictions

No column may appear more than once in the update/insert column list.

If the table has no PK, the MATCHING clause becomes mandatory.

The“INTO <vari abl es>" subclauseisonly availablein PSQL.

When values are returned into the context variable NEW, this name must not be preceded by

acolon (“:).

L] L] L] L]

Example:

update or insert into Cows (Nane, Number, Location)
val ues (' Suzy Creantheese', 3278823, 'G een Pastures')
mat chi ng (Nunber)
returning rec_id into :id;

Notes:

» Matchesare determined with ISNOT DISTINCT, not with the*=" operator. Thismeansthat one NULL matches
another.

* Theoptiona RETURNING clause:

- ..may contain any or all columns of the target table, regardiess if they were mentioned earlier in the

statement, but also other expressions.
- ...may contain OLD and NEW qualifiersfor field names; by default, the new field value is returned.
- ..returnsfield values as they are after the BEFORE triggers have run, but before any AFTER triggers.

88

Chapter 7

Transaction
control statements

RELEASE SAVEPOINT

Availablein: DSQL

Added in: 1.5

Description: Deletes a named savepoint, freeing up all the resources it binds.
Syntax:

RELEASE SAVEPO NT name [ONLY]

Unless ONLY is added, all the savepoints created after the named savepoint are released as well.

For afull discussion of savepoints, see SAVEPOINT.

ROLLBACK
Availablein: DSQL, ESQL

Syntax:

ROLLBACK [WORK]

[TRANSACTI ON tr_nane]

[RETAI N [SNAPSHOT] | TO [SAVEPO NT] sp_nane | RELEASE]
* The TRANSACTION clauseisonly availablein ESQL.
* The RELEASE clauseisonly availablein ESQL, and is discouraged.

e RETAIN and TO are only availablein DSQL.

ROLLBACK RETAIN
Availablein: DSQL
Addedin: 2.0

89

Transaction control statements

Description: Undoes al the database changes carried out in the transaction without closing it. User variables
set with RDB$SET_CONTEXT() remain unchanged.

Syntax:

ROLLBACK [WORK] RETAI N [SNAPSHOT]

Note

The functionality provided by ROLLBACK RETAIN has been present since InterBase 6, but the only way to
access it was through the API call i sc_r ol | back_r et ai ni ng() .

ROLLBACK TO SAVEPOINT
Availablein: DSQL
Addedin: 1.5
Description: Undoes everything that happened in a transaction since the creation of the savepoint.
Syntax:
ROLLBACK [WORK] TO [SAVEPO NT] nane
ROLLBACK TO SAVEPOINT performs the following operations:

» All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, asisthe save-
point itself. This means that you can rollback to the same savepoint several times.

» Allimplicit and explicit record locks acquired since the savepoint are released. Other transactions that have
reguested accessto rowslocked after the savepoint must continueto wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rowsimmediately.

For afull discussion of savepoints, see SAVEPOINT.

SAVEPOINT

Availablein: DSQL
Added in: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “ nested transactions’.

Syntax:
SAVEPO NT <nane>

<name> ::= a user-chosen identifier, unique within the transaction

90

Transaction control statements

If the supplied name exists aready within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:
ROLLBACK [WORK] TO [SAVEPO NT] nane

ROLLBACK TO SAVEPOINT performs the following operations:

 All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, asisthe save-
point itself. This means that you can rollback to the same savepoint several times.

« All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
regquested accessto rowslocked after the savepoint must continueto wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rowsimmediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especialy if you update the same
records multiple timesin one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can delete the savepoint and free the resources it uses with:

RELEASE SAVEPOI NT name [ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
arereleased as well.

Example DSQL session using a savepoint:

create table test (id integer);
conmi t;

insert into test values (1);
conmi t;

insert into test values (2);
savepoi nt vy;

delete fromtest;

select * fromtest; -- returns no rows
roll back to vy;

select * fromtest; -- returns two rows
rol | back;

select * fromtest; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue aROLLBACK statement, all changes performed in this transaction are backed out via atransac-
tion-level savepoint and the transaction is then committed. Thislogic reduces the amount of garbage collection
caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (104—106 records
affected), the engine rel eases the transaction-level savepoint and uses the TIP mechanism to roll back the trans-
action if needed.

91

Transaction control statements

Tip

If you expect the volume of changesin your transaction to belarge, you can specify the NO AUTO UNDO option
in your SET TRANSACTION statement, or —if you use the APl —set the TPB flagi sc_t pb_no_aut o_undo.
Both prevent the creation of the transaction-level savepoint.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptions in PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

» undo al actionsin aBEGIN...END block where an exception occurs;

» undo all actions performed by the SP/trigger (or, in the case of a selectable SP, al actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is aso bounded by automatic system savepaints.

SET TRANSACTION

Availablein: DSQL, ESQL

Changedin: 2.0

Description: Starts and optionally configures a transaction.
Syntax:

SET TRANSACTI ON
[NAME host var]
[READ WRI TE | READ ONLY]
[[I SOLATI ON LEVEL] { SNAPSHOT [TABLE STABI LI TY]
| READ COWM TTED [[NO] RECORD VERSION] }]
[WAILT | NO WAIT]
[LOCK TI MEQUT seconds]
[NO AUTO UNDQ
[1 GNORE LI MBQ
[RESERVI NG <t abl es> | USI NG <dbhandl es>]

<t abl es> ;.= <table spec> [, <table spec> ...]

<table_spec> ::= tablenane [, tablenane ...]
[FOR [SHARED | PROTECTED] {READ | WRI TE}]

<dbhandl es> ::= dbhandle [, dbhandle ...]

» TheNAME optionisonly availablein ESQL. It must befollowed by apreviously declared and ini-
tialized host-language variable. Without NAME, SET TRANSACTION appliesto the default trans-
action.

92

Transaction control statements

» The USING optionisaso ESQL-only. It limits the databases that the transaction can accessto the
ones mentioned here.

* IGNORE LIMBO and LOCK TIMEOUT are not supported in ESQL.
e LOCK TIMEOUT and NO WAIT are mutually exclusive.

o Default option settings are: READ WRITE + WAIT + SNAPSHOT.

IGNORE LIMBO
Availablein: DSQL
Added in: 2.0

Description: With this option, records created by limbo transactions are ignored. Transactions are in limbo if
the second stage of a two-phase commit fails.

Note

IGNORE LIMBO surfacesthei sc_t pb_i gnore_| i nho TPB parameter, available in the API since InterBase
times and mainly used by gfix.

LOCK TIMEOUT
Availablein: DSQL
Added in: 2.0

Description: This option is only available for WAIT transactions. It takes a non-negative integer as argument,
prescribing the maximum number of seconds that the transaction should wait when alock conflict occurs. If the
the waiting time has passed and the lock has still not been released, an error is generated.

Note

Thisis a brand new feature in Firebird 2. Its APl equivalent isthe new i sc_t pb_| ock_t i neout TPB pa
rameter.

NO AUTO UNDO
Availablein: DSQL, ESQL
Addedin: 2.0

Description: With NO AUTO UNDO, the transaction refrains from keeping the log that is normally used to undo
changesin the event of arollback. Should the transaction be rolled back after al, other transactions will pick up
the garbage (eventually). This option can be useful for massive insertions that don't need to be rolled back. For
transactions that don't perform any mutations, NO AUTO UNDO makes no difference at all.

93

Transaction control statements

Note

NO AUTO UNDO isthe SQL equivalent of thei sc_t pb_no_aut o_undo TPB parameter, availablein the AP
since InterBase times.

94

Chapter 8

PSQL statements

PSQL — Procedural SQL —isthe Firebird stored procedure and trigger language.

BEGIN ... END blocks may be empty

Availablein: PSQL
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position O

as

begi n

end

BREAK

Availablein: PSQL
Added in: 1.0
Better alternative: LEAVE

Description: BREAK immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

Example:

create procedure sel phrase(numint)

returns (phrase varchar (40))

as

begi n
for select Phr from Phrases into phrase do
begi n

95

PSQL statements

if (num< 1) then break;
suspend;
num = num - 1;
end
phrase = '*** Ready! ***';
suspend;
end

This selectable SP returns at most numrows from the table Phrases. The variable numis decremented

in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues at theline“phrase = ' *** Ready! ***';".

Important

Since Firebird 1.5, use of the SQL-99 compliant alternative LEAVE is preferred.

CLOSE cursor

Availablein: PSQL

Added in: 2.0

Description: Closes an open cursor. Any cursors still open when the trigger, stored procedure or EXECUTE
BLOCK statement they belong to is exited, will be closed automatically.

Syntax:
CLOSE cur sor nane;

Example: See DECLARE ... CURSOR.

DECLARE
Availablein: PSQL
Description: Declares a PSQL local variable.
Syntax:
DECLARE [VARI ABLE] varnane <var_spec>;

<var_spec> ::= <type> [NOT NULL] [<coll>] [<default>]
| CURSOR FOR (sel ect-statenent)

<t ype> = sqgl _datatype | [TYPE OF] domain
<col | > = COLLATE collation
<def aul t > = {=| DEFAULT} value

96

PSQL statements

» If sql _dat at ype isatext type, it may include a character set.

» Obviousdly, aCOLLATE clauseis only allowed with text types.

DECLARE ... CURSOR

Added in: 2.0

Description: Declaresanamed cursor and bindsit to its own SELECT statement. The cursor can later be opened,
used to walk the result set, and closed again. Positioned updates and del etes (using WHERE CURRENT OF) are

also supported. PSQL cursors are available in triggers, stored procedures and EXECUTE BLOCK statements.

Example:

execut e bl ock
returns (relation char(31), sysflag int)
as
decl are cur cursor for
(sel ect rdb$rel ati on_nanme, rdb$systemflag fromrdb$rel ations);
begi n
open cur;
while (1=1) do
begin
fetch cur into relation, sysflag;
if (row_count = 0) then | eave;
suspend;
end
cl ose cur;
end

Notes:

* A “FOR UPDATE”" clauseis alowed in the SELECT statement, but not required for a positioned update or

delete to succeed.
Make sure that declared cursor names do not clash with any names defined later on in AS CURSOR clauses.

If you need a cursor to loop through an output set, it is amost always easier — and less error-prone — to use
a FOR SELECT statement with an AS CURSOR clause. Declared cursors must be explicitly opened, fetched
from, and closed. Furthermore, you need to check r ow_count after every fetch and break out of the loop
if it iszero. AS CURSOR takes care of all of that automagically. However, declared cursors give you more
control over the sequence of events, and alow you to operate several cursorsin parallel.

The SELECT statement may contain named SQL parameters, likein“sel ect name || :sfx fromnanes
wher e nurmber = : nunf. Each parameter must be a PSQL variable that has been declared previously (this
includes any in/out params of the PSQL maodule). When the cursor is opened, the parameter is assigned the
current value of the variable.

Caution! If the value of a PSQL variable that is used in the SELECT statement changes during execution of
the loop, the statement may (but will not always) be re-evaluated for the remaining rows. In general, this
situation should be avoided. If you really need this behaviour, test your code thoroughly and make sure you
know how variable changes affect the outcome. Also be advised that the behaviour may depend on the query

97

PSQL statements

plan, in particular the use of indices. Asit is currently not strictly defined, it may change in some future
version of Firebird.

See also: OPEN cursor, FETCH cursor, CLOSE cursor

DECLARE [VARIABLE] with initialization

Changedin: 1.5

Description: InFirebird 1.5 and above, aPSQL local variable can beinitialized upon declaration. TheVARIABLE
keyword has become optional.

Example:

create procedure proccie (a int)
returns (b int)
as
declare p int;
declare q int = 8;
declare r int default 9;
declare variable s int;
declare variable t int = 10;
declare variable u int default 11;
begi n
<intelligent code here>
end

DECLARE with DOMAIN instead of datatype

Added in: 2.1

Description: In Firebird 2.1 and above, PSQL loca variables and input/output parameters can be declared with
adomain instead of a datatype. The TY PE OF modifier allows using only the domain's datatype and not its NOT
NULL setting, CHECK constraint and/or default value.

Example:

create procedure MyProc (a int, f ternbool)
returns (b int, x type of bigfloat)
as
declare p int;
declare q int = 8;
decl are y stocknum default -1;
begi n
<very intelligent code here>
end

(This example presupposes that TERNBOOL, BIGFLOAT and STOCKNUM are domains already de-
fined in the database.)

98

PSQL statements

Warning

If you change adomain's definition, existing PSQL code using that domain may becomeinvalid. If thishappens,
the system table field RDB$VALID_BLR will be set to O for any procedure or trigger whose code is no longer
valid. If you have changed a domain, the following query will find the code modules that depend on it and
report the state of RDB$VALID_BLR:

select * from (

sel ect ' Procedure', rdbS$procedure_nane, rdb$valid_blr fromrdb$procedures

uni on

select 'Trigger', rdb$trigger_nanme, rdb$valid blr fromrdb$triggers
) (type, nane, valid)
where exists

(select * from rdb$dependenci es

wher e rdb$dependent _nanme = nane and rdb$depended_on_nanme = ' MYDOVAI N)

/* Replace MYDOMAIN with the actual domain name. Use all-caps if the domain
was created case-insensitively. OGtherw se, use the exact capitalisation. */

Unfortunately, not all PSQL invalidations will be reflected in the RDB$VALID_BLR field. It is therefore ad-
visable to look at all the procedures and triggers reported by the above query, even those having a 1 in the
“VALID” column.

Please notice that for PSQL modules inherited from earlier Firebird versions (including a number of system
triggers, even if the database was created under Firebird 2.1 or higher), RDB$VALID BLR isNULL. This does
not indicate that their BLR isinvalid.

Theisgl commands SHOW PROCEDURES and SHOW TRIGGERS flag modules whose RDB$VALID_BLR field
iszero with an asterisk. SHOW PROCEDURE PROCNAME and SHOW TRIGGER TRI GNANME, which display indi-
vidual PSQL modules, do not signal invalid BLR.

COLLATE In variable declaration

Added in: 2.1

Description: In Firebird 2.1 and above, aCOLLATE clauseis alowed in the declaration of text-type PSQL local
variables and input/output parameters.

Example:

create procedure G nmeText
returns (txt char(32) character set utf8 collate unicode)

as

decl are simounao nytextdomain collate pt_br default

nao' ;

begi n
<stunningly intelligent code here>

end

NOT NULL in variable declaration

Added in: 2.1

Description: In Firebird 2.1 and above, a NOT NULL constraint is allowed in the declaration of PSQL local
variables and input/output parameters.

99

PSQL statements

Example:

create procedure Conpute(a int not null, b int not null)
returns (outconme bigint not null)

as
declare tenp bigint not null;

begi n
<rat her di sappoi nti ng code here>

end

EXCEPTION

Availablein: PSQL
Changedin: 1.5

Description: The EXCEPTION syntax has been extended so that the user can
a. Rethrow acaught exception or error.
b. Provide a custom message when throwing a user-defined exception.

Syntax:
EXCEPTI ON [<excepti on-name> [cust om nmessage] |

<exception-name> ::= A previously defined exception name

Rethrowing a caught exception

Within the exception handling block only, you can rethrow the caught exception or error by giving the EXCEP-
TION command without any arguments. Outside such blocks, this“bare” command has no effect.

Example:
when any do
begi n
insert into error_log (...) values (sqglcode, ...);

excepti on;
end

This example first logs some information about the exception or error, and then rethrowsit.

Providing a custom error message

Firebird 1.5 and up allow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

Examples:

exception ex_data_error 'You just |ost sonme val uabl e data'

100

PSQL statements

exception ex_bad type 'Wong type for record with id "' || new.id;

Note

Starting at version 2.0, the maximum message length is 1021 instead of 78 characters.

EXECUTE PROCEDURE

Availablein: DSQL, PSQL
Changedin: 1.5

Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored
procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

EXECUTE STATEMENT

Availablein: PSQL
Added in: 1.5

Description: EXECUTE STATEMENT takes asingle string argument and executesit asif it had been submitted as
aDSQL statement. The exact syntax depends on the number of datarowsthat the supplied statement may return.

No data returned
Thisform isused with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.
Syntax:
EXECUTE STATEMENT <st at enent >
<statenent> ::= An SQ statenment returning no data.
Example:
create procedure Dynani cSanpl eOne (ProcNane varchar (100))
as

decl are variable stnt varchar(1024);
decl are variable paramint;

begi n
sel ect min(SonmeField) from SoneTabl e i nto param
stm = 'execute procedure '

| | ProcNane
[
I

cast (param as varchar (20))

101

PSQL statements

[)"
execute statenment stnt;
end

Warning

Although this form of EXECUTE STATEMENT can aso be used with all kinds of DDL strings (except CRE-
ATE/DROP DATABASE), it is generally very, very unwise to use thistrick in order to circumvent the no-DDL
rulein PSQL.

One row of data returned

Thisform is used with singleton SELECT statements.
Syntax:

EXECUTE STATEMENT <sel ect-statenment> | NTO <var> [, <var> ...]

<sel ect-statement> ::= An SQL statenent returning at nost one row of data.
<var > .= A PSQ. variable, optionally preceded by “:”
Example:
create procedure Dynani cSanpl eTwo (Tabl eNane var char (100))
as
decl are variable paramint;
begi n
execut e statenent
'sel ect max(CheckField) from' || TableName into :param
if (param > 100) then
exception Ex_Overflow 'Overflow in ' || Tabl eNane;
end

Any number of data rows returned

This form — analogous to “FOR SELECT ... DO” —is used with SELECT statements that may return a multi-row
dataset.

Syntax:

FOR EXECUTE STATEMENT <sel ect-statenent> | NTO <var> [, <var> ...]
DO <conpound- st at enent >

<sel ect-statement> ::= Any SELECT statenent.
<var > = A PSQ. variable, optionally preceded by “:”
Example:

create procedure Dynani cSanpl eThree
(TextField varchar(100),
Tabl eNane var char (100))
returns
(LongLi ne varchar (32000))

102

PSQL statements

as
decl are vari abl e Chunk varchar(100);
begi n
Chunk = "'";
for execute statenent
"select ' || TextField || ' from' || TableNane into : Chunk
do
if (Chunk is not null) then
LongLi ne = LongLine || Chunk ||
suspend;
end

Caveats with EXECUTE STATEMENT

1. Thereisno way to validate the syntax of the enclosed statement.
2. There are no dependency checks to discover whether tables or columns have been dropped.
3. Operationswill be slow because the embedded statement has to be prepared every timeit is executed.

