
Firebird 2.5 Language Reference Update
Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.
8 Oct 2011, document version 1.1 — covers Firebird 2.5 and 2.5.1

Firebird 2.5 Language Reference Update
Everything new in Firebird SQL since InterBase 6

8 Oct 2011, document version 1.1 — covers Firebird 2.5 and 2.5.1
Paul Vinkenoog et al.

iv

Table of Contents
1. Introduction ... 1

Subject matter .. 1
Versions covered .. 2
Authorship ... 2
Acknowledgments .. 2

2. New in Firebird 2.5 ... 3
Reserved words and keywords .. 3
Miscellany ... 3
Data types and subtypes ... 4
Data Definition Language (DDL) .. 4
Data Manipulation Language (DML) .. 4
PSQL statements .. 4
Security and access control ... 5
Context variables ... 5
Operators and predicates .. 5
Aggregate functions ... 5
Internal functions ... 6

3. Reserved words and keywords .. 7
Added since InterBase 6 ... 7

Newly reserved words .. 7
New non-reserved keywords ... 8

Dropped since InterBase 6 .. 10
No longer reserved, still keywords .. 10
No longer reserved, not keywords ... 11

Possibly reserved in future versions .. 13
4. Miscellaneous language elements .. 14

-- (single-line comment) ... 14
Hexadecimal notation for numerals ... 14
Hexadecimal notation for “binary” strings ... 15
Shorthand datetime casts .. 16
CASE construct .. 17

Simple CASE ... 17
Searched CASE .. 18

5. Data types and subtypes ... 19
BIGINT data type ... 19
BLOB data type .. 20

Text BLOB support in functions and operators ... 20
Various enhancements .. 20

SQL_NULL data type .. 21
Rationale .. 21
Use in practice ... 22

New character sets ... 22
Character set NONE handling changed ... 24
New collations ... 24

Unicode collations for all character sets .. 25
6. DDL statements ... 26

CHARACTER SET ... 26
ALTER CHARACTER SET ... 26

Firebird 2.5 Language Ref. Update

v

COLLATION ... 26
CREATE COLLATION ... 26
DROP COLLATION ... 29

COMMENT ... 29
DATABASE .. 30

CREATE DATABASE .. 30
ALTER DATABASE .. 31

DOMAIN .. 33
CREATE DOMAIN .. 33
ALTER DOMAIN .. 33

EXCEPTION ... 34
CREATE EXCEPTION ... 34
CREATE OR ALTER EXCEPTION .. 34
RECREATE EXCEPTION ... 35

EXTERNAL FUNCTION .. 35
DECLARE EXTERNAL FUNCTION .. 35
ALTER EXTERNAL FUNCTION ... 36

FILTER .. 36
DECLARE FILTER .. 36

INDEX ... 37
CREATE INDEX ... 37

PROCEDURE .. 39
CREATE PROCEDURE .. 39
ALTER PROCEDURE .. 43
CREATE OR ALTER PROCEDURE ... 44
DROP PROCEDURE .. 45
RECREATE PROCEDURE .. 45

SEQUENCE or GENERATOR ... 45
CREATE SEQUENCE .. 45
CREATE GENERATOR .. 46
ALTER SEQUENCE ... 46
SET GENERATOR ... 47
DROP SEQUENCE .. 47
DROP GENERATOR .. 48

TABLE ... 48
CREATE TABLE ... 48
ALTER TABLE ... 53
RECREATE TABLE ... 57

TRIGGER ... 57
CREATE TRIGGER ... 57
ALTER TRIGGER .. 62
CREATE OR ALTER TRIGGER .. 64
DROP TRIGGER ... 64
RECREATE TRIGGER ... 64

VIEW ... 65
CREATE VIEW ... 65
ALTER VIEW ... 68
CREATE OR ALTER VIEW .. 68
RECREATE VIEW ... 68

7. DML statements ... 69
DELETE ... 69

COLLATE subclause for text BLOB columns .. 69

Firebird 2.5 Language Ref. Update

vi

ORDER BY ... 70
PLAN ... 70
Relation alias makes real name unavailable ... 70
RETURNING ... 70
ROWS .. 71

EXECUTE BLOCK .. 72
COLLATE in variable and parameter declarations ... 74
NOT NULL in variable and parameter declarations ... 74
Domains instead of datatypes .. 74
TYPE OF COLUMN in parameter and variable declarations .. 75

EXECUTE PROCEDURE .. 75
INSERT .. 77

INSERT ... DEFAULT VALUES .. 77
RETURNING clause .. 77
UNION allowed in feeding SELECT ... 78

MERGE .. 78
SELECT ... 79

Aggregate functions: Extended functionality .. 79
COLLATE subclause for text BLOB columns .. 82
Common Table Expressions (“WITH ... AS ... SELECT”) ... 82
Derived tables (“SELECT FROM SELECT”) .. 84
FIRST and SKIP .. 85
GROUP BY ... 87
HAVING: Stricter rules ... 88
JOIN .. 88
ORDER BY ... 91
PLAN ... 93
Relation alias makes real name unavailable ... 94
ROWS .. 95
UNION ... 96
WITH LOCK ... 97

UPDATE ... 97
Changed SET semantics .. 98
COLLATE subclause for text BLOB columns .. 99
ORDER BY ... 99
PLAN ... 99
Relation alias makes real name unavailable ... 99
RETURNING ... 100
ROWS .. 100

UPDATE OR INSERT .. 101
8. Transaction control statements .. 103

RELEASE SAVEPOINT .. 103
ROLLBACK .. 103

ROLLBACK RETAIN ... 103
ROLLBACK TO SAVEPOINT ... 104

SAVEPOINT ... 104
Internal savepoints .. 105
Savepoints and PSQL ... 106

SET TRANSACTION .. 106
IGNORE LIMBO .. 107
LOCK TIMEOUT ... 107
NO AUTO UNDO .. 107

Firebird 2.5 Language Ref. Update

vii

9. PSQL statements .. 109
BEGIN ... END blocks may be empty ... 109
BREAK ... 109
CLOSE cursor ... 110
DECLARE ... 110

DECLARE ... CURSOR .. 110
DECLARE [VARIABLE] with initialization .. 111
DECLARE with DOMAIN instead of datatype ... 112
TYPE OF COLUMN in variable declaration ... 112
COLLATE in variable declaration .. 113
NOT NULL in variable declaration ... 113

EXCEPTION ... 114
Rethrowing a caught exception ... 114
Providing a custom error message ... 114

EXECUTE PROCEDURE .. 115
EXECUTE STATEMENT .. 115

No data returned .. 116
One row of data returned .. 117
Any number of data rows returned .. 117
Improved performance .. 118
WITH {AUTONOMOUS|COMMON} TRANSACTION ... 118
WITH CALLER PRIVILEGES ... 118
ON EXTERNAL [DATA SOURCE] .. 118
AS USER, PASSWORD and ROLE .. 120
Parameterized statements .. 121
Caveats with EXECUTE STATEMENT .. 122

EXIT .. 123
FETCH cursor ... 123
FOR EXECUTE STATEMENT ... DO ... 123
FOR SELECT ... INTO ... DO .. 123

AS CURSOR clause ... 125
IN AUTONOMOUS TRANSACTION .. 125
LEAVE ... 126
OPEN cursor ... 127
PLAN allowed in trigger code ... 127
Subqueries as PSQL expressions ... 128
UDFs callable as void functions .. 128
WHERE CURRENT OF valid again for view cursors .. 128

10. Security and access control ... 129
ALTER ROLE ... 129
GRANT and REVOKE ... 129

GRANTED BY .. 129
REVOKE ALL ON ALL .. 130
REVOKE ADMIN OPTION ... 131

The RDB$ADMIN role .. 131
In normal databases .. 132
In the security database .. 132

AUTO ADMIN MAPPING .. 133
In normal databases .. 133
In the security database .. 134