4. The argument string cannot contain any parameters. All variable substitution into the static part of the
DSQL statement should be performed before EXECUTE STATEMENT is called.

5. Returnvauesarestrictly checked for datatypein order to avoid unpredictable type-casting exceptions. For
example, the string ' 1234' would convert to an integer, 1234, but ' abc' would give a conversion error.

6. Thesubmitted DSQL statement isaways executed with the privileges of the current user . Privileges grant-
ed to thetrigger or SP that containsthe EXECUTE STATEMENT statement are not in effect whilethe DSQL
statement runs.

All in all, thisfeature isintended only for very cautious use and you should always take the above factors into
account. Bottom line: use EXECUTE STATEMENT only when other methods are impossible, or perform even
worse than EXECUTE STATEMENT.

EXIT

Availablein: PSQL
Changedin: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versions it is only supported in
stored procedures, not in triggers.

FETCH cursor

Availablein: PSQL
Addedin: 2.0

103

PSQL statements

Description: Fetchesthe next datarow from acursor'sresult set and storesthe column valuesin PSQL variables.
Syntax:

FETCH cursornane INTO [:]varnanme [, [:]varnanme ...];
Notes:

» The ROW COUNT context variable will be 1 if the fetch returned a data row and O if the end of the set has
been reached.

» You can do apositioned UPDATE or DELETE on the fetched row with the WHERE CURRENT OF clause.

Example: See DECLARE ... CURSOR.

FOR EXECUTE STATEMENT ... DO

Availablein: PSQL
Added in: 1.5

Description: See EXECUTE STATEMENT :: Any number of data rows returned.

FOR SELECT ... INTO ... DO

Availablein: PSQL

Description: Executes a SELECT statement and retrieves the result set. In each iteration of the loop, the field
values of the current row are copied into local variables. Adding an AS CURSOR clause enables positioned
deletes and updates. FOR SELECT statements may be nested.

Syntax:

FOR <sel ect-stnt>
I NTO <var> [, <var> ...]
[AS CURSCR nane]

DO
<psql - st nt >

val i d SELECT st at enent.

<select-stnt> ::= A
A PSQL variable nanme, optionally preceded by “:”
A

<var > =

<psql - st nt > = single statement or a block of PSQ. code.

» The SELECT statement may contain named SQL parameters, likein “sel ect name || :sfx
from nanes where nunber = : nuni. Each parameter must be aPSQL variablethat has been

declared previously (thisincludes any in/out params of the PSQL module€).

e Caution! If the value of a PSQL variable that is used in the SELECT statement changes during
execution of the loop, the statement may (but will not always) be re-evaluated for the remaining
rows. In general, this situation should be avoided. If you really need this behaviour, test your code

104

PSQL statements

thoroughly and make sure you know how variable changes affect the outcome. Also be advised
that the behaviour may depend on the query plan, in particular the use of indices. And as it is
currently not strictly defined, it may also change in some future version of Firebird.

Examples:

create procedure shownumns
returns (aa int, bb int, smint, df int)
as
begi n
for select distinct a, b fromnunbers order by a, b
into :aa, :bb

do
begi n
sm= aa + bb
df = aa - bb;
suspend;
end
end

create procedure relfields
returns (relation char(32), pos int, field char(32))
as
begi n
for select rdb$rel ation_nane from rdb$rel ations
into :relation
do
begi n
for select rdb$field_position + 1, rdb%field_nane
fromrdb$rel ation fields
where rdb$rel ati on_nane = :relation
order by rdb$field _position
into :pos, :field
do
begi n
if (pos =2) then relation ="' "'; -- for nicer output
suspend;
end
end
end

AS CURSOR clause
Availablein: PSQL
Added in: IB

Description: The optional AS CURSOR clause creates a named cursor that can be referenced (after WHERE
CURRENT OF) within the FOR SELECT loop in order to update or delete the current row. Thisfeature was already
added in InterBase, but not mentioned in the Language Reference.

Example:

create procedure deltown (towntodel ete varchar(24))
returns (town varchar(24), pop int)

105

PSQL statements

as
begi n
for select town, pop fromtowns into :town, :pop as cursor tcur do
begi n
if (town = towntodel ete)
then delete fromtowns where current of tcur;
el se suspend;
end
end
Notes:

* A “FOR UPDATE" clauseis allowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

» Make surethat cursor names defined here do not clash with any names created earlier onin DECLARE CUR-
SOR statements.

* AS CURSOR is not supported in FOR EXECUTE STATEMENT loops, even if the statement to execute is a
suitable SELECT query.

LEAVE

Availablein: PSQL
Added in: 1.5
Changedin: 2.0

Description: LEAVE immediately terminates the innermost WHILE or FOR loop. With the optional | abel ar-
gument introduced in Firebird 2.0, LEAVE can break out of surrounding loops aswell. Execution continues with
the first statement after the outermost terminated loop.

Syntax:

[1abel:]
{FOR | WHLE ... DO

(possi bly nested |l oops, with or wthout I|abels)
LEAVE [| abel] ;

Example:

If an error occurs during the insert in the example below, the event islogged and the loop terminated.
The program continues at the line of code reading “c = 0;”

while (b < 10) do
begi n
insert into Nunmbers(B) values (:b);
b=Db+ 1;
when any do
begi n
execute procedure log error (current_tinestanp, 'Error in B loop');

106

PSQL statements

| eave;
end
end
c =0

The next example useslabels. “Leave LoopA” terminatesthe outer loop, “| eave LoopB” theinner
loop. Notice that aplain “l eave” would also suffice to terminate the inner loop.

stm1l = 'select Name from Farns'
LoopA:
for execute statenent :stmtl into :farmdo
begi n
stnt2 = 'select Name from Animal s where Farm=""";
LoopB:
for execute statement :stm?2 || :farm|]| '"'' into :animl do
begi n
if (animal = '"Fluffy') then | eave LoopB
else if (animal = farn) then | eave LoopA;
el se suspend;
end
end

OPEN cursor

Availablein: PSQL
Addedin: 2.0

Description: Opensapreviously declared cursor, executing its SELECT statement and enabling it to fetch records
from the result set.

Syntax:

OPEN cur sor nane;

Example: See DECLARE ... CURSOR.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

UDFs callable as void functions

Changedin: 2.0

107

PSQL statements

Description: In Firebird 2.0 and above, PSQL code may call UDFswithout assigning the result value, i.e. likea
Pascal procedure or C void function. In most cases this is senseless, because the main purpose of almost every
UDF isto produce the result value. Some functions however perform a specific task, and if you're not interested
in the result value you can now spare yourself the trouble of assigning it to adummy variable.

Note

RDB$GET_CONTEXT and RDB$SET_CONTEXT, though classified in this guide under internal functions, are
actually akind of auto-declared UDFs. Y ou may therefore call them without catching the result. Of coursethis
only makes sense for RDB$SET_ CONTEXT.

WHERE CURRENT OF valid again for view cursors

Changedin: 2.0, 2.1

Description: Because of possible reliability issues, Firebird 2.0 disallowed WHERE CURRENT OF for view cur-
sors. In Firebird 2.1, with itsimproved view validation logic, this restriction has been lifted.

108

Chapter 9

Context variables

CURRENT _CONNECTI ON

Availablein: DSQL, PSQL
Added in: 1.5
Changedin: 2.1
Description: CURRENT_CONNECTI ON contains the unique identifier of the current connection.
Type: INTEGER
Examples:
sel ect current _connection from rdb$dat abase
execut e procedure P_Login(current_connecti on)

The value of CURRENT _CONNECTI ONis stored on the database header page and reset to 0 upon restore. Since
version 2.1, it isincremented upon every new connection. (In previous versions, it was only incremented if the
client read it during a session.) As aresult, CURRENT_CONNECT!I ON now indicates the number of connections
since the creation — or most recent restoration — of the database.

CURRENT ROLE

Availablein: DSQL, PSQL
Added in: 1.0

Description: CURRENT _ROLE is a context variable containing the role of the currently connected user. If there
is no active role, CURRENT _ROLE is NONE.

Type: VARCHAR(31)
Example:

if (current_role <> ' MANACER)
t hen exception only_nanagers_nay_del et e;

109

Context variables

el se
del ete from Custoners where custno = :custno;

CURRENT_ROLE aways represents avalid role or NONE. If a user connects with anon-existing role, the engine
silently resetsit to NONE without returning an error.

CURRENT _TI ME

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: CURRENT_TI ME returns the current server time. In versions prior to 2.0, the fractional part used to
be aways “. 0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward you can specify a
precision when polling this variable. The default is still 0 decimals, i.e. seconds precision.

Type: TIME
Syntax:

CURRENT_TI ME [(preci sion)]

precision ::= 0] 1] 2| 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

sel ect current tine fromrdb$dat abase
-- returns e.g. 14:20:19.6170

select current_tinme(2) from rdb$dat abase
-- returns e.g. 14:20:23.1200

Notes:

» Unlike CURRENT_TI ME, the default precision of CURRENT_TI MESTAMP has changed to 3 decimals. As a
result, CURRENT_TI MESTAMP is no longer the exact sum of CURRENT _DATE and CURRENT_TI ME, unless
you explicitly specify a precision.

* Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TI ME will remain
constant every time it is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to measure
timeintervals), use’ NOW .

CURRENT_TI MESTAMP

Availablein: DSQL, PSQL, ESQL

110

Context variables

Changedin: 2.0

Description: CURRENT_TI MESTAMP returns the current server date and time. In versions prior to 2.0, the frac-
tional part used to be aways “. 0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward
you can specify a precision when polling this variable. The default is 3 decimals, i.e. milliseconds precision.

Type: TIMESTAMP
Syntax:

CURRENT_TI MESTAMP [(preci sion)]

precision ::= 0] 1| 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

sel ect current _tinestanp fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

sel ect current _tinestanp(2) fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:23. 1200

Notes:

» Thedefault precision of CURRENT_TI MEisstill 0 decimals, so in Firebird 2.0 and up CURRENT_TI MESTAMP
isno longer the exact sum of CURRENT_DATE and CURRENT _TI ME, unlessyou explicitly specify aprecision.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TI MESTAMP will
remain constant every time it is read. If multiple modules call or trigger each other, the value will remain
constant throughout the duration of the outermost module. If you need a progressing value in PSQL (e.g. to
measure time intervals), use’ NOW .

CURRENT_TRANSACTI ON

Availablein: DSQL, PSQL
Addedin: 1.5
Description: CURRENT_TRANSACTI ON contains the unique identifier of the current transaction.
Type: INTEGER
Examples:
sel ect current _transaction from rdb$dat abase

New. Txn_I D = current transaction

The value of CURRENT_TRANSACTI ON is stored on the database header page and reset to 0 upon restore. It is
incremented with every new transaction.

111

Context variables

CURRENT _USER

Availablein: DSQL, PSQL
Added in: 1.0

Description: CURRENT_USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)

Example:
create trigger bi_custoners for custoners before insert as
begi n
New. added_by = CURRENT_USER;
New. pur chases = 0;
end

DELETI NG

Availablein: PSQL
Addedin: 1.5

Description: Availableintriggersonly, DELETI NGindicatesif the trigger fired because of a DELETE operation.
Intended for use in multi-action triggers.

Type: boolean

Example:
if (deleting) then
begi n

insert into Renmoved_Cars (id, nake, nodel, renoved)

val ues (old.id, old.nmake, old.nodel, current_timestanp);
end

GDSCODE

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0

Description: In aWHEN GDSCODE handling block, the GDSCODE context variable contains a numerical repre-
sentation of the current Firebird error code. Starting with Firebird 2.0, the sameistruein aWHEN ANY block if

112

Context variables

its execution was triggered by a Firebird error; otherwise it contains 0. GDSCODE is aso 0 in WHEN SQLCODE
and WHEN EXCEPTION handlers, as well as everywhere elsein PSQL.

Type: INTEGER
Example:
when gdscode 335544551, gdscode 335544552,
gdscode 335544553, gdscode 335544707
do
begi n
execut e procedure | og _grant_error(gdscode);

exit;
end

| NSERTI NG

Availablein: PSQL
Added in: 1.5

Description: Availablein triggers only, | NSERTI NGindicates if the trigger fired because of an INSERT opera-
tion. Intended for use in multi-action triggers.

Type: boolean
Example:
if (inserting or updating) then
begi n
if (new. serial_numis null) then

new. seri al _num = gen_id(gen_serials, 1);
end

NEW

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: NEWcontains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it isread-only in AFTER triggers.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — NEWis always available. But if the trigger is fired by
a DELETE, there will be no new version of the record. In that situation, reading from NEWwill always return
NULL; writing to it will cause a runtime exception.

113

Context variables

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: ' NOW isnot avariable but astring literal. It is, however, specia in the sense that when you CAST()
it to adate/time type, you will get the current date and/or time. The fractional part of the time used to be always
“. 0000", giving an effective seconds precision. Since Firebird 2.0 the precisionis 3 decimals, i.e. milliseconds.
' NOW is case-insensitive, and the engine ignores leading or trailing spaces when casting.

Type: CHAR(3)
Examples:

sel ect ' Now from rdb$dat abase
-- returns ' Now

sel ect cast('Now as date) from rdb$dat abase
-- returns e.g. 2008-08-13

select cast('now as tine) fromrdb$dat abase
-- returns e.g. 14:20:19.6170

sel ect cast('NOW as tinestanp) fromrdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:
sel ect date ' Now from rdb$dat abase
select time 'now from rdb$dat abase

select timestanp ' NOW from rdb$dat abase

Notes:

* ' NOW awaysreturnsthe actual date/time, evenin PSQL modules, where CURRENT _DATE, CURRENT _TI ME
and CURRENT_TI MESTAMP return the same value throughout the duration of the outermost routine. This
makes' NOW useful for measuring time intervalsin triggers, procedures and executable blocks.

e Except in the dtuation mentioned above, reading CURRENT_DATE, CURRENT_TIME and
CURRENT_TI MESTAMP is generally preferable to casting ' NOW . Be aware though that CURRENT _TI MVE de-
faults to seconds precision; to get milliseconds precision, use CURRENT_TI ME(3).

LD

Availablein: PSQL, triggers only

Changedin: 1.5, 2.0

114

Context variables

Description: QLD contains the existing version of a database record just before a deletion or update. Starting
with Firebird 2.0 it is read-only.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — OLD is aways available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will
aways return NULL; writing to it will cause a runtime exception.

ROW COUNT

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0

Description: The ROW COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) in the current trigger, stored procedure or executable
block.

Type: INTEGER
Example:
update Figures set Nunber = 0 where id = :id;
if (row _count = 0) then
insert into Figures (id, Nunber) values (:id, 0);
Behaviour with SELECT and FETCH:
» After asingleton SELECT, ROW COUNT is1 if adatarow wasretrieved and O otherwise.

* InaFOR SELECT loop, ROW COUNT isincremented with every iteration (starting at O before the first).

» After aFETCH from a cursor, ROW COUNT is 1 if a data row was retrieved and O otherwise. Fetching more
records from the same cursor does not increment ROW COUNT beyond 1.

* InFirebird 1.5.x, ROW COUNT is O after any type of SELECT statement.

Note

ROW COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or EXE-
CUTE PROCEDURE command.

115

Context variables

SQLCODE
Availablein: PSQL
Added in: 1.5

Description: In a WHEN SQLCODE handling block, the SQLCODE context variable contains the current SQL
error code. The sameistruein aWHEN ANY block if its execution was triggered by an SQL error; otherwise

it contains 0. SQLCODE isalso 0 in WHEN GDSCODE and WHEN EXCEPTION handlers, as well as everywhere
elsein PSQL.

Type: INTEGER
Example:

when any
do
begi n
if (sqlcode <> 0) then
Msg = "An SQ. error occurred!';
el se
Msg = ' Sonmet hi ng bad happened!"';
exception ex_custom Msg;
end

UPDATI NG

Available in: PSQL
Added in: 1.5

Description: Availableintriggersonly, UPDATI NGindicatesif thetrigger fired because of an UPDATE operation.
Intended for use in multi-action triggers.

Type: boolean

Example:

if (inserting or updating) then
begi n
if (new.serial_numis null) then
new. seri al _num = gen_id(gen_serials, 1);
end

116

Chapter 10

Operators and predicates

NULL literals allowed as operands

Changedin: 2.0

Description: Before Firebird 2.0, most operators and predicates did not allow NULL literals as operands. Tests
or operationslike“A <> NULL","“B + NULL” or “NULL < ANY(...)"” would berejected by the parser. Now
they are allowed almost everywhere, but please be aware of the following:

The vast majority of these newly allowed expressions return NULL regardless of the state or value of
the other operand, and are therefore worthless for any practicle purpose whatsoever.

In particular, don't try to determine (non-)nullness of afield or variable by testing with “= NULL” or “<> NULL".
Alwaysuse“l S [NOT] NULL”".

Predicates: The IN, ANY/SOME and ALL predicates now also allow NULL literals where they were previously
taboo. Here too, there is no practical benefit to enjoy, but the situation is a little more complicated in that
predicates with NULLS do not always return a NULL result. For details, see the Firebird Null Guide, section
Predicates.

| (string concatenator)

Availablein: DSQL, ESQL, PSQL

Text BLOB concatenation

Changedin: 2.1

Description: Since Firebird 2.1 the concatenation operator supports BLOBs of any length and any character set.
If a mixture of BLOBs and non-BLOBSs is involved, the result is a BLOB. If both text and binary BLOBS are
involved, the result is abinary BLOB.

Result type VARCHAR or BLOB
Changedin: 2.0, 2.1

Description: Before Firebird 2.0, the result type of string concatenations used to be CHAR(n). In Firebird 2.0
thiswas changed to VARCHAR(n). As aresult, the maximum length of a concatenation outcome became 32765

117

http://www.firebirdsql.org/manual/nullguide-predicates.html

Operators and predicates

instead of 32767. In Firebird 2.1 and up, if at least one of the operands is a BLOB, the result is also a BLOB
and the maximum doesn't apply. For non-BLOB concatenationsthe result is still VARCHAR(n) with amaximum
of 32765 bytes.

Overflow checking

Changedin: 1.0, 2.0

Description: In Firebird versions 1.x, an error would be raised if the sum of the declared string lengths in a
concatenation exceeded 65535 bytes, even if the actual result lay within the maximum string length of 32767
bytes. In Firebird 2.0 and up, the declared string lengths will never cause an error. Only if the actual outcome
exceeds 32765 bytes (the new limit for concatenation results) will an error be raised.

ALL

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changed in: 2.0

Description: The ALL predicate now allowsaNULL asthetest value. Notice that thisbrings no practical benefits.
In particular, a NULL test value will not be considered equal to NULLs in the subquery result set. Even if the
entire set isfilled with NULLs and the operator chosen is“=", the predicate will not returnt r ue, but NULL.

UNION as subselect

Changedin: 2.0

Description: The subselect in an ALL predicate may now also be a UNION.

ANY / SOME

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

Description: The ANY (or SOME) predicate now allows a NULL as the test value. Notice that this brings no
practical benefits. In particular, aNULL test value will not be considered equal to aNULL in the subquery result
Set.

118

Operators and predicates

UNION as subselect
Changedin: 2.0

Description: The subselect in an ANY (or SOME) predicate may now also be a UNION.

IN

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

Description: The IN predicate now allows NULL literals, both as the test value and in the list. Notice that this
brings no practical benefits. In particular, “NULL IN (..., NULL, ..., ...)" will not returnt r ue and “NULL NOT IN
(e.y NULL, ..., ...)" will not returnf al se.

UNION as subselect

Changed in: 2.0

Description: A subselect in an IN predicate may now also be a UNION.

IS [NOT] DISTINCT FROM

Availablein: DSQL, PSQL
Addedin: 2.0

Description: Two operands are considered DISTINCT if they have a different value or if one of them is NULL
and the other isn't. They are NOT DISTINCT if they have the same value or if both of them are NULL.

Result type: Boolean

Syntax:

opl |'S [NOT] DI STI NCT FROM op2
Examples:

sel ect id, name, teacher from courses
where start_day is not distinct fromend_day

119

Operators and predicates

if (New. Job is distinct fromd d. Job)
then post_event 'job_changed';

IS[NOT] DISTINCT FROM awaysreturnst r ue or f al se, never NULL (unknown). The“=" and “<>" operators,
by contrast, return NULL if one or both operands are NULL. See also the table below.

Table 10.1. Comparison of [NOT] DISTINCT to“=" and “<>"

Operand char- Resultswith the different operators
acteristics
= NOT DISTINCT <> DISTINCT
Same value true true fal se fal se
Different values fal se fal se true true
Both NULL NUL L true NUL L fal se
One NULL NULL fal se NULL true

NEXT VALUE FOR

Availablein: DSQL, PSQL
Addedin: 2.0
Description: Returns the next value in a sequence. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have aways called a generator. NEXT VALUE FOR is fully equivalent to GEN_ID(..., 1) and is the
recommended syntax from Firebird 2.0 onward.
Syntax:
NEXT VALUE FOR sequence- nane
Example:

new. cust _id = next value for custseq;

NEXT VALUE FOR doesn't support increment values other than 1. If you absolutely need other step values, use
the legacy GEN_ID function.

See also: CREATE SEQUENCE, GEN_ID()

SOME

See ANY

120

Chapter 11

Aggregate functions

Aggregate functions operate on groups of records, rather than on individual records or variables. They are often
used in combination with a GROUP BY clause.

LIST()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: LIST returns a string consisting of the non-NULL argument values in the group, separated either
by a comma or by a user-supplied delimiter. If there are no non-NULL values (this includes the case where the
group isempty), NULL is returned.

Result type: BLOB

Syntax:
LI ST ([ALL | DI STI NCT] expression [, separator])

* ALL (the default) resultsin all non-NULL values to be listed. With DISTINCT, duplicates are re-
moved, except if expr essi on isaBLOB.

» Theoptional separ at or argument may be a string literal, a parameter or a variable in versions
up to 2.1.3. Starting at 2.1.4 it may be any string expression. This makesit possible to specify e.g.
asci i _char (13) asaseparator.

» Theexpressi on and separ at or arguments support BLOBS of any size and character set.

» Date/time and numerical arguments are implicitly converted to strings before concatenation.

» Theresult isatext BLOB, except when expr essi on isaBLOB of another subtype.

» Theordering of the list valuesis undefined.

Bug

In versions 2.1-2.1.3, the last part of the result is sometimes truncated. With a single-row set, this happens
when the length gets somewhere above 4000. As the number of rows grows, the threshold climbs rapidly, so
in practice this bug might not raise its head very often. It isfixed in 2.1.4.

121

Aggregate functions

MAX()

Availablein: DSQL, ESQL, PSQL
Added in: 1B

Changedin: 2.1

Description: MAX returns the maximum argument value in the group. If the argument is a string, this is the
value that comes last when the active collation is applied.

Result type: Varies
Syntax:
MAX (expressi on)
 If thegroup isempty or contains only NULLS, theresult isNULL.

» Since Firebird 2.1, this function fully supports text BLOBS of any size and character set.

MIN()

Availablein: DSQL, ESQL, PSQL
Addedin: IB

Changedin: 2.1

Description: MIN returns the minimum argument value in the group. If the argument isastring, thisisthe value
that comes first when the active collation is applied.

Result type: Varies
Syntax:
M N (expression)
» If thegroup is empty or contains only NULLS, the result isNULL.

» Since Firebird 2.1, this function fully supports text BLOBS of any size and character set.

122

Chapter 12

Internal functions

ABS()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the absolute value of the argument.
Result type: Numerical

Syntax:

ABS (nunber)

Important

If the external function ABS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ACOS()
Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the arc cosine of the argument.
Result type: DOUBLE PRECISION
Syntax:
ACCS (nunber)

e Theresultisan anglein therange [0, #].

 If theargument is outside the range [-1, 1], NaN is returned.

123

Internal functions

Important

If the external function ACOS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ASCIl_CHAR()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the ASCII character corresponding to the number passed in the argument.
Result type: [VAR]CHAR(1) CHARACTER SET NONE
Syntax:

ASCI | _CHAR (<code>)

<code> ::= an integer in the range [0..255]

I mportant

« If theexternal function ASCI | _CHAR is declared in your database, it will override theinternal function. To
make the internal function available, DROP or ALTER the external function (UDF).

¢ |f you are used to the behaviour of the ASCl | _ CHAR UDF, which returns an empty string if the argument is
0, please naotice that the internal function correctly returns a character with ASCII code O here.

ASCII_VAL()
Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the ASCII code of the character passed in.
Result type: SMALLINT
Syntax:
ASCI | _VAL (ch)

ch ::= a [VAR]CHAR or text BLOB of max. 32767 bytes

 If the argument is a string with more than one character, the ASCII code of the first character is
returned.

 If theargument is an empty string, O is returned.

124

Internal functions

» If theargument is NULL, NULL is returned.

If thefirst character of the argument string is multi-byte, an error israised. (A bugin Firebird 2.1—
2.1.3 causes an error to beraised if any character in the string is multi-byte. Thisisfixedin 2.1.4.)

Important

If the external function ASCI | _ VAL isdeclared in your database, it will override theinternal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

ASIN()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the arc sine of the argument.

Result type: DOUBLE PRECISION

Syntax:
ASI N (nunber)
» Theresult isan anglein the range [-#/2, #/2].

 If the argument is outside the range[-1, 1], NaN is returned.

I mportant

If the external function ASI Nis declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ATAN()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the arc tangent of the argument.
Result type: DOUBLE PRECISION

Syntax:

ATAN (nunber)

» Theresult isan angle in the range <-#/2, #/2>.

125

Internal functions

Important

If the external function ATAN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ATAN2()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.
Result type: DOUBLE PRECISION
Syntax:
ATAN2 (y, x)
» Theresult isan anglein the range [-#, #].
» If x isnegative, theresultis#if y is0, and -#if y is-0.

* If bothy and x are O, the result is meaningless.

I mportant

If the external function ATAN2 is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Notes:

A fully equivalent description of this function is the following: ATAN2(y, x) is the angle between the posi-
tive X-axis and the line from the origin to the point (x, y). This also makes it obvious that ATAN2(O, 0) is
undefined.

» |f x isgreater than 0, ATAN2(y, x) isthe same as ATAN(y/x).

 If both sine and cosine of the angle are already known, ATAN2(si n, cos) givesthe angle.

BIN_AND()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the result of the bitwise AND operation on the argument(s).

126

Internal functions

Result type: INTEGER or BIGINT

Syntax:

BI N_AND (number [, number ...])

Important

If the external function BI N_AND is declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

BIN_OR()
Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the result of the bitwise OR operation on the argument(s).
Result type: INTEGER or BIGINT
Syntax:

BIN_OR (nunmber [, nunber ...])

Important

If the external function BI N_ORisdeclared in your database, it will override theinternal function. To make the
internal function available, DROP or ALTER the external function (UDF).

BIN_SHL()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the first argument bitwise |eft-shifted by the second argument, i.e. a << b or a-2"*b.

Result type: BIGINT

Syntax:

BI N_SHL (nunber, shift)

BIN_SHR()

Availablein: DSQL, PSQL

127

Internal functions

Added in: 2.1

Description: Returns the first argument bitwise right-shifted by the second argument, i.e. a >> b or a/2"b.
Result type: BIGINT

Syntax:

Bl N_SHR (nunber, shift)

» The operation performed is an arithmetic right shift (SAR), meaning that the sign of the first
operand is always preserved.

BIN_XOR()

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns the result of the bitwise XOR operation on the argument(s).
Result type: INTEGER or BIGINT

Syntax:

BI N_XOR (nunber [, nunber ...])

I mportant

If the external function BI N_XOR is declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

BIT_LENGTH()

Availablein: DSQL, PSQL
Added in: 2.0
Changedin: 2.1

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less
than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” bit length, not counting the trailing spaces,
right-TRIM the argument before passing it to BIT_LENGTH.

128

Internal functions

Result type: INTEGER
Syntax:
BI T_LENGTH (str)
BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.
Examples:

select bit_length('Hello!') fromrdb$dat abase
-- returns 48

select bit_length(_iso8859 1 'GuR di!') fromrdb$dat abase
-- returns 64: 0 and R take up one byte each in | S08859_1

select bit_length
(cast (_iso08859 1 "G uB di!' as varchar(24) character set utf8))
from rdb$dat abase
-- returns 80: U and B take up two bytes each in UTF8
select bit_length
(cast (_is08859 1 "G uB di!'" as char(24) character set utf8))
from r db$dat abase
-- returns 208: all 24 CHAR positions count, and two of themare 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH

CAST()

Availablein: DSQL, ESQL, PSQL
Addedin: IB
Changedin: 2.0, 2.1

Description: CAST converts an expression to the desired datatype or domain. If the conversion is not possible,
an error israised.

Result type: User-chosen.

Syntax:
CAST (expression AS {datatype | [TYPE OF] domain})

Shorthand syntax:
Alternative syntax, supported only when casting a string literal to aDATE, TIME or TIMESTAMP:
dat atype 'date/tinestring'

This syntax was already availablein InterBase, but was never properly documented.

129

Internal functions

Examples:

A full-syntax cast:
select cast ('12' || '-June-' || '1959' as date) from rdb$database
A shorthand string-to-date cast:

updat e People set AgeCat = 'dd'
where BirthDate < date '1-Jan-1943

Notice that you can drop even the shorthand cast from the example above, as the engine will under-
stand from the context (comparison to a DATE field) how to interpret the string:

updat e People set AgeCat = 'Ad'
where BirthDate < '1-Jan-1943'

But thisis not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

sel ect date 'today' - 7 from rdb$database

The following table shows the type conversions possible with CAST.

Table 12.1. Possible CASTSs

From

To

Numeric types

Numeric types
[VAR]CHAR
BLOB

[VAR]CHAR
BLOB

[VAR]CHAR
BLOB
Numeric types
DATE

TIME
TIMESTAMP

DATE
TIME

[VAR]CHAR
BLOB
TIMESTAMP

TIMESTAMP

[VAR]CHAR
BLOB
DATE
TIME

Keep in mind that sometimesinformation islost, for instance when you cast aTIMESTAMPto aDATE. Also, the
fact that types are CAST-compatible isinitself no guarantee that a conversion will succeed. “CAST(123456789
as SMALLINT)” will definitely result in an error, as will “CAST('Judgement Day' as DATE)”.

Casting input fields: Since Firebird 2.0, you can cast statement parameters to a datatype:

cast (? as integer)

130

Internal functions

This givesyou control over the type of input field set up by the engine. Please notice that with statement param-
eters, you always need a full-syntax cast — shorthand casts are not supported.

Castingto adomain or itstype: Firebird 2.1 and above support casting to adomain or its base type. When casting
toadomain, any constraints (NOT NULL and/or CHECK) declared for the domain must be satisfied or the cast will
fail. Please be aware that a CHECK passes if it evaluates to TRUE or NULL! So, given the following statements:

create domain quint as int check (value >= 5000)

sel ect cast (2000 as quint) fromrdb$dat abase -- (1)
sel ect cast (8000 as quint) fromrdb$dat abase -- (2)
sel ect cast (null as quint) fromrdb$dat abase -- (3)

only cast number (1) will result in an error.

When the TYPE OF modifier is used, the expression is cast to the base type of the domain, ignoring any con-
straints. With domain quint defined as above, the following two casts are equivalent and will both succeed:

sel ect cast (2000 as type of quint) fromrdb$database
sel ect cast (2000 as int) from rdb$dat abase

If TYPE OF isused with a (VAR)CHAR type, its character set and collation are retained:

create domain i s0o20 varchar(20) character set is08859 1;

create domai n dunl 20 varchar(20) character set is08859 1 collate du_nl
create table zinnen (zin varchar(20));

conmit;

insert into zinnen values ('Deze');

insert into zinnen values ('Die');

insert into zinnen values ('die');

insert into zinnen values ('deze');

sel ect cast(zin as type of is020) from zinnen order by 1
-- returns Deze -> Die -> deze -> die

sel ect cast(zin as type of dunl20) from zinnen order by 1
-- returns deze -> Deze -> die -> Die

Casting BLOBs:. Successful casting to and from BLOBs is possible since Firebird 2.1.

CEIL(), CEILING()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the smallest whole number greater than or equal to the argument.
Result type: BIGINT or DOUBLE PRECISION

Syntax:

CEI L[ING (nunber)

131

Internal functions

Important

If the external function CEI LI NGis declared in your database, it will override the internal function CEILING
(but not CEIL). To make theinternal function available, DROP or ALTER the external function (UDF).

See also: FLOOR()

CHAR_LENGTH(), CHARACTER_LENGTHY()

Availablein: DSQL, PSQL
Addedin: 2.0
Changedin: 2.1

Description: Givesthe length in characters of the input string.

Note

With arguments of type CHAR, thisfunction returnsthe formal string length (i.e. the declared length of afield or
variable). If you want to obtain the “logical” length, not counting the trailing spaces, right-TRIM the argument
before passing it to CHAR[ACTER]_LENGTH.

Result type: INTEGER

Syntax:

CHAR _LENGTH (str)
CHARACTER LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.
Examples:

sel ect char_length('Hello!') from rdb$database
-- returns 6

select char_length(_iso8859 1 "G uR di!') fromrdb$dat abase
-- returns 8

sel ect char_length
(cast (_is08859 1 "G uB di!' as varchar(24) character set utf8))
from r db$dat abase
-- returns 8; the fact that U and B take up two bytes each is irrel evant

sel ect char_l ength

(cast (_is08859 1 "G uB di!'" as char(24) character set utf8))
from r db$dat abase

-- returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH

132

Internal functions

COALESCE()

Availablein: DSQL, PSQL
Addedin: 1.5

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result is NULL.

Result type: Depends on input.

Syntax:
COALESCE (<expl>, <exp2> [, <expN> ...])
Example:
sel ect
coal esce (N ckname, FirstNanme, "M./Ms."') || " ' || LastNane

as Ful | Name
from Per sons

This example picks the Nickname from the Persons table. If it happensto be NULL, it goes on to FirstName. If
that too isNULL, “Mr./Mrs.” isused. Finaly, it adds the family name. All in all, it triesto use the available data
to compose afull name that is asinformal as possible. Notice that this scheme only works if absent nicknames

and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the *nvl external
functions.

COS()

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns an angle's cosine. The argument must be given in radians.
Result type: DOUBLE PRECISION

Syntax:

COS (angl e)

133

Internal functions

* Any non-NULL result is— obviously —in therange [-1, 1].

Important

If the external function COS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COSH()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the hyperbolic cosine of the argument.
Result type: DOUBLE PRECISION

Syntax:
COSH (nunber)

e Any non-NULL result isintherange[1, INF].

I mportant

If the external function COSH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COT()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns an angle's cotangent. The argument must be given in radians.
Result type: DOUBLE PRECISION

Syntax:

COT (angle)

I mportant

If the external function COT is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

134

Internal functions

DATEADD()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Adds the specified number of years, months, days, hours, minutes, seconds or milliseconds to a
date/time value.

Result type: DATE, TIME or TIMESTAMP
Syntax:
DATEADD (<ar gs>)

<ar gs> ::= <anmount> <unit> TO <dateti me>
| <unit>, <amount>, <datetime>

<anount > = an integer expression (negative to subtract)
<uni t> = YEAR | MONTH | DAY

| HOUR | MNUTE | SECOND | M LLI SECOND
<datetime> ::= a DATE, TIME or TIMESTAMP expression

* Theresult typeis determined by the third argument.