SQL user management commands ... 134
CREATE USER ... 134

Firebird 2.5 Language Ref. Update

viii

ALTER USER .. 135
DROP USER ... 135

11. Context variables .. 136
CURRENT_CONNECTION ... 136
CURRENT_ROLE .. 136
CURRENT_TIME .. 137
CURRENT_TIMESTAMP ... 137
CURRENT_TRANSACTION ... 138
CURRENT_USER .. 139
DELETING .. 139
GDSCODE .. 139
INSERTING .. 140
NEW .. 140
'NOW' .. 141
OLD .. 142
ROW_COUNT .. 142
SQLCODE .. 143
SQLSTATE .. 143
UPDATING .. 144

12. Operators and predicates ... 145
NULL literals allowed as operands ... 145
|| (string concatenator) ... 145

Text BLOB concatenation .. 145
Result type VARCHAR or BLOB ... 145
Overflow checking ... 146

ALL ... 146
NULL literals allowed .. 146
UNION as subselect .. 146

ANY / SOME .. 146
NULL literals allowed .. 146
UNION as subselect .. 147

IN .. 147
NULL literals allowed .. 147
UNION as subselect .. 147

IS [NOT] DISTINCT FROM .. 147
NEXT VALUE FOR ... 148
SIMILAR TO ... 148

Building regular expressions ... 150
SOME ... 153

13. Aggregate functions .. 154
LIST() ... 154
MAX() .. 154
MIN() ... 155

14. Internal functions .. 156
ABS() ... 156
ACOS() ... 156
ASCII_CHAR() .. 157
ASCII_VAL() ... 157
ASIN() .. 158
ATAN() .. 158
ATAN2() ... 159
BIN_AND() ... 159

Firebird 2.5 Language Ref. Update

ix

BIN_OR() .. 160
BIN_SHL() .. 160
BIN_SHR() .. 160
BIN_XOR() ... 161
BIT_LENGTH() ... 161
CAST() ... 162
CEIL(), CEILING() ... 165
CHAR_LENGTH(), CHARACTER_LENGTH() ... 165
CHAR_TO_UUID() ... 166
COALESCE() ... 167
COS() ... 167
COSH() ... 168
COT() ... 168
DATEADD() .. 169
DATEDIFF() .. 169
DECODE() .. 170
EXP() ... 171
EXTRACT() .. 172

MILLISECOND ... 172
WEEK .. 173

FLOOR() ... 173
GEN_ID() .. 174
GEN_UUID() ... 174
HASH() ... 175
IIF() ... 175
LEFT() .. 175
LN() ... 176
LOG() ... 176
LOG10() ... 177
LOWER() .. 178
LPAD() ... 178
MAXVALUE() ... 179
MINVALUE() .. 180
MOD() .. 180
NULLIF() .. 181
OCTET_LENGTH() .. 181
OVERLAY() .. 182
PI() ... 183
POSITION() ... 184
POWER() .. 184
RAND() .. 185
RDB$GET_CONTEXT() .. 185
RDB$SET_CONTEXT() .. 187
REPLACE() ... 188
REVERSE() ... 189
RIGHT() ... 189
ROUND() .. 190
RPAD() ... 191
SIGN() .. 192
SIN() .. 192
SINH() .. 193
SQRT() ... 193

Firebird 2.5 Language Ref. Update

x

SUBSTRING() ... 193
TAN() ... 194
TANH() .. 195
TRIM() ... 195
TRUNC() .. 196
UPPER() ... 197
UUID_TO_CHAR() ... 198

15. External functions (UDFs) .. 199
abs .. 199
acos .. 199
addDay .. 200
addHour .. 200
addMilliSecond .. 201
addMinute .. 201
addMonth .. 202
addSecond .. 202
addWeek .. 203
addYear .. 203
ascii_char .. 204
ascii_val .. 204
asin .. 205
atan .. 205
atan2 .. 206
bin_and .. 206
bin_or .. 207
bin_xor .. 207
ceiling .. 208
cos .. 208
cosh .. 209
cot .. 209
dow .. 210
dpower .. 210
floor .. 211
getExactTimestamp ... 211
i64round .. 212
i64truncate .. 212
ln .. 212
log .. 212
log10 .. 213
lower .. 213
lpad .. 214
ltrim .. 215
mod .. 216
*nullif .. 216
*nvl .. 217
pi .. 218
rand .. 219
right .. 219
round, i64round ... 219
rpad .. 220
rtrim .. 221
sdow .. 222

Firebird 2.5 Language Ref. Update

xi

sign .. 223
sin .. 223
sinh .. 224
sqrt .. 224
srand .. 225
sright .. 225
string2blob .. 226
strlen .. 226
substr .. 226
substrlen .. 227
tan .. 228
tanh .. 229
truncate, i64truncate ... 229

Appendix A: Notes ... 231
Character set NONE data accepted “as is” .. 231
Understanding the WITH LOCK clause ... 232

Syntax and behaviour ... 232
How the engine deals with WITH LOCK .. 233
The optional “OF <column-names>” sub-clause ... 234
Caveats using WITH LOCK ... 234
Examples using explicit locking .. 234

A note on CSTRING parameters .. 235
Passing NULL to UDFs in Firebird 2 ... 236

“Upgrading” ib_udf functions in an existing database .. 236
Maximum number of indices in different Firebird versions ... 237
The RDB$VALID_BLR field .. 238

Appendix B: Reserved words and keywords – full lists .. 239
Reserved words .. 239
Keywords ... 242

Appendix C: Document History .. 250
Appendix D: License notice .. 256

xii

List of Tables
5.1. Character sets new in Firebird .. 23
5.2. Collations new in Firebird ... 24
6.1. Specific collation attributes .. 27
6.2. Maximum indexable (VAR)CHAR length ... 38
6.3. Max. indices per table, Firebird 2.0 .. 39
7.1. NULLs placement in ordered columns ... 92
12.1. Comparison of [NOT] DISTINCT to “=” and “<>” .. 148
14.1. Possible CASTs .. 163
14.2. Types and ranges of EXTRACT results .. 172
14.3. Context variables in the SYSTEM namespace ... 186
A.1. How TPB settings affect explicit locking ... 233
A.2. Max. indices per table in Firebird 1.0 – 2.0 .. 237

1

Chapter 1

Introduction

Subject matter
What's this book about?

This guide documents the changes made in the Firebird SQL language between InterBase 6 and Firebird 2.5.1.
It covers the following areas:

• Reserved words
• Data types and subtypes
• DDL statements (Data Definition Language)
• DML statements (Data Manipulation Language)
• Transaction control statements
• PSQL statements (Procedural SQL, used in stored procedures and triggers)
• Security and access control statements
• Context variables
• Operators and predicates
• Aggregate functions
• Internal functions
• UDFs (User Defined Functions, also known as external functions)

To have a complete Firebird 2.5 SQL reference, you need:

• The InterBase 6.0 beta SQL Reference (LangRef.pdf and/or SQLRef.html)
• This document

Non-SQL topics are not discussed in this document. These include:

• ODS versions
• Bug listings
• Installation and configuration
• Upgrade, migration and compatibility
• Server architectures
• API functions
• Connection protocols
• Tools and utilities

Consult the Release Notes for information on these subjects. You can find the Release Notes and other docu-
mentation via the Firebird Documentation Index at http://www.firebirdsql.org/en/documentation/.

http://www.firebirdsql.org/en/documentation/

Introduction

2

Versions covered
This document covers all Firebird versions up to and including 2.5.1.

Authorship
Most of this document was written by the main author. The remainder (2–3%) was lifted from various Firebird
Release Notes editions, which in turn contain material from preceding sources like the Whatsnew documents.
Authors and editors of the included material are:

• J. Beesley
• Helen Borrie
• Arno Brinkman
• Frank Ingermann
• Vlad Khorsun
• Alex Peshkov
• Nickolay Samofatov
• Adriano dos Santos Fernandes
• Dmitry Yemanov

Acknowledgments
Vlad Khorsun, Adriano dos Santos Fernandes and Dmitry Yemanov have been very helpful and patient whenever
I had questions about the details of various new Firebird features. The email conversations I had with them have
made this a better work of reference. Thank you, guys!