» With DATE arguments, only YEAR, MONTH and DAY can be used.

» With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.
Examples:

dat eadd (28 day to current _date)

dateadd (-6 hour to current_tine)

dat eadd (nonth, 9, DateO Conception)

dateadd (minute, 90, time 'now)
dateadd (? year to date '11-Sep-1973")

DATEDIFF()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the number of years, months, days, hours, minutes, seconds or milliseconds elapsed be-
tween two date/time values.

Result type: BIGINT

Syntax:

DATEDI FF (<ar gs>)

135

Internal functions

<ar gs> = <unit> FROM <nonent 1> TO <nonent 2>
| <unit> <nonentl> <nonent2>
<uni t> = YEAR | MONTH | DAY
| HOUR| MNUTE | SECOND | M LLI SECOND
<monment N> ::= a DATE, TIME or TIMESTAMP expression

* DATE and TIMESTAMP arguments can be combined. No other mixes are allowed.
* With DATE arguments, only YEAR, MONTH and DAY can be used.

* With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.

Computation:

DATEDIFF doesn't look at any smaller units than the one specified in the first argument. As aresult,

“datedi ff (year, date '1-Jan-2009', date '31-Dec-2009')" returnsO, but
“datedi ff (year, date '31-Dec-2009', date '1-Jan-2010")" returnsl

It does, however, look at all the bigger units. So:

- “datediff (day, date '26-Jun-1908', date '11-Sep-1973')" returns23818

* A negative result value indicates that monment 2 lies before nonent 1.

Examples:

datedi ff (hour fromcurrent_tinestanp to tinestanp '12-Jun-2059 06: 00")
datedi ff (mnute fromtine '0:00" to current _tine)

datedi ff (nmonth, current_date, date '1-1-1900')

datedi ff (day fromcurrent _date to cast(? as date))

DECODE()

Availablein: DSQL, PSQL

Added in: 2.1

Description: DECODE is a shortcut for the so-called “simple CASE” construct, in which a given expression is
compared to a number of other expressions until a match is found. The result is determined by the value listed
after the matching expression. If no match is found, the default result is returned, if present. Otherwise, NULL
isreturned.

Result type: Varies

Syntax:

DECODE (<t est-expr>,
<expr>, result
[, <expr> result ...]
[, defaultresult])

136

Internal functions

The equivalent CASE construct:

CASE <t est - expr>
WHEN <expr> THEN result
[WHEN <expr> THEN result ...]
[ELSE defaul tresult]

END
Caution
Matching is done with the “=" operator, so if <t est - expr > is NULL, it won't match any of the
<expr >s, not even those that are NULL.
Example:

sel ect nane,

age,

decode(upper (sex),
'M, 'Male',
"F', 'Fenuale',
" Unknown'),

religion

from peopl e

See also: CASE, Simple CASE

EXP()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the natural exponential, "™

Result type: DOUBLE PRECISION

Syntax:
EXP (nunber)
See also: LN()

EXTRACT()

Availablein: DSQL, ESQL, PSQL

Added in: IB 6

137

Internal functions

Changedin: 2.1

Description: Extracts and returns an element from aDATE, TIME or TIMESTAMP expression. Thisfunction was
aready added in InterBase 6, but not documented in the Language Reference at the time.

Result type: SMALLINT or NUMERIC
Syntax:
EXTRACT (<part> FROM <dat eti ne>)
<part> 1= YEAR | MONTH | WEEK
| DAY | WEEKDAY | YEARDAY

| HOUR| MNUTE | SECOND | M LLI SECOND
<datetime> ::= a DATE, TIME or TI MESTAMP expression

The returned datatypes and possible ranges are shown in the table below. If you try to extract a part that isn't
present in the date/time argument (e.g. SECOND from aDATE or YEAR from a TIME), an error occurs.

Table 12.2. Types and ranges of EXTRACT results

Part Type Range Comment

YEAR SMALLINT 1-9999

MONTH SMALLINT 1-12

WEEK SMALLINT 1-53

DAY SMALLINT 1-31

WEEKDAY SMALLINT 0-6 0 = Sunday

YEARDAY SMALLINT 0-365 0=January 1

HOUR SMALLINT 0-23

MINUTE SMALLINT 0-59

SECOND NUMERIC(9,4) 0.0000-59.9999 includes millisecond as
fraction

MILLISECOND NUMERIC(9,1) 0.0000-999.9 brokenin2.1,2.1.1

MILLISECOND

Added in: 2.1 (with bug)
Fixedin: 2.1.2

Description: Firebird 2.1 and up support extraction of the millisecond fromaTIME or TIMESTAMP. Thedatatype
returned is NUMERIC(9,1).

138

Internal functions

Bug alert

MILLISECOND extraction is broken in Firebird 2.1 and 2.1.1. In those versions, the number returned is an
INTEGER including SECOND* 1000, soif thetimeise.g. 20:48:17.637, the MILLISECOND valueis 17637 while
it should be 637. This bug has been fixed in version 2.1.2.

Note

If you extract the millisecond from CURRENT_TIME, be aware that this variable defaults to seconds precision,
so theresult will always be 0. Extract from CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds
precision.

WEEK

Added in:

21

Description: Firebird 2.1 and up support extraction of the | SO-8601 week number from aDATE or TIMESTAMP.

1SO-8601

weeks start on a Monday and always have the full seven days. Week 1 is the first week that has a

majority (at least 4) of its daysin the new year. The first 1-3 days of the year may belong to the last week (52
or 53) of the previous year. Likewise, ayear's final 1-3 days may belong to week 1 of the following year.

Caution

Be careful when combining WEEK and YEAR results. For instance, 30 December 2008 liesin week 1 of 2009,
so“extract (week from date '30 Dec 2008')” returns 1. However, extracting YEAR always gives
the calendar year, which is 2008. In this case, WEEK and YEAR are at odds with each other. The same happens
when thefirst days of January belong to the last week of the previous year.

Please aso notice that WEEKDAY is not 1SO-8601 compliant: it returns O for Sunday, whereas | SO-8601
specifies 7.

FLOOR()

Availablein: DSQL, PSQL

Added in:

21

Description: Returns the largest whole number smaller than or equal to the argument.

Result type: BIGINT or DOUBLE PRECISION

Syntax:

FLOOR (nunber)

Important

If the external function FLOOR is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

139

Internal functions

See also: CEIL() / CEILING()

GEN_ID()

Availablein: DSQL, ESQL, PSQL
Addedin: IB

Description: Increments a generator or sequence and returnsits new value. From Firebird 2.0 onward, the SQL -
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

Result type: BIGINT
Syntax:
GEN_|I D (generator-nane, <step>)
<step> ::= An integer expression.
Example:

new.rec_id = gen_id(gen_recnum 1);

Warning

Unlessyou know very well what you are doing, using GEN_ID() with step valueslower than 1 may compromise
your datasintegrity.

See also: NEXT VALUE FOR, CREATE GENERATOR

GEN_UUID()

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns a universaly unique ID as a 16-byte character string.
Result type: CHAR(16) CHARACTER SET OCTETS

Syntax:

GEN_UUI D ()

HASH()

Availablein: DSQL, PSQL

140

Internal functions

Added in: 2.1

Description: Returns a hash value for the input string. This function fully supports text BLOBs of any length
and character set.

Result type: BIGINT
Syntax:

HASH (string)

IIF()

Availablein: DSQL, PSQL
Added in: 2.0

Description: 11F takesthree arguments. If thefirst evaluatestot r ue, the second argument is returned; otherwise
thethird is returned.

Result type: Depends on input.

Syntax:

I1'F (<condition> ResultT, ResultF)

<condition> ::= A bool ean expression.
Example:
select iif(sex ="M, "Sir', '"Madam) from Custoners

IIF(Cond, Resul t 1, Resul t 2) is a shortcut for “CASE WHEN Cond THEN Resul t 1 ELSE Resul t 2 END”.
Y ou can aso compare |IF to the ternary “? : ” operator in C-like languages.

LEFT()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the leftmost part of the argument string. The number of charactersis given in the second
argument.

Result type: VARCHAR or BLOB
Syntax:

LEFT (string, |ength)

141

Internal functions

» Thisfunction fully supportstext BLOBs of any length, including those with amulti-byte character
Set.

e |fstringisaBLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the
length of the input string.

» If thel engt h argument exceeds the string length, the input string is returned unchanged.

» If thel engt h argument is not awhole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

See also: RIGHT()

LN()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the natural logarithm of the argument.

Result type: DOUBLE PRECISION

Syntax:

LN (number)

* Anerrorisraised if the argument is negative or 0.

Important

If the external function LN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

See also: EXP()

LOG()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the x-based logarithm of y.
Result type: DOUBLE PRECISION

Syntax:

LOG (x, V)

142

Internal functions

» If x isnegative or y isnegative, the result is always NaN.
» If x ispositiveandy isO, +/-I NF isreturned, depending on x.
* Bug: If x =1andy >=0 (but not 1), +/-1 NF is returned.

 Bug: Ifx=0andy >0, theresultisO.

Important

If the external function LOG is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

LOG10()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the 10-based logarithm of the argument.

Result type: DOUBLE PRECISION

Syntax:

LOGLO (number)

» If theargument isO, -I NF isreturned. If the argument is negative, NaN is returned.

Important

If the external function LOGLO0 is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

LOWER()

Availablein: DSQL, ESQL, PSQL
Addedin: 2.0

Changedin: 2.1

Description: Returns the lower-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is

returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
Set.

143

Internal functions

Result type: (VAR)CHAR or BLOB

Syntax:

LONER (str)

I mportant

If the external function LONER is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Example:

sel ect Sheriff from Towns
where | ower (Name) = 'cooper''s valley'

See also; UPPER

LPAD()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Left-pads a string with spaces or with a user-supplied string until a given length is reached.
Result type: VARCHAR(32765) or BLOB
Syntax:
LPAD (str, endlen [, padstr])
» Thisfunction fully supports text BLOBs of any length and character set.
e |fstr isaBLOB, theresult isaBLOB. Otherwise, the result is a VARCHAR(32765).
» If padstr isgivenand equals' ' (empty string), no padding takes place.

» |f endl en islessthan the current string length, the string istruncated to endl en, even if padst r
isthe empty string.

Important

If the external function LPAD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Tip

With (VAR)CHARS, it is generally wise to CAST the result to asmaller size. The default result length of 32765
may, in combination with other output columns, lead to a“ block size exceedsimplementation restriction” error.

144

Internal functions

Examples:

I pad (' Hello', 12) -- returns ' Hel | o'
Ipad ('Hello', 12, '-") -- returns '------- Hel | o'
lpad ('Hello', 12, '") -- returns 'Hello'

Ipad ('Hello', 12, 'abc') -- returns 'abcabcaHel | o'
lpad (' Hello', 12, 'abcdefghij') -- returns 'abcdefgHel |l o'
I pad ('Hello', 2) -- returns ' He'

lpad ('Hello', 2, '-") -- returns ' He'

Ipad (‘Hello', 2, '") -- returns ' He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBS are involved.

See also: RPAD()

MAXVALUE()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returnsthe maximum valuefrom alist of numerical, string, or date/time expressions. Thisfunction
fully supports text BLOBS of any length and character set.

Result type: Varies
Syntax:
MAXVALUE (expr [, expr ...])

» If one or more expressions resolve to NULL, MAXVALUE returns NULL. This behaviour differs
from the aggregate function MAX.

See also: MINVALUE()

MINVALUE()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returnsthe minimum value from alist of numerical, string, or date/time expressions. Thisfunction
fully supports text BLOBs of any length and character set.

Result type: Varies

145

Internal functions

Syntax:

M NVALUE (expr [, expr ...])

* If one or more expressions resolve to NULL, MINVALUE returns NULL. This behaviour differs
from the aggregate function MIN.

See also: MAXVALUE()

MOD()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the remainder of an integer division.
Result type: INTEGER or BIGINT
Syntax:
MOD (a, b)

* Non-integer arguments are rounded before the division takes place. So, “7.5 mod 2.5” gives 2 (8
mod 3), not 0.

Important

If the external function MOD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

NULLIF()

Availablein: DSQL, PSQL
Addedin: 1.5

Description: NULLIF returns the value of the first argument, unlessit is equal to the second. In that case, NULL
isreturned.

Result type: Depends on input.
Syntax:

NULLI F (<expl>, <exp2>)
Example:

sel ect avg(nullif(Wight, -1)) from Fat Peopl e

146

Internal functions

This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,
since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note

In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nul | i f external
functions.

OCTET_LENGTH()

Availablein: DSQL, PSQL
Addedin: 2.0
Changedin: 2.1

Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may
be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” byte length, not counting the trailing spaces,
right-TRIM the argument before passing it to OCTET_LENGTH.

Result type: INTEGER
Syntax:

OCTET_LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

sel ect octet length('Hello!') fromrdb$dat abase
-- returns 6

sel ect octet length(_iso08859 1 'GuR di!') fromrdb$dat abase
-- returns 8: U and 3 take up one byte each in | S08859 1

sel ect octet_length

(cast (_iso08859 1 'GuRB di!' as varchar(24) character set utf8))
from rdb$dat abase

-- returns 10: U and B take up two bytes each in UTF8

sel ect octet_length

(cast (_iso08859 1 'Gul di!' as char(24) character set utf8))
from rdb$dat abase

-- returns 26: all 24 CHAR positions count, and two of them are 2-byte

147

Internal functions

See also: BIT_LENGTH(), CHARACTER_LENGTH

OVERLAY()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Replaces part of astring with another string. By default, the number of charactersremoved fromthe
host string equals the length of the replacement string. With the optional fourth argument, the user can specify
adifferent number of charactersto be removed.

Result type: VARCHAR or BLOB
Syntax:
OVERLAY (string PLACI NG repl acement FROM pos [FOR | ength])

» Thisfunction supports BLOBs of any length. Due to a bug, BLOBS containing multi-byte charac-
ters — and sometimes even single-byte non-ASCII characters — will cause a*“ Cannot trandliterate
character between character sets’ error. This bug does not occur in Firebird 2.5.

e If string or repl acenent is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(n) with n the sum of the lengths of st ri ng andr epl acenent .

» Asusuad in SQL string functions, pos is 1-based.
» If pos isbeyondtheend of stri ng, repl acenent isplaced directly after st ri ng.

 If thenumber of charactersfrom pos totheend of st ri ng issmaller thanthelength of r epl ace-
ment (or thanthel engt h argument, if present), st ri ng istruncated at pos and r epl acenent
placed after it.

» Theeffect of a“FOR Q" clauseisthat r epl acenent issimply insertedinto st ri ng.
» If any argument iSNULL, the result isNULL.

* If pos or | engt h is not a whole number, bankers rounding (round-to-even) is applied, i.e. 0.5
becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, €tc.

Examples:
overlay (' Goodbye' placing 'Hello' from 2) -- returns ' GHel | oe’
overlay (' Goodbye' placing 'Hello' fromb5) -- returns ' GoodHel | o'
overlay (' Goodbye' placing 'Hello' from 8) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello'" from 20) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello' from2 for 0) -- r. 'GHell ooodbye'
overlay (' Goodbye' placing 'Hello" from2 for 3) -- r. 'CHel |l obye'
overlay (' Goodbye' placing 'Hello' from2 for 6) --r. "CHello'
overlay (' Goodbye' placing 'Hello' from2 for 9) --r. 'CGHello
overlay (' Goodbye' placing '' from 4) -- returns ' Goodbye'

148

Internal functions

overlay (' Goodbye' placing '' from4 for 3) -- returns ' Gooe'

overlay (' CGoodbye' placing '' from4 for 20) -- returns 'Goo'

overlay ('' placing 'Hello' from 4) -- returns 'Hello

overlay ('' placing 'Hello' from4 for 0) -- returns 'Hello

overlay ('' placing '"Hello' from4 for 20) -- returns 'Hello
Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

See also: REPLACE()

PI1()

Availablein: DSQL, PSQL

Addedin: 2.1

Description: Returns an approximation of the value of #.
Result type: DOUBLE PRECISION

Syntax:

Pl ()

Important

If the external function PI is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

POSITION()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the (1-based) position of the first occurrence of a substring in a host string. With the
optional third argument, the search starts at a given offset, disregarding any matches that may occur earlier in
the string. If no match isfound, the result is 0.

Result type: INTEGER
Syntax:

POSI TI ON (<ar gs>)

149

Internal functions

<args> ::= substr IN string
| substr, string [, startpos]

» The optional third argument is only supported in the second syntax (comma syntax).

» Theempty stringisconsidered asubstring of every string. Therefore, if subst r is" (empty string)
andstringisnot NULL, theresultis:

- lifstartpos ishot given,
- startposifstartpos lieswithinstring;
- Oif start pos liesbeyond theend of st ri ng.

Notice: A bug in Firebird 2.1-2.1.3 causes POSITION to always return 1 if subst r isthe empty
string. Thisisfixed in 2.1.4.

» Thisfunction fully supports text BLOBS of any size and character set.

Examples:
position ('be'" in 'To be or not to be') -- returns 4
position ('be', '"To be or not to be') -- returns 4
position ('be', '"To be or not to be', 4) -- returns 4
position ('be', '"To be or not to be', 8) -- returns 17
position ('be', 'To be or not to be', 18) -- returns O
position ('be'" in 'Alas, poor Yorick!") -- returns O
Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBSs are involved.

POWER()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns x to the y'th power.
Result type: DOUBLE PRECISION
Syntax:

PONER (x, V)

» If x negative, an error israised.

Important

If the external function POAER is declared in your database as power instead of the default dPower , it will
override the internal function. To make the internal function available, DROP or ALTER the external function

(UDF).

150

Internal functions

RAND()
Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns arandom number between 0 and 1.
Result type: DOUBLE PRECISION
Syntax:

RAND ()

I mportant

If the external function RAND is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

RDB$GET _CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SSET_CONTEXT are actually predeclared UDFs. They are listed

here asinternal functions because they are always present — the user doesn't have to do anything to make them
available.

Availablein: DSQL, ESQL, PSQL
Addedin: 2.0

Description: Retrieves the value of a context variable from one of the namespaces SY STEM, USER_SESSION
and USER_TRANSACTION.

Result type: VARCHAR(255)
Syntax:
RDB$CET_CONTEXT (' <nanespace>', '<varname>')

<namespace> ::= SYSTEM| USER SESSION | USER_TRANSACTI ON
<var name> ::= A case-sensitive string of nmax. 80 characters

The namespaces.

The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can create and set
variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$SGET_CONTEXT(). The SYSTEM
namespace is read-only. It contains a number of predefined variables, shown in the table below.

151

Internal functions

Table 12.3. Context variablesin the SY STEM namespace

DB_NAVME

Either the full path to the database or — if connecting via the path is disallowed
—itsdlias.

NETWORK _PROTOCCOL

The protocol used for the connection: * TCPv4' ,* WNET' , ' XNET' or NULL.

CL| ENT_ADDRESS

For TCPv4, thisisthe IP address. For XNET, the local process ID. For all other
protocolsthis variableis NULL.

CURRENT _USER

Same as global CURRENT _USER variable.

CURRENT_ROLE

Same as global CURRENT _ROLE variable.

SESSI ON_I D

Same as global CURRENT _CONNECTI ON variable.

TRANSACTI ON_I D

Same as global CURRENT_TRANSACTI ON variable.

| SOLATI ON_LEVEL

Theisolation level of the current transaction; ' READ COWMM TTED ,' SNAPSHOT'
or ' CONSI STENCY" .

Return valuesand error behaviour: If the polled variable existsin the given namespace, itsvalue will be returned
as a string of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing variable
in the SY STEM namespace, an error israised. If you poll anon-existing variable in one of the other namespaces,
NULL isreturned. Both namespace and variable names must be given as single-quoted, case-sensitive, non-NULL

strings.

Examples:

sel ect rdb$get context(' SYSTEM, 'DB _NAME) from rdb$dat abase

New. User Addr

rdb$get cont ext (' SYSTEM, ' CLI ENT_ADDRESS') ;

insert into MyTabl e (TestField)
val ues (rdb$get_context (' USER SESSION , 'MyVar'))

See also: RDB$SET_CONTEXT()

RDB$SET _CONTEXT()

Note

available.

RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actually predeclared UDFs. They are listed
here asinternal functions because they are always present — the user doesn't have to do anything to make them

Availablein: DSQL, ESQL, PSQL

Added in: 2.0

152

Internal functions

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

Result type: INTEGER

Syntax:
RDB$SET_CONTEXT (' <nanespace>', '<varname>' , <value> | NULL)
<namespace> = USER_SESSI ON | USER_TRANSACTI ON
<var name> ::= A case-sensitive string of nax. 80 characters

<val ue> A val ue of any type, as long as it's castable
to a VARCHAR(255)

The namespaces:

TheUSER_SESSION and USER_TRANSACTION namespacesareinitialy empty. The user can create and set vari-
ablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXT(). The USER_SESSION
context is bound to the current connection. Variablesin USER_TRANSACTION only exist in the transaction in
which they have been set. When the transaction ends, the context and all the variablesdefined in it are destroyed.

Return values and error behaviour:
Thefunction returns 1 if the variable already existed beforethe call and O if it didn't. To remove avariable from

acontext, set it to NULL. If the given namespace doesn't exist, an error is raised. Both namespace and variable
names must be entered as single-quoted, case-sensitive, non-NULL strings.

Examples:
sel ect rdb$set context(' USER SESSION , 'MyVar', 493) from rdb$dat abase
rdb$set _cont ext (' USER_SESSI ON', ' RecordsFound', RecCounter);

sel ect rdb$set context (' USER TRANSACTI ON , ' Savepoints', 'Yes')
from rdb$dat abase

Notes:
» The maximum number of variablesin any single context is 1000.

e All USER TRANSACTION variableswill surviveaROLLBACK RETAIN or ROLLBACK TO SAVEPOINT un-
atered, no matter at which point during the transaction they were set.

* DuetoitsUDF-like nature, RDB$SET_CONTEXT can—in PSQL only —be called like avoid function, without
assigning the result, asin the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

REPLACE()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Replaces all occurrences of a substring in a string.

153

Internal functions

Result type: VARCHAR or BLOB
Syntax:
REPLACE (str, find, repl)
» Thisfunction fully supports text BLOBs of any length and character set.

» If any argument is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n
calculated from the lengths of st r, fi nd and r epl in such away that even the maximum possible number
of replacements won't overflow the field.

» Iffindistheempty string, st r isreturned unchanged.
* Ifrepl istheempty string, al occurrences of f i nd are deleted fromstr.

» If any argument is NULL, the result is always NULL, even if nothing would have been replaced.

Examples:
replace ('Billy Wlder', 'il', 'oog') -- returns 'Boogly Wogder'
replace ("Billy Wlder', "il", ") -- returns 'Bly Wler'’
replace ('Billy Wlder', null, 'oog') -- returns NULL
replace ("Billy Wlder', 'il', null) -- returns NULL
replace ('Billy Wlder', 'xyz', null) -- returns NULL (!)
replace ("Billy Wlder', 'xyz', 'abc') -- returns 'Billy WIlder'
replace ('Billy WIder' "', 'abc') -- returns 'Billy WIder'

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

See also: OVERLAY()

REVERSE()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns a string backwards.
Result type: VARCHAR
Syntax:
REVERSE (str)
Examples:

reverse ('spoonful') -- returns 'l ufnoops'

154

Internal functions

reverse (‘Was it a cat | saw?') -- returns '?was | tac a ti saW

Tip
This function comesin very handy if you want to group, search or order on string endings, e.g. when dealing

with domain names or email addresses:

create index ix_people_email on people
computed by (reverse(enail));

select * from peopl e
where reverse(email) starting with reverse('.br");

RIGHT()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returnsthe rightmost part of the argument string. The number of charactersis given in the second
argument.

Result type: VARCHAR or BLOB
Syntax:

Rl GHT (string, |ength)

» Thisfunction supports text BLOBSs of any length, but has a bug in versions 2.1-2.1.3 that makes
it fail with text BLOBs larger than 1024 bytes that have a multi-byte character set. This has been
fixedin version 2.1.4.

e |If stringisaBLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the
length of the input string.

» If thel engt h argument exceeds the string length, the input string is returned unchanged.

» If thel engt h argument is not awhole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBSs are involved.

I mportant

If the external function RI GHT is declared in your database asr i ght instead of the default sri ght , it will
override the internal function. To make the internal function available, DROP or ALTER the external function

(UDF).

See also: LEFT()

155

Internal functions

ROUND()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Rounds a number to the nearest integer. If the fractional part is exactly 0. 5, rounding is upward
for positive numbers and downward for negative numbers. With the optional scal e argument, the number can
be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE
Syntax:
ROUND (<nunber> [, <scale>])
<nunber> ::= a nunerical expression
<scal e> = an integer specifying the nunber of decinmal places
toward whi ch should be rounded, e.qg.:
2 for rounding to the nearest nmultiple of 0.01
1 for rounding to the nearest multiple of 0.1
0 for rounding to the nearest whol e nunber

-1 for rounding to the nearest nultiple of 10
-2 for rounding to the nearest multiple of 100

Notes:
» If thescal e argument is present, the result usually has the same scal e as the first argument, e.g.

- ROUND(123.654, 1) returns 123.700 (not 123.7)
- ROUND(8341.7, -3) returns 8000.0 (not 8000)
- ROUND(45.1212, 0) returns 45.0000 (not 45)

Otherwise, the result scaleis O:

- ROUND(45.1212) returns 45

Important

« |f the external function ROUND is declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the externa function (UDF).

» |If you are used to the behaviour of the external function ROUND, please notice that the internal function
aways rounds halves away from zero, i.e. downward for negative numbers.

RPAD()

Availablein: DSQL, PSQL

156

Internal functions

Added in: 2.1

Description: Right-pads a string with spaces or with a user-supplied string until a given length is reached.

Result type: VARCHAR(32765) or BLOB

Syntax:

RPAD (str, endlen [,

padstr])

» Thisfunction fully supports text BLOBs of any length and character set.

e |fstr isaBLOB, theresult isaBLOB. Otherwise, the result isa VARCHAR(32765).

* If padstr isgivenand equals' ' (empty string), no padding takes place.

* If endl en islessthan the current string length, the string is truncated to endl en, evenif padst r
isthe empty string.

I mportant

If the external function RPAD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Tip

With (VAR)CHARS, it is generally wise to CAST the result to asmaller size. The default result length of 32765
may, in combination with other output columns, lead to a“ block size exceedsimplementation restriction” error.

Examples:

rpad ('Hello', 12) -- returns 'Hello

rpad (‘Hello', 12, '-") -- returns 'Hello-------
rpad (‘Hello', 12, '') -- returns 'Hello

rpad (' Hello', 12, 'abc') -- returns ' Hell oabcabca'
rpad ('Hello', 12, 'abcdefghij') -- returns ' Hell oabcdefg'
rpad ('Hello', 2) -- returns 'He'

rpad (‘Hello', 2, '-") -- returns ' He'

rpad (‘Hello', 2, '") -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

See also: LPAD()

Availablein: DSQL, PSQL

SIGN()

157

Internal functions

Added in: 2.1

Description: Returns the sign of the argument: -1, O or 1.
Result type: SMALLINT

Syntax:

SI GN (nunber)

Important

If the external function SI GNis declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SIN()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns an angle's sine. The argument must be given in radians.
Result type: DOUBLE PRECISION

Syntax:
SIN (angle)

e Any non-NULL result is—obviously —in therange[-1, 1].

Important

If the external function SI N is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SINH()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the hyperbolic sine of the argument.

Result type: DOUBLE PRECISION

158

Internal functions

Syntax:

SI NH (number)

I mportant

If the external function SI NH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SQRT()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the square root of the argument.

Result type: DOUBLE PRECISION
Syntax:
SQRT (nunber)

Important

If the external function SQRT is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SUBSTRING()

Availablein: DSQL, PSQL
Added in: 1.0
Changedin: 2.0, 2.1

Description: Returns a string's substring starting at the given position, either to the end of the string or with
agiven length.

Result type: VARCHAR(n) or BLOB
Syntax:
SUBSTRI NG (str FROM startpos [FOR I ength])

This function returns the substring starting at character position st ar t pos (the first position being 1). Without
the FOR argument, it returns all the remaining characters in the string. With FOR, it returns| engt h characters
or the remainder of the string, whichever is shorter.

159

Internal functions

InFirebird 1.x, st art pos and | engt h must be integer literals. In 2.0 and above they can be any valid integer
expression.

Starting with Firebird 2.1, this function fully supports binary and text BLOBSs of any length and character set. If
str isaBLOB, theresult isalso aBLOB. For any other argument type, the resultisaVARCHAR(n). Previoudly,
the result type used to be CHAR(n) if the argument was a CHAR(n) or a string literal.

For non-BLOB arguments, the width of theresult field isalwaysequal to thelength of st r , regardlessof st ar t -
pos and | engt h. So, substri ng(' pi nhead" from 4 for 2) will return aVARCHAR(7) containing the
string* he' .

If any argument is NULL, the result isNULL.

Bugs

e If str isaBLOB and the | engt h argument is not present, the output is limited to 32767 characters.
Workaround: with long BLOBS, always specify char_length(st r) — or a sufficiently high integer — as the
third argument, unless you are sure that the requested substring fits within 32767 characters.

e A bug in Firebird 2.0 which caused the function to return “false emptystrings’ if st art pos or | engt h
was NULL, has been fixed.

Example:

i nsert into AbbrNames(Abbr Nane)
sel ect substring(LongName from1 for 3) from LongNanes

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBS are involved.

TAN()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns an angle's tangent. The argument must be given in radians.
Result type: DOUBLE PRECISION

Syntax:

TAN (angl e)

I mportant

If the external function TAN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

160

Internal functions

TANH()
Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the hyperbolic tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:

TANH (nunber)

Dueto rounding, any non-NULL result isin therange [-1, 1] (mathematicaly, it's<-1, 1>).

| mportant

If the external function TANH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TRIM()

Availablein: DSQL, PSQL
Addedin: 2.0

Changed in: 2.1

Description: Removes leading and/or trailing spaces (or optionally other strings) from the input string. Since
Firebird 2.1 this function fully supports text BLOBSs of any length and character set.

Result type: VARCHAR(n) or BLOB
Syntax:

TRI M ([<adj ust>] str)

<adjust> ::= {[where] [what]} FROM
wher e = BOTH | LEADING | TRAILING /* default is BOTH */
what = The substring to be renoved (repeatedly if necessary)
fromstr's head and/or tail. Default is ' ' (space).
Examples:
select trim (' Waste no space ') from rdb$dat abase

-- returns 'Waste no space'

161

Internal functions

select trim(leading from' Waste no space ') from rdb$dat abase
-- returns 'Waste no space

select trim(leading '.' from' \Wiste no space ') from rdb$database
-- returns ' Waste no space
select trim(trailing '!" from'Help!!!!') fromrdb$dat abase

-- returns ' Hel p’

select trim('la" from'lalala | love you Ella') from rdb$database
-- returns ' | love you E'
select trim('la" from'Lalala | love you Ella') from rdb$database
-- returns 'Lalala | |ove you El'
Notes:

» If str isaBLOB, theresultisaBLOB. Otherwise, it isaVARCHAR(n) with n the formal length of st r .

» The substring to be removed, if specified, may not be bigger than 32767 bytes. However, if this substring is
repeated at st r 's head or tail, the total number of bytes removed may be far greater. (The restriction on the
size of the substring will be lifted in Firebird 3.)

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBSs are involved.

TRUNC()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the integer part of a number. With the optional scal e argument, the number can be trun-
cated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE
Syntax:
TRUNC (<nunber> [, <scale>])

<nunber >
<scal e>

a numerical expression
an integer specifying the nunber of decinmal places
toward which should be truncated, e.g.
2 for truncating to a multiple of 0.01
1 for truncating to multiple of 0.1
0 for truncating to a whol e nunber
-1 for truncating to mul tiple of 10
-2 for truncating to mul tiple of 100

a
a
a
a

162

Internal functions

Notes:

» If thescal e argument is present, the result usually has the same scale as the first argument, e.g.

- TRUNC(789.2225, 2) returns 789.2200 (not 789.22)
- TRUNC(345.4, -2) returns 300.0 (not 300)
- TRUNC(-163.41, 0) returns -163.00 (not -163)

Otherwise, the result scaleis O:

- TRUNC(-163.41) returns-163

I mportant

If you are used to the behaviour of the external function TRUNCATE, please notice that the internal function
TRUNC always truncates toward zero, i.e. upward for negative numbers.

UPPER()

Availablein: DSQL, ESQL, PSQL
Addedin: IB
Changedin: 2.0, 2.1

Description: Returns the upper-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
Set.

Result type: (VAR)CHAR or BLOB
Syntax:
UPPER (str)
Examples:
sel ect upper(_iso8859 1 'Débécl e')
from rdb$dat abase
-- returns ' DEBACLE (before Firebird 2.0: ' DéBACLE')
sel ect upper(_iso8859 1 'Débéacle' collate fr_fr)
from r db$dat abase

-- returns ' DEBACLE , follow ng French uppercasing rules

See also; LOWER

163

Chapter 13

External functions (UDFs)

External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two externa function libraries:

e i b_udf —inherited from InterBase;
» fbudf —anew library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can also create their own UDF libraries or acquire them from third parties.

abs

Library: ib_udf
Addedin: IB
Better alternative: Internal function ABS()
Description: Returns the absolute value of the argument.
Result type: DOUBLE PRECISION
Syntax:
abs (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON abs
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_abs' MODULE_NAME 'ib_udf'

aCos

Library: ib_udf
Addedin: IB

Better alternative: Internal function ACOS()

164

External functions (UDFs)

Description: Returns the arc cosine of the argument.
Result type: DOUBLE PRECISION
Syntax:
acos (number)
Declaration:
DECLARE EXTERNAL FUNCTI ON acos
DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_acos' MODULE_NAME ' i b_udf’

addDay

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returnsthe first argument with nunber days added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addday (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addDay

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addDay' MODULE_NAME ' f budf'

addHour

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with nunber hours added. Use negative numbers to subtract.

Result type: TIMESTAMP

165

External functions (UDFs)

Syntax:
addhour (atimestanp, nunber)
Declaration:
DECLARE EXTERNAL FUNCTI ON addHour
TI MESTAMP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addHour' MODULE_NAME ' f budf'’

addM | | 1 Second

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber milliseconds added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addm | I i second (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM | |i Second

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT 'addM | I'i Second’ MODULE_NAME ' f budf'

addM nut e

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with nunber minutes added. Use negative numbers to subtract.
Result type: TIMESTAMP

Syntax:

addm nute (atinestanp, nunber)

166

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON addM nut e
TI MESTAMP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addM nute' MODULE _NAME ' f budf'

addMbnt h

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber months added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addnont h (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addMbnt h

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addMont h* MODULE_NAME ' f budf"’

addSecond

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Interna function DATEADD
Description: Returns the first argument with nunber seconds added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:
addsecond (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addSecond
TI MESTAMP, | NT

167

External functions (UDFs)

RETURNS TI MESTAMP
ENTRY_PO NT ' addSecond’ MODULE_NAME ' f budf’

addWeek

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber weeks added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:
addweek (atinestanp, nunber)
Declaration:
DECLARE EXTERNAL FUNCTI ON addWeek
TI MESTAVP, | NT
RETURNS TI MESTAMP
ENTRY_PO NT ' addWeek' MODULE NAME ' f budf'

The DATEADD alternative: The internal function DATEADD, which can replace all the other
add<Dat eTi mePar t > functions, doesn't support WEEK yet. Thiswill be realised in Firebird 2.5. Meanwhile,
you can use DATEADD(7*nunber DAY TO at i nest anp) —or stick with addveek.

addYear

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber years added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addyear (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addYear

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addYear' MODULE_NAME ' f budf'

168

External functions (UDFs)

ascii _char

Library: ib_udf
Changedin: 1.0, 2.0
Better alternative: Internal function ASCII_CHAR()
Description: Returnsthe ASCII character corresponding to the integer value passed in.
Result type: VARCHAR(1)
Syntax (unchanged):
ascii_char (intval)
Declaration:

DECLARE EXTERNAL FUNCTI ON ascii _char
| NTEGER NULL
RETURNS CSTRING(1) FREE_IT
ENTRY_PO NT ' I B_UDF_ascii_char' MODULE_NAME 'ib_udf'

The declaration reflects the fact that the UDF as such returns a 1-character C string, not an SQL
CHAR(1) as stated in the InterBase declaration. The engine will pass the result to the caller as a
VARCHAR(2) though.