3

Chapter 2

New in Firebird 2.5
For users upgrading from Firebird 2.1, this chapter lists the SQL additions and changes in Firebird 2.5 and 2.5.1,
with links to the corresponding sections. If you come from an earlier version or are new to Firebird, you may
want to skip this chapter.

Reserved words and keywords

Changed since Firebird 2.1:

• Newly reserved words: SIMILAR, SQLSTATE (2.5.1).

• New non-reserved keywords: AUTONOMOUS, BIN_NOT, CALLER, CHAR_TO_UUID, COMMON, DATA,
FIRSTNAME, GRANTED, LASTNAME, MAPPING, MIDDLENAME, OS_NAME, SOURCE, TWO_PHASE and
UUID_TO_CHAR.

• No longer reserved, but still keywords: ACTIVE, AFTER, ASC, ASCENDING, AUTO, BEFORE, COLLATION,
COMMITTED, COMPUTED, CONDITIONAL, CONTAINING, CSTRING, DATABASE, DESC, DESCENDING,
DESCRIPTOR, DO, DOMAIN, ENTRY_POINT, EXCEPTION, EXIT, FILE, GEN_ID, GENERATOR, IF, INAC-
TIVE, INPUT_TYPE, ISOLATION, KEY, LENGTH, LEVEL, MANUAL, MODULE_NAME, NAMES, OPTION,
OUTPUT_TYPE, OVERFLOW, PAGE, PAGE_SIZE, PAGES, PASSWORD, PRIVILEGES, PROTECTED, READ,
RESERV, RESERVING, RETAIN, SCHEMA, SEGMENT, SHADOW, SHARED, SINGULAR, SIZE, SNAPSHOT,
SORT, STABILITY, STARTING, STARTS, STATEMENT, STATISTICS, SUB_TYPE, SUSPEND, TRANSAC-
TION, UNCOMMITTED, WAIT, WORK and WRITE.

• No longer reserved and not keywords: AUTODDL, BASE_NAME, BASED, BLOBEDIT, BUFFER,
CHECK_POINT_LENGTH, COMPILETIME, CONTINUE, DB_KEY, DEBUG, DESCRIBE, DISPLAY, ECHO,
EDIT, EVENT, EXTERN, FOUND, GOTO, GROUP_COMMIT_, HELP, IMMEDIATE, INDICATOR, INIT, IN-
PUT, ISQL, LC_MESSAGES, LC_TYPE, LEV, LOG_BUFFER_SIZE, MAX_SEGMENT, MAXIMUM, MESSAGE,
MINIMUM, NOAUTO, NUM_LOG_BUFFERS, OUTPUT, PAGELENGTH, PREPARE, PUBLIC, QUIT, RETURN,
RUNTIME, SHELL, SHOW, SQLERROR, SQLWARNING, STATIC, TERMINATOR, TRANSLATE, TRANSLA-
TION, VERSION, WAIT_TIME and WHENEVER.

Miscellany

Changed since Firebird 2.1:

• Hexadecimal notation for numerals
• Hexadecimal notation for “binary” strings

New in Firebird 2.5

4

Data types and subtypes
Changed since Firebird 2.1:

• SQL_NULL data type
• GB18030 character set, WIN_1258 alias
• UNICODE_CI_AI collation for UTF8, GB18030 collation for GB18030

Data Definition Language (DDL)
Changed since Firebird 2.1:

• ALTER CHARACTER SET (set default collation for charset)
• NUMERIC-SORT attribute for Unicode collations
• Default collation for the database
• Classic Server: Altered procedure immediately visible to other clients
• ALTER COLUMN also for generated (computed) columns
• ALTER COLUMN ... TYPE no longer fails if column is used in trigger or SP
• Views can select from stored procedures
• Views can infer column names from derived tables or GROUP BY
• Column list for UNION-based views no longer mandatory
• ALTER VIEW
• CREATE OR ALTER VIEW

Data Manipulation Language (DML)
Changed since Firebird 2.1:

• UPDATE statement: changed SET semantics

PSQL statements
Changed since Firebird 2.1:

• TYPE OF COLUMN in variable and parameter declarations
• EXECUTE STATEMENT:

- Improved performance
- WITH {AUTONOMOUS|COMMON} TRANSACTION
- WITH CALLER PRIVILEGES
- ON EXTERNAL [DATA SOURCE]

New in Firebird 2.5

5

- AS USER, PASSWORD and ROLE
- Parameterized statements

• IN AUTONOMOUS TRANSACTION
• Subqueries as PSQL expressions

Security and access control
Changed since Firebird 2.1:

• ALTER ROLE
• GRANTED BY clause
• REVOKE ALL ON ALL
• The RDB$ADMIN role
• AUTO ADMIN MAPPING
• SQL user management commands:

- CREATE USER
- ALTER USER
- DROP USER

Context variables
Changed since Firebird 2.1:

• SQLCODE deprecated (2.5.1)
• SQLSTATE context variable (2.5.1)

Operators and predicates
Changed since Firebird 2.1:

• SIMLAR TO: Regular expressions

Aggregate functions
Changed since Firebird 2.1:

• LIST() separator may be any string expression

New in Firebird 2.5

6

Internal functions
Changed since Firebird 2.1:

• CAST() as TYPE OF COLUMN
• DATEADD: New unit WEEK. Sub-DAY units allowed with DATEs.
• DATEDIFF: New unit WEEK. Sub-DAY units allowed with DATEs.
• CHAR_TO_UUID()
• LOG() behaviour improved
• LOG10() behaviour improved
• LPAD() now returns VARCHAR of exact end length
• RPAD() now returns VARCHAR of exact end length
• UUID_TO_CHAR()

7

Chapter 3

Reserved words and keywords
Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. as table or
procedure names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless
you have a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. You can use them as identifiers without double-quoting.

The following sections present the changes since InterBase 6. Full listings of Firebird 2.5 reserved words and
keywords can be found in the Appendix.

Added since InterBase 6

Newly reserved words
The following reserved words have been added to Firebird:

BIGINT
BIT_LENGTH
BOTH
CASE
CLOSE
CONNECT
CROSS
CURRENT_CONNECTION
CURRENT_ROLE
CURRENT_TRANSACTION
CURRENT_USER
DISCONNECT
FETCH
GLOBAL
INSENSITIVE
LEADING
LOWER
OPEN
RECREATE
RECURSIVE
ROW_COUNT
ROWS
SAVEPOINT
SENSITIVE
SIMILAR

Reserved words and keywords

8

SQLSTATE (2.5.1)
START
TRAILING
TRIM

New non-reserved keywords

The following words have been added to Firebird as non-reserved keywords. More than half of them are names
of internal functions added between 2.0 and 2.1.

ABS
ACCENT
ACOS
ALWAYS
ASCII_CHAR
ASCII_VAL
ASIN
ATAN
ATAN2
AUTONOMOUS
BACKUP
BIN_AND
BIN_OR
BIN_NOT
BIN_SHL
BIN_SHR
BIN_XOR
BLOCK
BREAK
CALLER
CEIL
CEILING
CHAR_TO_UUID
COALESCE
COLLATION
COMMENT
COMMON
COS
COSH
COT
DATA
DATEADD
DATEDIFF
DECODE
DELETING
DIFFERENCE
EXP
FIRST
FIRSTNAME
FLOOR
GEN_UUID

Reserved words and keywords

9

GENERATED
GRANTED
HASH
IIF
INSERTING
LAST
LASTNAME
LEAVE
LIST
LN
LOCK
LOG
LOG10
LPAD
MAPPING
MATCHED
MATCHING
MAXVALUE
MIDDLENAME
MILLISECOND
MINVALUE
MOD
NEXT
NULLIF
NULLS
OS_NAME
OVERLAY
PAD
PI
PLACING
POWER
PRESERVE
RAND
REPLACE
RESTART
RETURNING
REVERSE
ROUND
RPAD
SCALAR_ARRAY
SEQUENCE
SIGN
SIN
SINH
SKIP
SOURCE
SPACE
SQRT
SUBSTRING
TAN
TANH
TEMPORARY

Reserved words and keywords

10

TRUNC
TWO_PHASE
WEEK
UPDATING
UUID_TO_CHAR

Dropped since InterBase 6

No longer reserved, still keywords

The following words are no longer reserved in Firebird 2.5, but are still recognized as keywords:

ACTION
ACTIVE
AFTER
ASC
ASCENDING
AUTO
BEFORE
CASCADE
COLLATION
COMMITTED
COMPUTED
CONDITIONAL
CONTAINING
CSTRING
DATABASE
DESC
DESCENDING
DESCRIPTOR
DO
DOMAIN
ENTRY_POINT
EXCEPTION
EXIT
FILE
FREE_IT
GEN_ID
GENERATOR
IF
INACTIVE
INPUT_TYPE
ISOLATION
KEY
LENGTH
LEVEL
MANUAL
MODULE_NAME

Reserved words and keywords

11

NAMES
OPTION
OUTPUT_TYPE
OVERFLOW
PAGE
PAGE_SIZE
PAGES
PASSWORD
PRIVILEGES
PROTECTED
READ
RESERV
RESERVING
RESTRICT
RETAIN
ROLE
SCHEMA
SEGMENT
SHADOW
SHARED
SINGULAR
SIZE
SNAPSHOT
SORT
STABILITY
STARTING
STARTS
STATEMENT
STATISTICS
SUB_TYPE
SUSPEND
TRANSACTION
TYPE
UNCOMMITTED
WAIT
WEEKDAY
WORK
WRITE
YEARDAY

No longer reserved, not keywords

The following words are no longer reserved in Firebird 2.5, and not keywords either:

AUTODDL
BASE_NAME
BASED
BASENAME
BLOBEDIT
BUFFER
CACHE

Reserved words and keywords

12

CHECK_POINT_LEN
CHECK_POINT_LENGTH
COMPILETIME
CONTINUE
DB_KEY
DEBUG
DESCRIBE
DISPLAY
ECHO
EDIT
EVENT
EXTERN
FOUND
GOTO
GROUP_COMMIT_
GROUP_COMMIT_WAIT
HELP
IMMEDIATE
INDICATOR
INIT
INPUT
ISQL
LC_MESSAGES
LC_TYPE
LEV
LOG_BUF_SIZE
LOG_BUFFER_SIZE
LOGFILE
MAX_SEGMENT
MAXIMUM
MESSAGE
MINIMUM
NOAUTO
NUM_LOG_BUFFERS
NUM_LOG_BUFS
OUTPUT
PAGELENGTH
PREPARE
PUBLIC
QUIT
RAW_PARTITIONS
RETURN
RUNTIME
SHELL
SHOW
SQLERROR
SQLWARNING
STATIC
TERMINATOR
TRANSLATE
TRANSLATION
VERSION

Reserved words and keywords

13

WAIT_TIME
WHENEVER

Some of these words still have a special meaning in ESQL and/or ISQL.

Possibly reserved in future versions
The following words are not reserved in Firebird 2.5, but are better avoided as identifiers because they will likely
be reserved – or added as keywords – in future versions:

BOOLEAN
FALSE
TRUE
UNKNOWN

14

Chapter 4

Miscellaneous
language elements

-- (single-line comment)
Available in: DSQL, PSQL

Added in: 1.0

Changed in: 1.5

Description: A line starting with “--” (two dashes) is a comment and will be ignored. This also makes it easy
to quickly comment out a line of SQL.

In Firebird 1.5 and up, the “--” can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:

-- a table to store our valued customers in:
create table Customers (
 name varchar(32),
 added_by varchar(24),
 custno varchar(8),
 purchases integer -- number of purchases
)

Notice that the second comment is only allowed in Firebird 1.5 and up.

Hexadecimal notation for numerals
Available in: DSQL, PSQL

Added in: 2.5

Description: In Firebird 2.5 and up, integer values can be entered in hexadecimal notation. Numbers with 1–8
hex digits will be interpreted as INTEGERs; numbers with 9–16 hex digits as BIGINTs.

Miscellaneous language elements

15

Syntax:

0{x|X}<hexdigits>

<hexdigits> ::= 1–16 of <hexdigit>
<hexdigit> ::= one of 0..9, A..F, a..f

Examples:

select 0x6FAA0D3 from rdb$database -- returns 117088467
select 0x4F9 from rdb$database -- returns 1273
select 0x6E44F9A8 from rdb$database -- returns 1850014120
select 0x9E44F9A8 from rdb$database -- returns -1639646808 (an INTEGER)
select 0x09E44F9A8 from rdb$database -- returns 2655320488 (a BIGINT)
select 0x28ED678A4C987 from rdb$database -- returns 720001751632263
select 0xFFFFFFFFFFFFFFFF from rdb$database -- returns -1

Value ranges:

• Hex numbers in the range 0 .. 7FFF FFFF are positive INTEGERs with values between 0 .. 2147483647
decimal. You can force them to BIGINT by prepending enough zeroes to bring the total number of hex digits
to nine or above, but that only changes their type, not their value.

• Hex numbers between 8000 0000 .. FFFF FFFF require some attention:

- When written with eight hex digits, as in 0x9E44F9A8, they are interpreted as 32-bit INTEGER values.
Since their leftmost bit (sign bit) is set, they map to the negative range -2147483648 .. -1 decimal.

- With one or more zeroes prepended, as in 0x09E44F9A8, they are interpreted as 64-bit BIGINTs in the
range 0000 0000 8000 0000 .. 0000 0000 FFFF FFFF. The sign bit isn't set now, so they map to the
positive range 2147483648 .. 4294967295 decimal.

Thus, in this range – and in this range only – prepending a mathematically insignificant 0 results in a totally
different value. This is something to be aware of.

• Hex numbers between 1 0000 0000 .. 7FFF FFFF FFFF FFFF are all positive BIGINTs.

• Hex numbers between 8000 0000 0000 0000 .. FFFF FFFF FFFF FFFF are all negative BIGINTs.

Hexadecimal notation for “binary” strings
Available in: DSQL, PSQL

Added in: 2.5

Description: In Firebird 2.5 and up, string literals can be entered in hexadecimal notation. Each pair of hex digits
defines a byte in the string. Strings entered this way will have character set OCTETS by default, but you can
force the engine to interpret them otherwise with the introducer syntax.

Miscellaneous language elements

16

Syntax:

{x|X}'<hexstring>'

<hexstring> ::= an even number of <hexdigit>
<hexdigit> ::= one of 0..9, A..F, a..f

Examples:

select x'4E657276656E' from rdb$database
 -- returns 4E657276656E, a 6-byte 'binary' string

select _ascii x'4E657276656E' from rdb$database
 -- returns 'Nerven' (same string, now interpreted as ASCII text)

select _iso8859_1 x'53E46765' from rdb$database
 -- returns 'Säge' (4 chars, 4 bytes)

select _utf8 x'53C3A46765' from rdb$database
 -- returns 'Säge' (4 chars, 5 bytes)

Notes:

• It is up to the client interface how binary strings are displayed to the user. Isql, for one, uses uppercase letters
A-F. FlameRobin uses lowercase letters. Other client programs may have other ideas, e.g. like this, with
spaces between the bytes: '4E 65 72 76 65 6E'.

• The hexadecimal notation allows you to insert any byte value (including 00) at any place in the string. How-
ever, if you want to coerce it to anything other than OCTETS, it is your responsibilty that the byte sequence
is valid for the target character set.