TheNULL after INTEGER isan optional addition that becameavailablein Firebird 2. When declared
withtheNULL keyword, theenginewill passaNULL argument unchanged to the function. Thiscauses
aNULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULL is passed to the function as 0 and the result is an empty string.
For more information about passing NULLS to UDFs, see the note at the end of this book.

Notes:

* ascii_char(0) returnsan empty stringin al versions, not a character with ASCII value O.

» Before Firehird 2.0, the result type was CHAR().

asci i _val

Library: ib_udf
Added in: IB

Better alternative: Internal function ASCII_VAL()

169

External functions (UDFs)

Description: Returns the ASCII code of the character passed in.
Result type: INTEGER
Syntax:
ascii_val (ch)
Declaration:
DECLARE EXTERNAL FUNCTI ON ascii _val
CHAR(1)

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_ascii_val' MODULE_NAVE 'ib_udf'

Caution

Because CHAR fields are padded with spaces, an empty string argument will be seen as a space, and yield a
result of 32. Theinternal function Ascii_VAL returns 0 in this case.

asi n

Library: ib_udf
Added in: IB
Better alternative: Internal function ASIN()
Description: Returnsthe arc sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

asin (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON asin

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_asin' MODULE_NAME ' i b_udf’

at an

Library: ib_udf

Added in: IB

170

External functions (UDFs)

Better alternative: Internal function ATAN()
Description: Returns the arc tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:

atan (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON at an
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_atan' MODULE_NAME 'ib_udf"

at an2

Library: ib_udf
Addedin: IB
Better alternative: Internal function ATAN2()

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.

Result type: DOUBLE PRECISION
Syntax:

atan2 (numl, nunR)
Declaration:

DECLARE EXTERNAL FUNCTI ON at an2
DOUBLE PRECI SI ON, DOUBLE PRECI S| ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_atan2' MODULE NAME 'ib_udf'

bi n_and

Library: ib_udf

Added in: IB

171

External functions (UDFs)

Better alternative: Internal function BIN_AND()
Description: Returns the bitwise AND result of the arguments.
Result type: INTEGER
Syntax:
bi n_and (nunt, nun®)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_and
| NTEGER, | NTEGER
RETURNS | NTEGER BY VALUE
ENTRY_POI NT ' | B_UDF_bi n_and’ MODULE_NAME 'ib_udf"

bi n_or
Library: ib_udf
Added in: IB
Better alternative: Internal function BIN_OR()
Description: Returns the bitwise OR result of the arguments.
Result type: INTEGER
Syntax:
bi n_or (nunml, nunp)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_or
| NTEGER, | NTEGER
RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_bin_or' MODULE_NAME 'ib_udf’

bl n_xor

Library: ib_udf
Added in: IB

Better alternative: Internal function BIN_XOR()

172

External functions (UDFs)

Description: Returns the bitwise XOR result of the arguments.
Result type: INTEGER
Syntax:
bi n_xor (nunl, nung)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_xor
| NTEGER, | NTEGER
RETURNS | NTEGER BY VALUE
ENTRY_POI NT ' | B_UDF_bi n_xor' MODULE_NAME 'ib_udf'

ceiling

Library: ib_udf
Added in: IB
Better alternative: Internal function CEIL() / CEILING()
Description: Returns the smallest whole number that is greater than or equal to the argument.
Result type: DOUBLE PRECISION
Syntax:

ceiling (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON cei | i ng
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_ceiling' MODULE_NAME 'ib_udf'

COS
Library: ib_udf
Added in: IB

Better alternative: Internal function COS()

Description: Returns an angle's cosine. The argument must be given in radians.

173

External functions (UDFs)

Result type: DOUBLE PRECISION
Syntax:

cos (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON cos
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_cos' MODULE_NAME 'ib_udf"

cosh

Library: ib_udf
Addedin: IB
Better alternative: Internal function COSH()
Description: Returns the hyperbolic cosine of the argument.
Result type: DOUBLE PRECISION
Syntax:
cosh (number)
Declaration:

DECLARE EXTERNAL FUNCTI ON cosh
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_cosh' MODULE_NAME 'ib_udf'

cot

Library: ib_udf

Added in: IB

Better alternative: Internal function COTY()

Description: Returns an angle's cotangent. The argument must be given in radians.

Result type: DOUBLE PRECISION

174

External functions (UDFs)

Syntax:
cot (angle)
Declaration:
DECLARE EXTERNAL FUNCTI ON cot
DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_cot' MODULE_NAME 'ib_udf"

dow

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the day of the week from atimestamp argument. The returned name may be localized.
Result type: VARCHAR(15)
Syntax:
dow (ati mest anp)
Declaration:
DECLARE EXTERNAL FUNCTI ON dow
TI MESTAWP,
VARCHAR(15) RETURNS PARAMETER 2

ENTRY_PO NT ' DOW MODULE_NAME ' f budf'

See also: sdow

dpower

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function POWER()
Description: Returns x to the y'th power.
Result type: DOUBLE PRECISION

Syntax:

dpower (x, y)

175

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON dPower
DOUBLE PRECI SI ON BY DESCRI PTOR, DOQUBLE PRECI SI ON BY DESCRI PTOR,
DOUBLE PRECI SI ON BY DESCRI PTOR

RETURNS PARAMETER 3
ENTRY_PO NT ' power' MODULE NAME ' f budf'’

fl oor

Library: ib_udf
Addedin: IB
Better alternative: Internal function FLOOR()
Description: Returns the largest whole number that is smaller than or equal to the argument.
Result type: DOUBLE PRECISION
Syntax:

fl oor (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON f | oor

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_fl oor' MODULE_NAME 'ib_udf’

get Exact Ti nest anp

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative; CURRENT _TI MESTAMP or ' NOW

Description: Returns the system time with milliseconds precision. This function was added because in pre-2.0
versions, CURRENT _TI MESTAMP always had . 0000 in the fractional part of the second. In Firebird 2.0 and up
it is better to use CURRENT _TI MESTAMP, which now also defaults to milliseconds precision. To measure time
intervalsin PSQL modules, use' NOW .

Result type: TIMESTAMP
Syntax:

get exactti mest anp()

176

External functions (UDFs)

Declaration:

DECLARE EXTERNAL FUNCTI ON get Exact Ti mest anp
TI MESTAMP RETURNS PARAMETER 1
ENTRY_PO NT ' get Exact Ti mest anp’ MODULE_NAME ' f budf"'

| 64r ound
Seer ound.
| 64t runcat e
Seetruncate.
| n
Library: ib_udf
Added in: IB

Better alternative: Internal function LN()
Description: Returns the natural logarithm of the argument.
Result type: DOUBLE PRECISION
Syntax:
I n (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON | n
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' I B_UDF_I n' MODULE_NAME 'ib_udf"

| og

Library: ib_udf

177

External functions (UDFs)

Addedin: IB
Changedin: 1.5
Better alternative: Internal function LOG()

Description: In Firebird 1.5 and up, | og(x, y) returns the the base-x logarithm of y. In Firebird 1.0.x and
InterBase, it erroneously returns the base-y logarithm of x.

Result type: DOUBLE PRECISION
Syntax (unchanged):

log (x, y)
Declaration (unchanged):

DECLARE EXTERNAL FUNCTI ON | og
DOUBLE PRECI SI ON, DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' I B_UDF_| 0og' MODULE_NAME 'ib_udf'

Warning

If any of your pre-1.5 databases use | og, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get

wrong results.
| 0g10
Library: ib_udf
Added in: IB

Better alternative: Internal function LOG10()
Description: Returns the 10-based logarithm of the argument.
Result type: DOUBLE PRECISION
Syntax:
 0g10 (number)
Declaration:

DECLARE EXTERNAL FUNCTI ON | 0g10
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_| 0g10' MODULE_NAME 'ib_udf"

178

External functions (UDFs)

| ower

Library: ib_udf

Added in: IB

Changedin: 2.0

Better alternative: Internal function LOWER()

Description: Returns the lower-case version of the input string. Please notice that only ASCII characters are
handled correctly. If possible, use the superior internal function LOWER instead. Just dropping the declaration
of thel ower UDF should do the trick, unless you gave it an alternative name.

Result type: VARCHAR(n)
Syntax:
"LONER' (str)
Declaration:
DECLARE EXTERNAL FUNCTI ON " LOVER'
CSTRI NG 255) NULL
RETURNS CSTRI NG 255) FREE IT
ENTRY_PO NT ' | B_UDF_| ower' MODULE NAME 'ib_udf'

The above declaration is from the file i b_udf 2. sgl . “LOWER” has been surrounded by dou-
ble-quotes to avoid confusion with the internal function LOWER.

The NULL after CSTRING(255) is an optional addition that became available in Firebird 2. When
declared with the NULL keyword, the engine will pass a NULL argument unchanged to the function.
Thisleadsto aNULL result, whichis correct. Without the NULL keyword (your only optionin pre-2.0
versions), NULL is passed to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

| pad

Library: ib_udf

179

External functions (UDFs)

Addedin: 1.5
Changedin: 1.5.2, 2.0
Better alternative: Internal function LPAD()
Description: Returns the input string left-padded with padchar s until endl engt h isreached.
Result type: VARCHAR(n)
Syntax:
| pad (str, endlength, padchar)
Declaration:
DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG 255) NULL, | NTEGER, CSTRING(1) NULL
RETURNS CSTRI NG 255) FREE IT
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

The above declaration is from the file i b_udf 2. sgl . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the enginewill passaNULL argument value unchanged to thefunction. Thisleadsto aNULL
result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULLS
are passed to the function as empty strings and the result isa string with endl engh padchars (if st r

iSNULL) or acopy of st r itsdlf (if padchar isNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

* When calling this function, make sure endl engt h does not exceed the declared result length.

* If endl engt h islessthan st r'slength, str is truncated to endl engt h. If endl engt h is negative, the
result isNULL.

* A NULL endl engt h istreated as if it were Q.

» |f padchar isempty, or if padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r is returned unchanged (or truncated to endl engt h).

» Before Firebird 2.0, the result type was CHAR(n).
» A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

[trim

Library: ib_udf

180

External functions (UDFs)

Changedin: 1.5,1.5.2, 2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any leading space characters removed. In new code, you are advised
to use the internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(n)
Syntax (unchanged):
[trim(str)
Declaration:
DECLARE EXTERNAL FUNCTION Itrim
CSTRI NG 255) NULL
RETURNS CSTRI NG 255) FREE_IT
ENTRY_POI NT ' I B_UDF_Itrim MODULE_NAME 'ib_udf"

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL resullt,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

» InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

nod

Library: ib_udf

Added in: IB

Better alternative: Internal function MOD()

Description: Returns the remainder of an integer division.
Result type: DOUBLE PRECISION

Syntax:

mod (a, b)

181

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON nod
| NTEGER, | NTEGER

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_mod' MODULE_NAME 'ib_udf"

*nul i f

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function NULLIF()

Description: Thefour *nul I'i f functions—for integers, bigints, doubles and strings, respectively — each return
the first argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Result type: Varies, see declarations.
Syntax:
inullif (int1, int2)
i 64nul l'if (bigintl, bigint2)
dnul I'i f (doubl el, doubl e2)
snul lif (stringl, string2)

Asfrom Firebird 1.5, use of the internal function NULLIF is preferred.

Warnings

e Thesefunctionsreturn NULL when the second argument isNULL, eveniif thefirst argument isaproper value.
Thisisawrong result. The NULLIF internal function doesn't have this bug.

e i64nullif anddnullif will return wrong and/or bizarre resultsif it is not 100% clear to the engine that
each argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTION inullif
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "iNullIf" MODULE NAME ' fbudf’

DECLARE EXTERNAL FUNCTI ON i 64nul |if
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS NUMERI C(18, 4) BY DESCRI PTOR
ENTRY_PO NT "iNul | If* MODULE NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON dnul | i f
DOUBLE PRECI SI ON BY DESCRI PTOR, DQUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT " dNul ['1f' MODULE_NAME ' f budf'

182

External functions (UDFs)

DECLARE EXTERNAL FUNCTI ON snul i f
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT "sNul ['1f' MODULE_NAME ' f budf'’

*nvi

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function COALESCE()

Description: Thefour nvl functions—for integers, bigints, doubles and strings, respectively —are NULL replac-
ers. They each return the first argument's value if it is not NULL. If the first argument is NULL, the value of the
second argument is returned.

Result type: Varies, see declarations.
Syntax:
i nvl (intl, int2)
i 64nvl (bigintl, bigint2)
dnvl (doubl el, doubl e2)

snvl (stringl, string2)

Asfrom Firebird 1.5, use of the internal function COALESCE is preferred.

Warning

i 64nvl and dnvl will return wrong and/or bizarre results if it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTI ON i nvl
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT "idNvl' MODULE NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64nvl
NUVERI C(18, 0) BY DESCRI PTOR, NUMERI C(18, 0) BY DESCRI PTOR
RETURNS NUMERI C(18, 0) BY DESCRI PTOR
ENTRY_POINT 'idNvl' MODULE_NAME ' f budf’

DECLARE EXTERNAL FUNCTI ON dnvl
DOUBLE PRECI SI ON BY DESCRI PTOR, DCQUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT 'idNvl' MODULE_NAME ' f budf'

183

External functions (UDFs)

DECLARE EXTERNAL FUNCTI ON snvl
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'sNvl' MODULE_NAME ' f budf'

Library: ib_udf
Added in: IB
Better alternative: Internal function PI()
Description: Returns an approximation of the value of #.
Result type: DOUBLE PRECISION
Syntax:
pi- ()
Declaration:
DECLARE EXTERNAL FUNCTI ON pi

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' I B_UDF_pi' MODULE_NAME 'ib_udf'

r and

Library: ib_udf
Changedin: 2.0
Better alternative: Internal function RAND()

Description: Returns a pseudo-random number. Before Firebird 2.0, this function would first seed the random
number generator with the current time in seconds. Multipler and() callswithin the same second would there-
fore return the same value. If you want that old behaviour in Firebird 2 and up, use sr and() .

Result type: DOUBLE PRECISION
Syntax:
rand ()
Declaration:
DECLARE EXTERNAL FUNCTI ON rand

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' I B_UDF_rand' MODULE_NAME 'ib_udf'

184

External functions (UDFs)

right

Seesright.

round, i 64r ound

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Changedin: 1.5,2.1.3

Better alternative: Internal function ROUND()

Description: These functionsreturn thewhole number that isnearest to their (scaled numeric/decimal) argument.
They do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18,4)

Syntax:

round (nunber)
i 64round (bi gnunber)

Caution

Halves are always rounded upward, i.e. away from zero for positive numbers and toward zero for negative
numbers. For instance, 3. 5 isrounded to 4, but - 3. 5 isrounded to - 3. Theinternal function ROUND, available
since Firebird 2.1, rounds al halves away from zero.

Bug alert
Inversions 2.1, 2.1.1 and 2.1.2, these functions are broken for negative numbers;

* Anything between 0 and -0.6 (that's right: -0.6, not -0.5) is rounded to O.
e Anything between -0.6 and -1 is rounded to +1 (plus 1).

e Anything between -1 and -1.6 is rounded to -1.

e Anything between -1.6 and -2 is rounded to -2.

» Etcetera

Fixedin 2.1.3.

Declarations:

In Firebird 1.0.x, the entry point for both functionsisr ound:

DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'round’ MODULE NAME ' f budf'

185

External functions (UDFs)

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round" MODULE_NAME ' f budf'

In Firebird 1.5, the entry point has been renamed to f br ound:

DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' f bround’ MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18,4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' f bround’" MODULE_NAME ' f budf"’

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing * r ound and
*t r uncat e declarations and declare them anew, using the updated entry point names. From Firebird
2.0 onward you can aso perform this update with ALTER EXTERNAL FUNCTION.

r pad

Library: ib_udf
Added in: 1.5
Changedin: 1.5.2, 2.0
Better alternative: Internal function RPAD()
Description: Returns the input string right-padded with padchar s until endl engt h is reached.
Result type: VARCHAR(n)
Syntax:
rpad (str, endlength, padchar)
Declaration:
DECLARE EXTERNAL FUNCTI ON rpad
CSTRI NG 255) NULL, | NTEGER, CSTRI NG(1) NULL
RETURNS CSTRI NG 255) FREE_IT

ENTRY_POI NT ' I B_UDF_rpad'" MODULE_NAME 'ib_udf'

The above declaration is from the file i b_udf 2. sgl . The NUL L s after the CSTRING arguments
arean optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the enginewill passaNULL argument value unchanged to thefunction. Thisleadsto aNULL
result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULLS
are passed to the function as empty strings and the result isa string with endl engh padchars (if st r

iSNULL) or acopy of st r itsdlf (if padchar iSNULL).

186

External functions (UDFs)

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» When calling this function, make sure endl engt h does not exceed the declared result length.

» If endl engt h islessthan st r's length, str is truncated to endl engt h. If endl engt h is negative, the
result isNULL.

* A NULL endl engt h istreated asif it were 0.

* If padchar isempty, or if padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r isreturned unchanged (or truncated to endl engt h).