Shorthand datetime casts
Available in: DSQL, ESQL, PSQL

Added in: IB

Description: When converting a string literal to a DATE, TIME or TIMESTAMP, Firebird allows the use of a
shorthand “C-style” cast. This feature already existed in InterBase 6, but was never properly documented.

Syntax:

datatype 'date/timestring'

Examples:

update People set AgeCat = 'Old'
 where BirthDate < date '1-Jan-1943'

insert into Appointments
 (Employee_Id, Client_Id, App_date, App_time)
values
 (973, 8804, date 'today' + 2, time '16:00')

new.lastmod = timestamp 'now';

Miscellaneous language elements

17

Note: Please be advised that these shorthand expressions are evaluated immediately at parse time and stay the
same as long as the statement remains prepared. Thus, even if a query is executed multiple times, the value for
e.g. “timestamp 'now'” won't change, no matter how much time passes. If you need the value to progress (i.e.
be evaluated upon every call), use a full cast.

See also: CAST

CASE construct
Available in: DSQL, PSQL

Added in: 1.5

Description: A CASE construct returns exactly one value from a number of possibilities. There are two syntactic
variants:
• The simple CASE, comparable to a Pascal case or a C switch.
• The searched CASE, which works like a series of “if ... else if ... else if” clauses.

Simple CASE

Syntax:

CASE <test-expr>
 WHEN <expr> THEN result
 [WHEN <expr> THEN result ...]
 [ELSE defaultresult]
END

When this variant is used, <test-expr> is compared to <expr> 1, <expr> 2 etc., until a match is found, upon
which the corresponding result is returned. If there is no match and there is an ELSE clause, defaultresult
is returned. If there is no match and no ELSE clause, NULL is returned.

The match is determined with the “=” operator, so if <test-expr> is NULL, it won't match any of the <expr>s,
not even those that are NULL.

The results don't have to be literal values: they may also be field or variable names, compound expressions,
or NULL literals.

A shorthand form of the simple CASE construct is the DECODE() function, available since Firebird 2.1.

Example:

select name,
 age,
 case upper(sex)
 when 'M' then 'Male'
 when 'F' then 'Female'
 else 'Unknown'
 end,
 religion
from people

Miscellaneous language elements

18

Searched CASE

Syntax:

CASE
 WHEN <bool_expr> THEN result
 [WHEN <bool_expr> THEN result ...]
 [ELSE defaultresult]
END

Here, the <bool_expr>s are tests that give a ternary boolean result: TRUE, FALSE, or NULL. The first expression
evaluating to TRUE determines the result. If no expression is TRUE and there is an ELSE clause, defaultresult
is returned. If no expression is TRUE and there is no ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.

Example:

CanVote = case
 when Age >= 18 then 'Yes'
 when Age < 18 then 'No'
 else 'Unsure'
 end;

19

Chapter 5

Data types and subtypes

BIGINT data type

Added in: 1.5

Description: BIGINT is the SQL99-compliant 64-bit signed integer type. It is available in Dialect 3 only.

BIGINT numbers range from -263 .. 263-1, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.

Since Firebird 2.5, BIGINT numbers may be entered in hexadecimal form, with 9–16 hex digits. Shorter hex
numerals are interpreted as INTEGERs.

Examples:

create table WholeLottaRecords (
 id bigint not null primary key,
 description varchar(32)
)

insert into MyBigints values (
 -236453287458723,
 328832607832,
 22,
 -56786237632476,
 0x6F55A09D42, -- 478177959234
 0X7FFFFFFFFFFFFFFF, -- 9223372036854775807
 0xffffffffffffffff, -- -1
 0x80000000, -- -2147483648, an INTEGER
 0x080000000, -- 2147483648, a BIGINT
 0XFFFFFFFF, -- -1, an INTEGER
 0X0FFFFFFFF -- 4294967295, a BIGINT
)

The hexadecimal INTEGERs in the second example will be automatically cast to BIGINT before
insertion into the table. However, this happens after the numerical value has been established, so
0x80000000 (8 digits) and 0x080000000 (9 digits) will be stored as different values. For more
information on this difference, see Hexadecimal notation for numerals, in particular the paragraph
Value ranges.

Data types and subtypes

20

BLOB data type

Text BLOB support in functions and operators
Changed in: 2.1, 2.1.5, 2.5.1

Description: Text BLOBs of any length and character set (including multi-byte sets) are now supported by prac-
tically every internal text function and operator. In a few cases there are limitations or bugs.

Level of support:

• Full support for:

- = (assignment);
- =, <>, <, <=, >, >= and synonyms (comparison);
- || (concatenation);
- BETWEEN, IS [NOT] DISTINCT FROM, IN, ANY|SOME and ALL.

• Support for STARTING [WITH], LIKE and CONTAINING:

- In versions 2.1–2.1.4 and 2.5, an error is raised if the second operand is 32 KB or longer, or if the first
operand is a BLOB with character set NONE and the second operand is a BLOB of any length and character
set.

- In versions 2.5.1 and up (as well as 2.1.5 and up in the 2.1 branch), each operand can be a BLOB of any
length and character set.

• SELECT DISTINCT, ORDER BY and GROUP BY work on the BLOB ID, not the contents. This makes them as
good as useless, except that SELECT DISTINCT weeds out multiple NULLs, if present. GROUP BY behaves
oddly in that it groups together equal rows if they are adjacent, but not if they are apart.

• Any issues with BLOBs in internal functions and aggregate functions are discussed in their respective sections.

Various enhancements
Changed in: 2.0

Description: In Firebird 2.0, several enhancements have been implemented for text BLOBs:

• DML COLLATE clauses are now supported.

• Equality comparisons can be performed on the full BLOB contents.

• Character set conversions are possible when assigning a BLOB to a BLOB or a string to a BLOB.
When defining binary BLOBs, the mnemonic binary can now be used instead of the integer 0.

Examples:

select NameBlob from MyTable
 where NameBlob collate pt_br = 'João'

Data types and subtypes

21

create table MyPictures (
 id int not null primary key,
 title varchar(40),
 description varchar(200),
 picture blob sub_type binary
)

SQL_NULL data type
Added in: 2.5

Description: The SQL_NULL data type is of little or no interest to end users. It can hold no data, only a state:
NULL or NOT NULL. It is also not possible to declare columns, variables or PSQL parameters of type SQL_NULL.
At present, its only purpose is to support the “? IS NULL” syntax in SQL statements with positional parameters.
Application developers can make use of this when constructing queries that contain one or more optional filter
terms.

Syntax: If a statement containing the following predicate is prepared:

? <op> NULL

Firebird will describe the parameter ('?') as being of type SQL_NULL. <op> can be any comparison operator,
but the only one that makes sense in practice is “IS” (and possibly, in some rare cases, “NOT IS”).

Rationale

In itself, having a query with a “WHERE ? IS NULL” clause doesn't make a lot of sense. You could use such a
parameter as an on/off switch, but that hardly warrants inventing a whole new datataype. After all, such switches
can also be constructed with a CHAR, SMALLINT or other parameter type. The reason for adding the SQL_NULL
type is that developers of applications, connectivity toolsets, drivers etc. want to be able to support queries with
optional filters like these:

select make, model, weight, price, in_stock from automobiles
 where (make = :make or :make is null)
 and (model = :model or :model is null)
 and (price <= :maxprice or :maxprice is null)

The idea is that the end user can optionally enter choices for the parameters :make, :model and :maxprice.
Wherever a choice is entered, the corresponding filter should be applied. Wherever a parameter is left unset
(NULL), there should be no filtering on that attribute. If all are unset, the entire table AUTOMOBILES should
be shown.

Unfortunately, named parameters like :make and :model only exist on the application level. Before the query
is passed to Firebird for preparation, it must be converted to this form:

select make, model, weight, price, in_stock from automobiles
 where (make = ? or ? is null)
 and (model = ? or ? is null)
 and (price <= ? or ? is null)

Data types and subtypes

22

Instead of three named parameters, each occurring twice, we now have six positional parameters. There is no
way that Firebird can tell whether some of them actually refer to the same application-level variable. (The fact
that, in this example, they happen to be within the same pair of parentheses doesn't mean anything.) This in
turn means that Firebird also cannot determine the data type of the “? is null” parameters. This last problem
could be solved by casting:

select make, model, weight, price, in_stock from automobiles
 where (make = ? or cast(? as type of column automobiles.make) is null)
 and (model = ? or cast(? as type of column automobiles.model) is null)
 and (price <= ? or cast(? as type of column automobiles.price) is null)

...but this is rather cumbersome. And there is another issue: wherever a filter term is not NULL, its value will
be passed twice to the server: once in the parameter that is compared against the table column, and once in the
parameter that is tested for NULL. This is a bit of a waste. But the only alternative is to set up no less then eight
separate queries (2 to the power of the number of optional filters), which is even more of a headache. Hence the
decision to implement a dedicated SQL_NULL datatype.

Use in practice

Notice: The following discussion assumes familiarity with the Firebird API and the passing of parameters via
XSQLVAR structures. Readers without this knowledge won't have to deal with the SQL_NULL datatype anyway
and can skip this section.

As usual, the application passes the parameterized query in ?-form to the server. It is not possible to merge pairs
of “identical” parameters into one. So, for e.g. two optional filters, four positional parameters are needed:

select size, colour, price from shirts
 where (size = ? or ? is null)
 and (colour = ? or ? is null)

After the call to isc_dsql_describe_bind(), the sqltype of the 2nd and 4th parameter will be set to
SQL_NULL. As said, Firebird has no knowledge of their special relation with the 1st and 3d parameter – this is
entirely the responsibility of the programmer. Once the values for size and colour have been set (or left unset)
by the user and the query is about to be executed, each pair of XSQLVARs must be filled as follows:

User has filled in a value
• First parameter (value compare): set *sqldata to the supplied value and *sqlind to 0 (for NOT NULL);
• Second parameter (NULL test): set sqldata to null (null pointer, not SQL NULL) and *sqlind to 0

(for NOT NULL).

User has left the field blank
• Both parameters: set sqldata to null (null pointer, not SQL NULL) and *sqlind to -1 (indicating

NULL).

In other words: The value compare parameter is always set as usual. The SQL_NULL parameter is set the same,
except that sqldata remains null at all times.

New character sets
Added in: 1.0, 1.5, 2.0, 2.1, 2.5

Data types and subtypes

23

The following table lists the character sets added in Firebird.

Table 5.1. Character sets new in Firebird

Name Max bytes/ch. Languages Added in

CP943C 2 Japanese 2.1

DOS737 1 Greek 1.5

DOS775 1 Baltic 1.5

DOS858 1 = DOS850 plus € sign 1.5

DOS862 1 Hebrew 1.5

DOS864 1 Arabic 1.5

DOS866 1 Russian 1.5

DOS869 1 Modern Greek 1.5

GB18030 4 Chinese 2.5

GBK 2 Chinese 2.1

ISO8859_2 1 Latin-2, Central European 1.0

ISO8859_3 1 Latin-3, Southern European 1.5

ISO8859_4 1 Latin-4, Northern European 1.5

ISO8859_5 1 Cyrillic 1.5

ISO8859_6 1 Arabic 1.5

ISO8859_7 1 Greek 1.5

ISO8859_8 1 Hebrew 1.5

ISO8859_9 1 Latin-5, Turkish 1.5

ISO8859_13 1 Latin-7, Baltic Rim 1.5

KOI8R 1 Russian 2.0

KOI8U 1 Ukrainian 2.0

TIS620 1 Thai 2.1

UTF8 (*) 4 All 2.0

WIN1255 1 Hebrew 1.5

WIN1256 1 Arabic 1.5

WIN1257 1 Baltic 1.5

WIN1258 1 Vietnamese 2.0

WIN_1258 (alias for WIN1258) 1 Vietnamese 2.5
(*)In Firebird 1.5, UTF8 is an alias for UNICODE_FSS. This character set has some inherent problems. In Firebird 2, UTF8 is a character set
in its own right, without the drawbacks of UNICODE_FSS.

Data types and subtypes

24

Character set NONE handling changed
Changed in: 1.5.1

Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer transliteration errors. For more details, see the Note at
the end of the book.

New collations
Added in: 1.0, 1.5, 1.5.1, 2.0, 2.1, 2.5

The following table lists the collations added in Firebird. The “Details” column is based on what has been
reported in the Release Notes and other documents. The information in this column is probably incomplete; some
collations with an empty Details field may still be case insensitive (ci), accent insensitive (ai) or dictionary-sorted
(dic).

Please note that the default – binary – collations for new character sets are not listed here, as doing so would
add no meaningful information.

Table 5.2. Collations new in Firebird

Character set Collation Language Details Added in

CP943C CP943C_UNICODE Japanese 2.1

GB18030 GB18030_UNICODE Chinese 2.5

GBK GBK_UNICODE Chinese 2.1

ES_ES_CI_AI Spanish ci, ai 2.0

FR_FR_CI_AI French ci, ai 2.1

ISO8859_1

PT_BR Brazilian Portuguese ci, ai 2.0

CS_CZ Czech 1.0

ISO_HUN Hungarian 1.5

ISO8859_2

ISO_PLK Polish 2.0

ISO8859_13 LT_LT Lithuanian 1.5.1

UCS_BASIC All 2.0

UNICODE All dic 2.0

UNICODE_CI All ci 2.1

UTF8

UNICODE_CI_AI All ci, ai 2.5

Data types and subtypes

25

Character set Collation Language Details Added in

BS_BA Bosnian 2.0

PXW_HUN Hungarian ci 1.0

WIN_CZ Czech ci 2.0

WIN1250

WIN_CZ_CI_AI Czech ci, ai 2.0

WIN1251 WIN1251_UA Ukrainian and Russian 1.5

WIN1252 WIN_PTBR Brazilian Portuguese ci, ai 2.0

WIN1257_EE Estonian dic 2.0

WIN1257_LT Lithuanian dic 2.0

WIN1257

WIN1257_LV Latvian dic 2.0

KOI8R KOI8R_RU Russian dic 2.0

KOI8U KOI8U_UA Ukrainian dic 2.0

TIS620 TIS620_UNICODE Thai 2.1

A note on the UTF8 collations

The UCS_BASIC collation sorts in Unicode code-point order: A, B, a, b, á... This is exactly the same as UTF8
with no collation specified. UCS_BASIC was added to comply with the SQL standard.

The UNICODE collation sorts using UCA (Unicode Collation Algorithm): a, A, á, b, B...

UNICODE_CI is truly case-insensitive. In a search for e.g. 'Apple', it will also find 'apple', 'APPLE' and 'aPPLe'.

UNICODE_CI_AI is accent-insensitive as well. According to this collation, 'APPEL' equals 'Appèl'.

Unicode collations for all character sets

Added in: 2.1

Firebird now comes with UNICODE collations for all the standard character sets. However, except for the ones
listed in the new collations table in the previous section, these collations are not automatically available in your
databases. Instead, they must be added with the CREATE COLLATION statement, like this:

create collation ISO8859_1_UNICODE for ISO8859_1

The new Unicode collations all have the name of their character set with _UNICODE added. (The built-in Unicode
collations for UTF8 are the exception to the rule.) They are defined, along with the other collations, in the manifest
file fbintl.conf in Firebird's intl subdirectory.

Collations may also be registered under a user-chosen name, e.g.:

create collation LAT_UNI for ISO8859_1 from external ('ISO8859_1_UNICODE')

See CREATE COLLATION for the full syntax.

26

Chapter 6

DDL statements
The statements in this chapter are grouped by the type of database object they operate on. For instance, ALTER
DATABASE, CREATE DATABASE and DROP DATABASE are all found under DATABASE; DECLARE EXTER-
NAL FUNCTION and ALTER EXTERNAL FUNCTION are under EXTERNAL FUNCTION; etc.