» Before Firebird 2.0, the result type was CHAR(n).
* A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

rtrim

Library: ib_udf
Changedin: 1.5,1.5.2,2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any trailing space characters removed. In new code, you are advised
to usethe internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(n)
Syntax (unchanged):

rtrim(str)
Declaration:

DECLARE EXTERNAL FUNCTION rtrim
CSTRI NG(255) NULL
RETURNS CSTRI NG(255) FREE | T
ENTRY_POINT ' IB_UDF_rtrim MODULE_NAME 'ib_udf"

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leadsto a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

187

External functions (UDFs)

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

* Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

sdow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Result type: VARCHAR(5)
Syntax:
sdow (ati mest anp)
Declaration:
DECLARE EXTERNAL FUNCTI ON sdow
Tl MESTAMP,
VARCHAR(5) RETURNS PARAMETER 2
ENTRY_ PO NT ' SDOW MODULE NAME ' f budf'

See also: dow

Si gn
Library: ib_udf
Added in: IB
Better alternative: Internal function SIGN()
Description: Returns the sign of the argument: -1, O or 1.

Result type: INTEGER

188

External functions (UDFs)

Syntax:
sign (nunber)
Declaration:
DECLARE EXTERNAL FUNCTI ON sign
DOUBLE PRECI SI ON

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_si gn' MODULE_NAME ' i b_udf’

sin

Library: ib_udf
Addedin: IB
Better alternative: Internal function SIN()
Description: Returns an angle's sine. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

sin (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON sin

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' I B_UDF_sin' MODULE_NAME 'ib_udf'

Si nh
Library: ib_udf
Added in: IB
Better alternative: Internal function SINH()
Description: Returns the hyperbolic sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

si nh (‘nunber)

189

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON si nh
DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_si nh' MODULE_NAME 'ib_udf'

sgrt

Library: ib_udf
Added in: IB
Better alternative: Internal function SQRT()
Description: Returns the sgquare root of the argument.
Result type: DOUBLE PRECISION
Syntax:

sqrt (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON sqgrt

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_sqrt' MODULE_NAME 'ib_udf’

sr and

Library: ib_udf
Added in: 2.0

Description: Seeds the random number generator with the current time in seconds and then returns the first
number. Multiplesr and() callswithinthe same second will returnthe samevalue. Thisisexactly how r and()
behaved before Firebird 2.0.

Result type: DOUBLE PRECISION
Syntax:
srand ()
Declaration:
DECLARE EXTERNAL FUNCTI ON srand

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' I B_UDF_srand' MODULE_NAME 'ib_udf'

190

External functions (UDFs)

sright

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function RIGHT()

Description: Returns the rightmost nunthar s characters of the input string. Only works with 1-byte character
sets.

Result type: VARCHAR(100)
Syntax:

sright (str, nunchars)
Declaration:

DECLARE EXTERNAL FUNCTI ON sri ght
VARCHAR(100) BY DESCRI PTOR, SMALLI NT,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'right' MODULE NAME ' f budf'’

string2bl ob

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function CAST()
Description: Returns the input string as a BLOB.
Result type: BLOB
Syntax:
string2bl ob (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON string2bl ob
VARCHAR(300) BY DESCRI PTOR,
BLOB RETURNS PARAMETER 2
ENTRY_PO NT ' string2bl ob' MODULE_NAME ' f budf'

191

External functions (UDFs)

strl en

Library: ib_udf
Added in: IB
Better alternatives: Internal functions BIT_LENGTH(), CHAR[ACTER]_LENGTH and OCTET_LENGTHY()
Description: Returns the length of the argument string.
Result type: INTEGER
Syntax:

strlen (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON strlen

CSTRI N§ 32767)

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_strlen' MODULE_NAME 'ib_udf’

substr

Library: ib_udf
Changedin: 1.0,1.5.2, 2.0

Description: Returnsastring's substring fromst ar t pos toendpos, inclusively. Positionsare 1-based. If end-
pos ispast theend of the string, subst r returnsal the charactersfrom st ar t pos to the end of the string. This
function only works correctly with single-byte characters.

Result type: VARCHAR(n)
Syntax (unchanged):
substr (str, startpos, endpos)
Declaration:
DECLARE EXTERNAL FUNCTI ON substr
CSTRI NG 255) NULL, SMALLINT, SMALLI NT
RETURNS CSTRI NG 255) FREE IT
ENTRY_PO NT ' | B_UDF_substr' MODULE_NAME 'ib_udf’

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,

192

External functions (UDFs)

the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* IninterBase, subst r returned NULL if endpos lay past the end of the string.

Tip

Although the function arguments are dightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility and multi-byte character set support.

substrl en

Library: ib_udf

Addedin: 1.0

Changedin: 1.5.2, 2.0

Better alternative: Internal function SUBSTRING()

Description: Returns the substring starting at st ar t pos and having | engt h characters (or less, if the end of
the string is reached first). Positions are 1-based. If either st art pos or | engt h is smaller than 1, an empty
string is returned. This function only works correctly with single-byte characters.

Result type: VARCHAR(n)

Syntax:

substrlen (str, startpos, I|ength)
Declaration:

DECLARE EXTERNAL FUNCTI ON substrlen
CSTRI NG 255) NULL, SMALLINT, SMALLI NT
RETURNS CSTRI NG(255) FREE_IT
ENTRY_PO NT ' 1B _UDF_substrlen' MODULE NAME 'ib_udf'

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,

193

External functions (UDFs)

which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

Tip

Firebird 1.0 has also implemented the internal SQL function SUBSTRING, effectively rendering substr 1 en
obsolete in the same version in which it was introduced. SUBSTRING also supports multi-byte character sets.
In new code, use SUBSTRING.

tan

Library: ib_udf
Added in: IB
Better alternative: Internal function TAN()
Description: Returns an angle's tangent. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

tan (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON tan

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_tan' MODULE_NAME 'ib_udf"

t anh

Library: ib_udf

Added in: IB

194

External functions (UDFs)

Better alternative: Internal function TANH()
Description: Returns the hyperbolic tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:

tanh (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON t anh

DOUBLE PREC! SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_t anh' MODULE_NAME 'ib_udf'

truncate, i 64truncate

Library: foudf

Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5,2.1.3

Better alternative: Internal function TRUNC()

Description: These functionsreturn thewhole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18)
Syntax:

truncate (nunber)
i 64truncate (bignunber)

Caution

Both functions round to the nearest whole number that islower than or equal to the argument. This means that
negative numbers are also “truncated” downward. For instance, t r uncat e(- 2. 37) returns - 3. The internal
function TRUNC, available since Firebird 2.1, always truncates toward zero.

Bug alert

Contrary to what's mentioned above, in versions 2.1, 2.1.1 and 2.1.2 anything between -1 and 0 is truncated to
0. This anomaly has been corrected in Firebird 2.1.3 and above.

Declarations:

In Firebird 1.0.x, the entry point for both functionsist r uncat e:

195

External functions (UDFs)

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Truncate
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' fbudf'

In Firebird 1.5, the entry point has been renamed to f bt r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncat e
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'fbtruncate' MODULE NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Truncate
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE_NAME ' f budf’

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound and
*t r uncat e declarations and declare them anew, using the updated entry point names. From Firebird
2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

196

Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer trandliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets — such as SIS (Japanese) and WIN1251 (Russian) — even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “asis’ and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese data
columns using either parameterized queries or literal strings without introducer syntax would fail with tranglit-
eration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
aretill stored “asis’ but what is stored is an exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no transliteration
error. When the connection character set isNONE, no attempt is made in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw atrandliteration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sql subt ype field in the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still required when handling heteroge-
neous character sets from a client context that is anything other than NONE. Both methods are shown below,
using character set 1S08859_1 as an example target. Notice the “_" prefix in the introducer syntax.

Introducer syntax:
_1SCB859 1 nystring

Casting:
CAST (nystring AS VARCHAR(n) CHARACTER SET | SC8859 1)

197

Notes

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides alimited explicit pessimistic locking capability for cautious use in conditions where the
affected row setis:

a. extremely small (idedly, asingleton), and

b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. Thisis an expert feature, intended for use by those who thor-
oughly understand its consequences. Knowledge of the various levels of transaction isolation is essential. WITH
LOCK isavailablein DSQL and PSQL, and only for top-level, single-table SELECTSs. As stated in the reference
part of this guide, WITH LOCK is not available:

* inasubquery specification;

» for joined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
e withaview;

» with the output of a selectable stored procedure;

* with an externa table.

Syntax and behaviour

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]

[WTH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

Asthe engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardiess of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

198

Notes

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and areig-
nored.

isc_tpb_concurrency If arecord is modified by any transaction that was committed since the trans-

_ _ action attempting to get explicit lock started, or an active transaction has per-

+isc_tpb_nowait formed a modification of this record, an update conflict exception israised im-
mediately.

isc_tpb_concurrency If the record is modified by any transaction that has committed since the transac-

_ _ tion attempting to get explicit lock started, an update conflict exception is raised
+isc_tpb_wait immediately.

If an active transaction is holding ownership on this record (viaexplicit locking
or by anormal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This meansthat, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read committed | If thereis an active transaction holding ownership on this record (via explicit

locking or normal update), an update conflict exception is raised immediately.
+isc_tpb_nowait

isc_tpb_read committed | If thereis an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the ex-
+isc_tpb_wait plicit lock waits for the outcome of blocking transation and when it finishes, at-
temptsto get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement triesto accessarecord that islocked by another transaction, it either raisesan update
conflict exception or waits for the locking transaction to finish, depending on TPB mode. Engine behaviour here
isthe same asif this record had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, viajoins, subqueries, etc. It also guaranteesthat rows not meeting the search conditionswill not belocked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, paralel transactions commit their changes during the course of the locking
statement's execution.

199

Notes

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches’). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

The optional “OF <col um- nanes>" sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<col um- nanes>" subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. Thiswould
enableyou to processthe currently-locked row before the next isfetched and locked, or to handle errorswithout
rolling back your transaction.

Caveats using WITH LOCK

Rolling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

Most applications do not need explicit locks at al. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to arelational database in aclustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

Explicit locking is an advanced feature; do not misuseit! While solutions for these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking

Simple:
SELECT * FROM DOCUMENT WHERE | D=? W TH LOCK
Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT VWHERE PARENT_I D=7
FOR UPDATE W TH LOCK

200

Notes

A note on CSTRING parameters

External functionsinvolving strings often use the type CSTRING(n) in their declarations. Thistype represents a
zero-terminated string of maximum length n. Most of the functions handling CSTRINGs are programmed in such
away that they can accept and return zero-terminated strings of any length. So why the n? Because the Firebird
engine has to set up space to process the input an output parameters, and convert them to and from SQL data
types. Most strings used in databases are only dozens to hundreds of byteslong; it would be awaste to reserve
32 KB of memory each time such a string is processed. Therefore, the standard declarations of most CSTRING
functions—asfound in thefilei b_udf . sql — specify alength of 255 bytes. (In Firebird 1.5.1 and below, this
default length is 80 bytes.) As an example, here's the SQL declaration of | pad:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255), | NTEGER, CSTRI NG&(1)
RETURNS CSTRI NG(255) FREE | T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or causeit to return astring longer than the declared output length. But the standard declarations are
just reasonabl e defaults; they're not cast in concrete, and you can change them if you want to. If you haveto | eft-
pad strings of up to 500 byteslong, then it's perfectly OK to change both 255'sin the declaration to 500 or more.

A specia caseiswhen you usually operate on short strings (say lessthen 100 bytes) but occasionally haveto call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that all the callswill be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that mgjority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(100), | NTEGER, CSTRI NG 1)
RETURNS CSTRI NG(100) FREE I T
ENTRY_POI NT ' | B_UDF_| pad' MODULE NAME 'ib_udf';

DECLARE EXTERNAL FUNCTI ON | padbi g
CSTRI NG(32000), | NTEGER CSTRI NG 1)
RETURNS CSTRI NG(32000) FREE | T
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME ' i b_udf';

Now you can call | pad() for al the small stringsand | padbi g() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

201

Notes

Passing NULL to UDFs in Firebird 2

If apre-2.0 Firebird engine must pass an SQL NULL argument to a user-defined function, it always converts it
to azero-equivalent, e.g. anumerical 0 or an empty string. The only exception to this rule are UDFs that make
use of the “BY DESCRIPTOR” mechanism introduced in Firebird 1. Thef budf library uses descriptors, but the
vast mgjority of UDFs, including thosein Firebird'sstandardi b_udf library, till usethe old style of parameter
passing, inherited from InterBase.

As a conseguence, most UDFs can't tell the difference between NULL and zero input.

Firebird 2 comes with a somewhat improved calling mechanism for these old-style UDFs. The engine will now
pass NULL input as anull pointer to the function, if the function has been declared to the database with a NULL
keyword after the argument(s) in question, e.g. likethis:

declare external function Itrim
cstring(255) null
returns cstring(255) free it
entry point "IB UDF Itrim nodul e nane 'ib_udf';

This requirement ensures that existing databases and their applications can continue to function like before.
Leave out the NULL keyword and the function will behave like it did under Firebird 1.5 and earlier.

Please note that you can't just add NULL keywordsto your declarations and then expect every function to handle
NULL input correctly. Each function has to be (re)written in such a way that NULLS are dealt with correctly.
Alwayslook at the declarations provided by the function implementor. For the functionsin thei b_udf library,
consult i b_udf 2. sql in the Firebird UDF directory. Notice the 2 in the file name; the old-style declarations
areini b_udf. sql .

These arethei b_udf functions that have been updated to recognise NULL input and handle it properly:

e ascii_char

e | ower

e | padandrpad

e [trimandrtrim

e substr andsubstrl en

Mosti b_udf functionsremain asthey were; in any case, passing NULL to an old-style UDF is never possible
if the argument isn't of areferenced type.

On aside note: don't usel ower, . tri mand subst r* in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

“Upgrading” i b_udf functions in an existing database

If you are using an existing database with one or more of the functions listed above under Firebird 2, and you
want to benefit from theimproved NULL handling, runthescripti b_udf _upgr ade. sql against your database.
Itislocated inthe Firebird mi sc\ upgr ade\i b_udf directory.

202

Notes

Maximum number of indices
In different Firebird versions

Between Firebird 1.0 and 2.0 there have been quite a few changes to the maximum number of indices per
database table. The table below sums them al up.

Table A.2. Max. indices per tablein Firebird 1.0-2.0

Page Firebird version(s)
Size

1.0,1.0.2 1.03 1.5.x 2.0

lcol | 2cols| 3cols| 1col | 2cols | 3cols| 1col | 2cols| 3cols| 1col | 2cols| 3cols

1024 62 50 41 62 50 41 62 50 41 50 35 27

2048 65 65 65 126 101 84 126 101 84 101 72 56

4096 65 65 65 254 203 169 254 | 203 169 203 145 113

8192 65 65 65 510 408 340 257 257 257 408 291 227

16384 | 65 65 65 1022 | 818 681 257 257 257 818 584 454

203

Appendix B:
Document History

The exact file history isrecorded inthe manual modulein our CV Stree; see http://sourceforge.net/cvs/2group
id=9028

Revision History

0.9 10 Jul 2009 PV First publication, based on the Firebird 2.0 Language Reference Up-
date with almost all the changes for 2.1 added (roughly adding 50% to
the size).

1.0 9 Dec 2010 PV GLOBAL: Renamed all “Deprecated in” section headers to “ Better al-

ternative”. This also required editing the text immediately following the
header and in some cases additional text in the section (if the “depreca-
tion” was discussed in the section body).

Bookinfo: Added 2.1.4 to covered versions.

Introduction :: Subject matter: Added “ Aggregate functions’ to first
list.

Introduction :: Versions covered: Added 2.1.4.

Introduction :: Authorship: Edited first paragraph. Added Frank Inger-
mann and Vlad Khorsun to contributor list.

Introduction: Removed sections Compl eteness and Miscellaneous
notes.

Data types and subtypes :: BLOB data type :: Text BLOB compatibili-
ty with VARCHAR: Replaced this subsection, which was incorrect, with
Text BLOB support in functions and operators.

Data types and subtypes :: BLOB data type :: Various enhancements:
Added information on bi nar y mnemonic (new in 2.0) + extra exam-
ple.

Data types and subtypes :: New collations :: A note on the UTF8 colla-
tions: Added information on UNICODE_ClI.

DDL statements:: COLLATION :: DROP COLLATION: Edited Descrip-
tion.

DDL statements :: DATABASE :: CREATE DATABASE: Moved Syntax
one level up and added DIFFERENCE FILE clause. Added new subsec-
tion DIFFERENCE FILE parameter.

DDL statements:: DATABASE :: ALTER DATABASE: Merged difference
file clauses onto one line in Syntax.

DDL statements:: DOMAIN :: ALTER DOMAIN: Added Warning about
changing domains referred in PSQL code.

DDL statements:: FILTER :: DECLARE FILTER: Edited Description.
Added user _def i ned to Syntax. Added more info under Syntax
block and made it an itemizedlist. Converted Tip to formalpara Us-
er-defined mnemonics.

DDL statements :: PROCEDURE :: CREATE PROCEDURE: Added NOT
NULL to syntax block; added comment about character sets to syntax
block.

204

http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028

Document History

DDL statements :: PROCEDURE :: CREATE PROCEDURE :: Domains
instead of datatypes: Renamed to Domains supported in parameter and
variable declarations. Added Warning about changing domain defini-
tions.

DDL statements :: PROCEDURE :: CREATE PROCEDURE: Added sub-
section NOT NULL in variable and parameter declarations.

DDL statements :: PROCEDURE :: ALTER PROCEDURE :: Domainsin-
stead of datatypes: Renamed to Domains supported in parameter and
variable declarations.

DDL statements :: PROCEDURE :: ALTER PROCEDURE: Added subsec-
tion NOT NULL in variable and parameter declarations.

DDL statements :: TABLE :: CREATE TABLE :: GENERATED ALWAYS
AS Added Note about it not being supported in index definitions.

DDL statements :: TABLE :: CREATE TABLE: Added subsection FOR-
EIGN KEY without target column references PK.

DDL statements :: TABLE :: ALTER TABLE: Added subsection FOREIGN
KEY without target column references PK.

DDL statements :: TABLE :: ALTER TABLE: Added subsection GENER-
ATED ALWAYSAS.

DDL statements :: TRIGGER :: CREATE TRIGGER: Added subsection
NOT NULL in variable declarations.

DDL statements :: TRIGGER :: ALTER TRIGGER: Added subsection
NOT NULL in variable declarations.

DDL statements:: VIEW :: CREATE VIEW :: Full SELECT syntax sup-
ported: Mentioned that in Fb 2.5 the column list becomes optional also
for union views.

DDL statements:: VIEW :: CREATE VIEW :: PLAN subclause disallowed
in 1.5: Changed title to PLAN subclause disallowed in 1.5, reallowed in
2.0.

DML statements :: DELETE: Corrected formal syntax (col umrms ->

val ues). Corrected syntax note about WHERE CURRENT OF.

DML statements :: DELETE: Added subsection COLLATE subclause for
text BLOB columns.

DML statements :: DELETE: Added subsection Relation alias makes re-
al name unavailable.

DML statements :: DELETE :: RETURNING: Improved Description.
DML statements :: EXECUTE BLOCK: Added NOT NULL support for in/
out/local PSQL vars (added “Changed in” formalpara, updated syntax
block, added subsection).

DML statements :: INSERT: Corrected formal syntax (col umrm_l i st ->
val ue_l i st).

DML statements :: INSERT :: RETURNING: Improved Description.
DML statements :: MERGE: Mentioned CTE in description and created
links.

DML statements :: SELECT :: Common Table Expressions. Edited De-
scription, Syntax and Notes.

DML statements :: SELECT :: Table alias must be used if present: Re-
named to Relation alias makes real name unavailable and moved to be-
fore ROWS subsection. Also changed Description and paragraph before
last example.

DML statements :: UPDATE: Corrected formal syntax (col umms ->

val ues). Corrected syntax note about WHERE CURRENT OF.

205

Document History

DML statements :: UPDATE: Added subsection COLLATE subclause for
text BLOB columns.

DML statements :: UPDATE: Added subsection Relation alias makes
real name unavailable.

DML statements :: UPDATE :: RETURNING: Improved Description.
DML statements :: UPDATE OR INSERT: Corrected formal syntax

(col umms ->val ues). Edited first two subitems of second Note.
PSQL statements :: DECLARE: Added NOT NULL to Syntax. Added
Syntax note about including a character set.

PSQL statements :: DECLARE :: DECLARE ... CURSOR: Edited first
Note and placed it last. Added a subsequent note about the effects of
variable changes during loop execution.

PSQL statements :: DECLARE :: DECLARE with DOMAIN instead of
datatype: Added Warning about changing domain definitions.

PSQL statements :: DECLARE: Added subsection NOT NULL in variable
declaration.

PSQL statements :: FOR SELECT ... INTO ... DO: Edited Syntax note and
added a second note about the effects of variable changes during loop
execution.

Context variables :: CURRENT_CONNECTI ON: Improved Description.
Context variables :: CURRENT _TI ME: Edited description. Removed
Note and added Notes formalpara.

Context variables :: CURRENT_TI MESTAMP: Edited description. Re-
moved Note and added Notes formalpara.

Context variables :: CURRENT_TRANSACTI ON: Improved Description.
Context variables:: ' NOW : Removed Note and added Notes formal-
para.

Operators and predicates :: || (string concatenator): New subsections
Text BLOB concatenation and Result type VARCHAR or BLOB.
Operators and predicates :: || (string concatenator) :: Overflow check-
ing: Corrected “Changed in” and Description.

Aggregate functions :: LIST(): Extended 1st and 2nd second listitems
under Syntax. Inserted new listitem about BLOB support in 3rd posi-
tion. Edited 5th (previoudly 4th) listitem. Added warning on truncation
bug.

Aggregate functions :: MAX(): New section.

Aggregate functions :: MIN(): New section.

Internal functions: Replaced all occurrences of “obfuscate” in the func-
tion sections with “override”.

Internal functions:: ASCII_VAL(): Edited Syntax. Added listitem about
NULL. Altered last listitem.

Internal functions:: ATAN2(): Replaced argument names nuni and
nun? withy and x, respectively. Changed wording of 3rd Syntax note.
Added two Notes.

Internal functions:: BIT_LENGTH(): Added formalparas “ Changed in”
and “BLOB support”. Edited Note after Syntax block and placed it after
Description.

Internal functions:: CAST(): Edited Changed in, Description and Syn-
tax. Worked BLOB into table. Added paragraphs and examples re. cast-
ing to adomain. Added formalpara“ Casting BLOBS'.

206

Document History

Internal functions:: CHAR LENGTH(), CHARACTER LENGTH(): Added
formalparas “ Changed in” and “BLOB support”. Edited Note after Syn-
tax block and placed it after Description.

Internal functions:: EXTRACT(): Edited Result type and everything fol-
lowing the Syntax block, except the WEEK subsection.

Internal functions:: HASH(): Mentioned full text BLOB support in De-
scription.

Internal functions:: LEFT(): Edited Result type. Edited first listitem
and inserted a new listitem before it (about BLOB support).

Internal functions:: LOWER(): Added “Changed in”. Edited Descrip-
tion (BLOB support, removed epithet “new”). Added BLOB as result
type and corrected VAR(CHAR) -> (VAR)CHAR. Removed “new” from
text under Declaration.

Internal functions:: LPAD(): Replaced' ' with “the empty string” in
2nd (now 4th) Syntax note. Inserted two new Syntax notes concern-
ing BLOB support. Changed 1st sentence of Tip. Added Warning about
possible high memory usage.

Internal functions :: MAXVALUE(): Mentioned full text BLOB support in
Description.

Internal functions :: MINVALUE(): Mentioned full text BLOB support in
Description.

Internal functions:: OCTET_LENGTH(): Added formalparas “Changed
in” and “BLOB support”. Edited Note after Description.

Internal functions:: OVERLAY(): Edited Result type. Edited first lis-
titem under Syntax and inserted another one before it, about BLOB sup-
port. Also added alistitem about NULL arguments. Added Warning
about possible high memory usage.

Internal functions:: POSITION(): Added “(1-based)” to Description.
Added two listitems after Syntax. Added Warning about possible high
memory usage.

Internal functions:: RDB$GET_CONTEXT(): Replaced “general” with
“global” (4x) in System namespace table.

Internal functions :: REPLACE(): Edited Result type. Inserted new first
listitem under Syntax and edited the previous first (now 2nd) listitem.
Added example with NULL first argument. Aligned argumentsin exam-
ples. Corrected last const ant element, which accidentally spanned
three lines instead of a single word. Added Warning about possible
high memory usage.

Internal functions:: RIGHT(): Edited Result type. Edited first listitem
and inserted a new listitem before it (about BLOB support and bug).
Added Warning about possible high memory usage.

Internal functions:: RPAD(): Replaced' ' with “the empty string” in
2nd (now 4th) Syntax note. Inserted two new Syntax notes concern-
ing BLOB support. Changed 1st sentence of Tip. Added Warning about
possible high memory usage.

Internal functions:: SUBSTRING(): Added 2.1 to “Changed in”.
Changed Resullt type. Edited Syntax. Rewrote most everything between
Syntax and Examples. Added Warning about possible high memory us-
age.

Internal functions:: TRIM(): Added “Changed in”. Edited Description
and Syntax. Corrected and extended Result type. Added Notes formal-
para. Added Warning about possible high memory usage.

207

Document History

Internal functions:: UPPER(): Added 2.1 to “Changed in”. Edited De-
scription (BLOB support). Added BLOB as result type and corrected
VAR(CHAR) -> (VAR)CHAR.

External functions:: addDay, addHour , addM | | i Second, ad-

dM nut e, addMont h, addSecond, addYear : Added “ Better alterna-
tive: Internal function DATEADD” formalpara.

External functions :: addWeek: Added formalpara“ The DATEADD al-
ternative”.

External functions:: get Exact Ti mest anp: Edited “Better aterna-
tive” and Description.

External functions:: | og: Changed | og ->1 og(x, y) in Description.
External functions:: r and: Removed “the new function” from De-
scription.

External functions:: st ri ng2bl ob: Added “Better aternative’ for-
mal para.

Notes :: Understanding the WITH LOCK clause :: Syntax and be-
haviour: In table, aligned 1st column left, al rowstop, and added peri-
odsto sentencesin first two rows.

License Notice: Added Frank Ingermann and Vlad Khorsun as contrib-
utors. (C) end year now 2010.

208

Appendix C:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this License. Copies of the Li-
cense are available at http://www.firebirdsgl.org/pdf manual/pdl.pdf (PDF) and http://www.firebirdsgl.org/man-
ual/pdl.html (HTML).

The Original Documentation istitled Firebird 2.1 Language Reference Update.

The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.

Copyright (C) 2008-2010. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writersand Editors of included PDL -licensed material (the“al.”) are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Vlad Khorsun, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes, Dmitry

Y emanov.

Included portions are Copyright (C) 2001-2009 by their respective authors. All Rights Reserved.

209

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 2.1 Language Reference Update
	Table of Contents
	Introduction
	Subject matter
	Versions covered
	Authorship

	Reserved words and keywords
	Added since InterBase 6
	Newly reserved words
	New keywords

	Dropped since InterBase 6
	No longer reserved
	No longer keywords

	Possibly reserved in future versions

	Miscellaneous language elements
	-- (single-line comment)
	Shorthand casts
	CASE construct
	Simple CASE
	Searched CASE

	Data types and subtypes
	BIGINT data type
	BLOB data type
	Text BLOB support in functions and operators
	Various enhancements

	New character sets
	Character set NONE handling changed
	New collations
	Unicode collations for all character sets

	DDL statements
	COLLATION
	CREATE COLLATION
	DROP COLLATION

	COMMENT
	DATABASE
	CREATE DATABASE
	16 Kb page size supported, 1 and 2 Kb deprecated
	DIFFERENCE FILE parameter

	ALTER DATABASE
	BEGIN BACKUP
	END BACKUP
	ADD DIFFERENCE FILE
	DROP DIFFERENCE FILE

	DOMAIN
	CREATE DOMAIN
	Context variables as defaults

	ALTER DOMAIN
	Rename domain
	SET DEFAULT to any context variable

	EXCEPTION
	CREATE EXCEPTION
	Message length increased

	CREATE OR ALTER EXCEPTION
	RECREATE EXCEPTION

	EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	ALTER EXTERNAL FUNCTION

	FILTER
	DECLARE FILTER

	INDEX
	CREATE INDEX
	UNIQUE indices now allow NULLs
	Indexing on expressions
	Maximum index key length increased
	Maximum number of indices per table increased

	Privileges: GRANT and REVOKE
	REVOKE ADMIN OPTION

	PROCEDURE
	CREATE PROCEDURE
	Domains supported in parameter and variable
 declarations
	COLLATE in variable and parameter declarations
	NOT NULL in variable and parameter declarations
	Default argument values
	BEGIN ... END blocks may be empty

	ALTER PROCEDURE
	Default argument values
	COLLATE in variable and parameter declarations
	Domains supported in parameter and variable
 declarations
	NOT NULL in variable and parameter declarations
	Restriction on altering used procedures

	CREATE OR ALTER PROCEDURE
	DROP PROCEDURE
	Restriction on dropping used procedures

	RECREATE PROCEDURE
	Restriction on recreating used procedures

	SEQUENCE or GENERATOR
	CREATE SEQUENCE
	CREATE GENERATOR
	CREATE SEQUENCE preferred
	Maximum number of generators significantly raised

	ALTER SEQUENCE
	SET GENERATOR
	DROP SEQUENCE
	DROP GENERATOR

	TABLE
	CREATE TABLE
	Global Temporary Tables (GTTs)
	GENERATED ALWAYS AS
	CHECK accepts NULL outcome
	Context variables as column defaults
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive
 access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TABLE
	ADD column: Context variables as defaults
	ALTER COLUMN: DROP DEFAULT
	ALTER COLUMN: SET DEFAULT
	ALTER COLUMN: POSITION now 1-based
	CHECK accepts NULL outcome
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive
 access
	GENERATED ALWAYS AS
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	RECREATE TABLE

	TRIGGER
	CREATE TRIGGER
	SQL-2003-compliant syntax for relation triggers
	Database triggers
	Domains instead of datatypes
	COLLATE in variable declarations
	NOT NULL in variable declarations
	Multi-action triggers
	BEGIN ... END blocks may be empty
	CREATE TRIGGER no longer increments table change
 count
	PLAN allowed in trigger code

	ALTER TRIGGER
	Database triggers
	Domains instead of datatypes
	COLLATE in variable declarations
	NOT NULL in variable declarations
	Multi-action triggers
	Restriction on altering used triggers
	PLAN allowed in trigger code
	ALTER TRIGGER no longer increments table change count

	CREATE OR ALTER TRIGGER
	DROP TRIGGER
	Restriction on dropping used triggers
	DROP TRIGGER no longer increments table change count

	RECREATE TRIGGER
	Restriction on recreating used triggers

	VIEW
	CREATE VIEW
	Per-column aliases supported in view definition
	Full SELECT syntax supported
	PLAN subclause disallowed in 1.5, reallowed in 2.0
	Triggers on updatable views block auto-writethrough
	View with non-participating NOT NULL columns in base
 table can be made insertable

	RECREATE VIEW

	DML statements
	DELETE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	RETURNING
	ROWS

	EXECUTE BLOCK
	COLLATE in variable and parameter declarations
	NOT NULL in variable and parameter declarations
	Domains instead of datatypes

	EXECUTE PROCEDURE
	INSERT
	INSERT ... DEFAULT VALUES
	RETURNING clause
	UNION allowed in feeding SELECT

	MERGE
	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside
 subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	COLLATE subclause for text BLOB columns
	Common Table Expressions (“WITH ... AS ... SELECT”)
	Recursive CTEs

	Derived tables (“SELECT FROM SELECT”)
	FIRST and SKIP
	GROUP BY
	Grouping by alias, position and expressions

	HAVING: Stricter rules
	JOIN
	Ambiguous field names rejected
	CROSS JOIN
	Named colums JOIN
	Natural JOIN

	ORDER BY
	Order by colum alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	Relation alias makes real name unavailable
	ROWS
	UNION
	UNIONs in subqueries
	UNION DISTINCT

	WITH LOCK

	UPDATE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	RETURNING
	ROWS

	UPDATE OR INSERT

	Transaction control statements
	RELEASE SAVEPOINT
	ROLLBACK
	ROLLBACK RETAIN
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	SET TRANSACTION
	IGNORE LIMBO
	LOCK TIMEOUT
	NO AUTO UNDO

	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	CLOSE cursor
	DECLARE
	DECLARE ... CURSOR
	DECLARE [VARIABLE] with initialization
	DECLARE with DOMAIN instead of datatype
	COLLATE in variable declaration
	NOT NULL in variable declaration

	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Caveats with EXECUTE STATEMENT

	EXIT
	FETCH cursor
	FOR EXECUTE STATEMENT ... DO
	FOR SELECT ... INTO ... DO
	AS CURSOR clause

	LEAVE
	OPEN cursor
	PLAN allowed in trigger code
	UDFs callable as void functions
	WHERE CURRENT OF valid again for view cursors

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	UPDATING

	Operators and predicates
	NULL literals allowed as operands
	|| (string concatenator)
	Text BLOB concatenation
	Result type VARCHAR or BLOB
	Overflow checking

	ALL
	NULL literals allowed
	UNION as subselect

	ANY / SOME
	NULL literals allowed
	UNION as subselect

	IN
	NULL literals allowed
	UNION as subselect

	IS [NOT] DISTINCT FROM
	NEXT VALUE FOR
	SOME

	Aggregate functions
	LIST()
	MAX()
	MIN()

	Internal functions
	ABS()
	ACOS()
	ASCII_CHAR()
	ASCII_VAL()
	ASIN()
	ATAN()
	ATAN2()
	BIN_AND()
	BIN_OR()
	BIN_SHL()
	BIN_SHR()
	BIN_XOR()
	BIT_LENGTH()
	CAST()
	CEIL(), CEILING()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	COALESCE()
	COS()
	COSH()
	COT()
	DATEADD()
	DATEDIFF()
	DECODE()
	EXP()
	EXTRACT()
	MILLISECOND
	WEEK

	FLOOR()
	GEN_ID()
	GEN_UUID()
	HASH()
	IIF()
	LEFT()
	LN()
	LOG()
	LOG10()
	LOWER()
	LPAD()
	MAXVALUE()
	MINVALUE()
	MOD()
	NULLIF()
	OCTET_LENGTH()
	OVERLAY()
	PI()
	POSITION()
	POWER()
	RAND()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	REPLACE()
	REVERSE()
	RIGHT()
	ROUND()
	RPAD()
	SIGN()
	SIN()
	SINH()
	SQRT()
	SUBSTRING()
	TAN()
	TANH()
	TRIM()
	TRUNC()
	UPPER()

	External functions (UDFs)
	abs
	acos
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	ascii_val
	asin
	atan
	atan2
	bin_and
	bin_or
	bin_xor
	ceiling
	cos
	cosh
	cot
	dow
	dpower
	floor
	getExactTimestamp
	i64round
	i64truncate
	ln
	log
	log10
	lower
	lpad
	ltrim
	mod
	*nullif
	*nvl
	pi
	rand
	right
	round, i64round
	rpad
	rtrim
	sdow
	sign
	sin
	sinh
	sqrt
	srand
	sright
	string2blob
	strlen
	substr
	substrlen
	tan
	tanh
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters
	Passing NULL to UDFs in Firebird 2
	“Upgrading” ib_udf functions in an existing database

	Maximum number of indices in different Firebird
 versions

	B. Document History
	C. License notice