CHARACTER SET

ALTER CHARACTER SET

Available in: DSQL

Added in: 2.5

Description: With ALTER CHARACTER SET, the default collation of a character set can be changed. This will
affect all future usage of the character set, except where overridden by an explicit COLLATE clause. The collation
of existing domains, columns and PSQL variables will not be changed.

Syntax:

ALTER CHARACTER SET charset SET DEFAULT COLLATION collation

Example:

alter character set utf8 set default collation unicode_ci_ai

Notes:

• If you use SET DEFAULT COLLATION on the default character set of the database, you have effectively set
(or overridden) the default collation for the database.

• If you use SET DEFAULT COLLATION on the connection character set, string constants will be interpreted
according to the new default collation (unless character set and/or collation are overridden). In most situations,
this will make no difference, but comparisons may have another outcome if the collation changes.

COLLATION

CREATE COLLATION

Available in: DSQL

DDL statements

27

Added in: 2.1

Changed in: 2.5

Description: Adds a collation to the database. The collation must already be present on your system (typically
in a library file) and must be properly registered in a .conf file in the intl subdirectory of your Firebird
installation. You may also base the collation on one that is already present in the database.

Syntax:

CREATE COLLATION collname
 FOR charset
 [FROM basecoll | FROM EXTERNAL ('extname')]
 [NO PAD | PAD SPACE]
 [CASE [IN]SENSITIVE]
 [ACCENT [IN]SENSITIVE]
 ['<specific-attributes>']

collname ::= the name to use for the new collation
charset ::= a character set present in the database
basecoll ::= a collation already present in the database
extname ::= the collation name used in the .conf file
<specific-attributes> ::= <attribute> [; <attribute> ...]
<attribute> ::= attrname=attrvalue

• If no FROM clause is present, Firebird will scan the .conf file(s) in your intl subdirectory for a
collation with the name specified after CREATE COLLATION. That is, omitting the FROM clause
is the same as specifying “FROM EXTERNAL ('collname')”.

• The single-quoted extname is case-sensitive and must be exactly equal to the collation name in
the .conf file. The collname, charset and basecoll parameters are case-insensitive, unless
surrounded by double-quotes.

Specific attributes: The table below lists the available specific attributes. Not all specific attributes apply to every
collation, even if specifying them doesn't cause an error. Please note that specific attributes are case sensitive.
In the table below, “1 bpc” indicates that an attribute is valid for collations of character sets using 1 byte per
character (so-called narrow character sets). “UNI” stands for “UNICODE collations”.

Table 6.1. Specific collation attributes

Name Values Valid for Comment

DISABLE-COMPRES-
SIONS

0, 1 1 bpc Disables compressions (aka contractions). Compres-
sions cause certain character sequences to be sorted as
atomic units, e.g. Spanish c+h as a single character ch.

DISABLE-EXPAN-
SIONS

0, 1 1 bpc Disables expansions. Expansions cause certain char-
acters (e.g. ligatures or umlauted vowels) to be treated
as character sequences and sorted accordingly.

ICU-VERSION default
or M.m

UNI Specifies the ICU library version to use. Valid
values are the ones defined in the applicable
<intl_module> element in intl/fbintl.conf.
Format: either the string literal “default” or a ma-
jor+minor version number like “3.0” (both unquoted).

DDL statements

28

Name Values Valid for Comment

LOCALE xx_YY UNI Specifies the collation locale. Requires complete ver-
sion of ICU libraries. Format: a locale string like
“du_NL” (unquoted).

MULTI-LEVEL 0, 1 1 bpc Uses more than one ordering level.

NUMERIC-SORT 0, 1 UNI Treats contiguous groups of decimal digits in the
string as atomic units and sorts them numerically.
(This is also known as natural sorting.)

SPECIALS-FIRST 0, 1 1 bpc Orders special characters (spaces, symbols etc.) before
alphanumeric characters.

Note: The NUMERIC-SORT specific attribute was added in Firebird 2.5.

Examples:

Simplest form, using the name as found in the .conf file (case-insensitive):

create collation iso8859_1_unicode for iso8859_1

Using a custom name. Notice how the “external” name must now exactly match the name in the
.conf file:

create collation lat_uni
 for iso8859_1
 from external ('ISO8859_1_UNICODE')

Based on a collation already present in the database:

create collation es_es_nopad_ci
 for iso8859_1
 from es_es
 no pad
 case insensitive

With a special attribute (case-sensitive!):

create collation es_es_ci_compr
 for iso8859_1
 from es_es
 case insensitive
 'DISABLE-COMPRESSIONS=0'

Tip

If you want to add a new character set with its default collation in your database, declare and run the stored pro-
cedure sp_register_character_set(name, max_bytes_per_character), found in misc/intl.
sql under your Firebird installation directory. Please note: in order for this to work, the character set must be
present on your system and registered in a .conf file in the intl subdirectory.

DDL statements

29

DROP COLLATION

Available in: DSQL

Added in: 2.1

Description: Removes a collation from the database. Only user-added collations can be removed in this way.

Syntax:

DROP COLLATION name

Tip

If you want to remove an entire character set with all its collations from your database, declare and run the
stored procedure sp_unregister_character_set(name), found in misc/intl.sql under your Firebird
installation directory.

COMMENT

Available in: DSQL

Added in: 2.0

Description: Allows you to enter comments for metadata objects. The comments will be stored in the various
RDB$DESCRIPTION text BLOB fields in the system tables, from where client applications can pick them up.

Syntax:

COMMENT ON <object> IS {'sometext' | NULL}

<object> ::= DATABASE
 | <basic-type> objectname
 | COLUMN relationname.fieldname
 | PARAMETER procname.paramname

<basic-type> ::= CHARACTER SET | COLLATION | DOMAIN | EXCEPTION
 | EXTERNAL FUNCTION | FILTER | GENERATOR | INDEX
 | PROCEDURE | ROLE | SEQUENCE | TABLE | TRIGGER | VIEW

Note

If you enter an empty comment (''), it will end up as NULL in the database.

Examples:

comment on database is 'Here''s where we keep all our customer records.'

comment on table Metals is 'Also for alloys'

DDL statements

30

comment on column Metals.IsAlloy is '0 = pure metal, 1 = alloy'

comment on index ix_sales is 'Set inactive during bulk inserts!'

DATABASE

CREATE DATABASE

Available in: DSQL, ESQL

Syntax (partial):

CREATE {DATABASE | SCHEMA}
 ...
 [PAGE_SIZE [=] size]
 ...
 [DEFAULT CHARACTER SET charset [COLLATION collation]]
 ...
 [DIFFERENCE FILE 'filepath']

size ::= 4096 | 8192 | 16384

• If the user supplies a size smaller than 4096, it will be silently converted to 4096. Other numbers
not equal to any of the supported sizes will be silently converted to the next lower supported size.

16 Kb page size supported, 1 and 2 Kb deprecated

Changed in: 1.0, 2.1

Description: Firebird 1.0 has raised the maximum database page size from 8192 to 16384 bytes. In Firebird 2.1
and up, page sizes 1024 and 2048 are deprecated as inefficient. Firebird will no longer create databases with
these page sizes, but it will connect to existing small-page databases without any problem.

Default collation for the database

Added in: 2.5

Description: In Firebird 2.5 and up, you can specify a collation with the default character set, as shown in the
Syntax block above. If present, this collation will become the default collation for the default character set (and
hence for the entire database, except where another character set is used).

Example:

create database "colltest.fdb" default character set iso8859_1 collation du_nl

Please notice: The keyword to use here is COLLATION, not the usual COLLATE.

DDL statements

31

DIFFERENCE FILE parameter

Added in: 2.0

Description: The DIFFERENCE FILE parameter was added in Firebird 2.0, but not documented at the time. For
a full description, see ALTER DATABASE :: ADD DIFFERENCE FILE.

ALTER DATABASE

Available in: DSQL, ESQL

Description: Alters a database's file organisation or toggles its “safe-to-copy” state.

Syntax:

ALTER {DATABASE | SCHEMA}
 [<add_sec_clause> [<add_sec_clause> ...]]
 [ADD DIFFERENCE FILE 'filepath' | DROP DIFFERENCE FILE]
 [{BEGIN | END} BACKUP]

<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]

<sec_file> ::= FILE 'filepath'
 [STARTING [AT [PAGE]] pagenum]
 [LENGTH [=] num [PAGE[S]]

The DIFFERENCE FILE and BACKUP clauses, added in Firebird 2.0, are not available in ESQL.

BEGIN BACKUP

Available in: DSQL

Added in: 2.0

Description: Freezes the main database file so that it can be backed up safely by filesystem means, even while
users are connected and perform operations on the data. Any mutations to the database will be written to a
separate file, the delta file. Contrary to what the syntax suggests, this statement does not initiate the backup
itself; it merely creates the conditions.

Example:

alter database begin backup

END BACKUP

Available in: DSQL

Added in: 2.0

DDL statements

32

Description: Merges the delta file back into the main database file and restores the normal state of operation,
thus closing the time window during which safe backups could be made via the filesystem. (Safe backups with
gbak are still possible.)

Example:

alter database end backup

Tip

Instead of BEGIN and END BACKUP, consider using Firebird's nbackup tool: it can freeze and unfreeze the
main database file as well as make full and incremental backups. A manual for nbackup is available via the
Firebird Documentation Index.

ADD DIFFERENCE FILE

Available in: DSQL

Added in: 2.0

Description: Presets path and name of the delta file to which mutations are written when the database goes into
“copy-safe” mode after an ALTER DATABASE BEGIN BACKUP command.

Example:

alter database add difference file 'C:\Firebird\Databases\Fruitbase.delta'

Notes:

• This statement doesn't really add any file. It just overrides the default path and name for the delta file that
will be created if and when the database enters copy-safe mode.

• If you provide a relative path or a bare filename here, it will be appended to the current directory as seen
from the server. On Windows, this is often the system directory.

• If you want to change an existing setting, DROP the old one first and then ADD the new one.

• When not overridden, the delta file gets the same path and filename as the database itself, but with the ex-
tension .delta

DROP DIFFERENCE FILE

Available in: DSQL

Added in: 2.0

Description: Removes the delta file path and name that were previously set with ALTER DATABASE ADD
DIFFERENCE FILE. This statement doesn't really drop a file. It only erases the preset path and/or filename that
would otherwise have been used the next time the database went into copy-safe mode, and reverts to the default
behaviour.

Example:

alter database drop difference file

http://www.firebirdsql.org/en/documentation/

DDL statements

33

DOMAIN

CREATE DOMAIN

Available in: DSQL, ESQL

Context variables as defaults

Changed in: IB

Description: Any context variable that is assignment-compatible to the new domain's datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

create domain DDate as
 date
 default current_date
 not null

ALTER DOMAIN

Available in: DSQL, ESQL

Warning

If a domain's definition is changed, existing PSQL code using that domain may become invalid. For information
on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

Rename domain

Added in: IB

Description: Renaming of a domain is possible with the TO clause. This feature was introduced in InterBase 6,
but left out of the Language Reference.

Example:

alter domain posint to plusint

• The TO clause can be combined with other clauses and need not come first in that case.

SET DEFAULT to any context variable

Changed in: IB

DDL statements

34

Description: Any context variable that is assignment-compatible to the domain's datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter domain DDate
 set default current_date

EXCEPTION

CREATE EXCEPTION

Available in: DSQL, ESQL

Message length increased

Changed in: 2.0

Description: In Firebird 2.0 and higher, the maximum length of the exception message has been raised from
78 to 1021.

Example:

create exception Ex_TooManyManagers
 'Too many managers: An attempt was made to create more managers than the
 maximum defined in the Limits table. If you really need to create more
 managers than you have now, raise the limit first. However, please consult
 your department''s manager before doing so. Otherwise, your decision may
 be overturned later and the additional manager(s) removed.'

Note

The maximum exception message length depends on a certain system table field. Therefore, pre-2.0 databases
need to be backed up and restored under Firebird 2.x before they can store exception messages of up to 1021
bytes.

CREATE OR ALTER EXCEPTION

Available in: DSQL

Added in: 2.0

Description: If the exception does not yet exist, it is created just as if CREATE EXCEPTION were used. If it
already exists, it is altered. Existing dependencies are preserved.

Syntax: Exactly the same as for CREATE EXCEPTION.

DDL statements

35

RECREATE EXCEPTION

Available in: DSQL

Added in: 2.0

Description: Creates or recreates an exception. If an exception with the same name already exists, RECREATE
EXCEPTION will try to drop it and create a new exception. This wlll fail if there are existing dependencies on
the exception.

Syntax: Exactly the same as CREATE EXCEPTION.

Note

If you use RECREATE EXCEPTION on an exception that has dependent objects, you may not get an error
message until you try to commit your transaction.

EXTERNAL FUNCTION

DECLARE EXTERNAL FUNCTION

Available in: DSQL, ESQL

Description: This statement makes an external function (UDF) available in the database.

Syntax:

DECLARE EXTERNAL FUNCTION localname
 [<arg_type_decl> [, <arg_type_decl> ...]]
 RETURNS {<return_type_decl> | PARAMETER 1-based_pos} [FREE_IT]
 ENTRY_POINT 'function_name' MODULE_NAME 'library_name'

<arg_type_decl> ::= sqltype [BY DESCRIPTOR] | CSTRING(length)
<return_type_decl> ::= sqltype [BY {DESCRIPTOR|VALUE}] | CSTRING(length)

Restrictions

• The BY DESCRIPTOR passing method is not supported in ESQL.

You may choose localname freely; this is the name by which the function will be known to your database.
You may also vary the length argument of CSTRING parameters (more about CSTRINGs in the note near the
end of the book).

BY DESCRIPTOR parameter passing

Available in: DSQL

Added in: 1.0

DDL statements

36

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLs in a meaningful way. Notice that this only works if the person who wrote the function
has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work – on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n

Available in: DSQL, ESQL

Added in: IB 6

Description: In order to return a BLOB, an extra input parameter must be declared and a “RETURNS PARAMETER
n” clause added – n being the position of said parameter. This clause dates back to InterBase 6 beta, but somehow
didn't make it into the Language Reference (it is documented in the Developer's Guide though).

ALTER EXTERNAL FUNCTION

Available in: DSQL

Added in: 2.0

Description: Alters an external function's module name and/or entry point. Existing dependencies are preserved.

Syntax:

ALTER EXTERNAL FUNCTION funcname
 <modification> [<modification>]

<modification> ::= ENTRY_POINT 'new-entry-point'
 | MODULE_NAME 'new-module-name'

Example:

alter external function Phi module_name 'NewUdfLib'

FILTER

DECLARE FILTER

Available in: DSQL, ESQL

Changed in: 2.0

Description: Makes a BLOB filter available to the database.

Syntax:

DECLARE FILTER filtername
 INPUT_TYPE <sub_type> OUTPUT_TYPE <sub_type>
 ENTRY_POINT 'function_name' MODULE_NAME 'library_name'

DDL statements

37

<sub_type> ::= number | <mnemonic>
<mnemonic> ::= binary | text | blr | acl | ranges | summary | format
 | transaction_description | external_file_description
 | user_defined

• In Firebird 2 and up, no two BLOB filters in a database may have the same combination of input
and output type. Declaring a filter with an already existing input-output type combination will fail.
Restoring pre-2.0 databases that contain such “duplicate” filters will also fail.

• The possibility to indicate the BLOB types with their mnemonics instead of numbers was added
in Firebird 2. The binary mnemonic for subtype 0 was also added in Firebird 2. The predefined
mnemonics are case-insensitive.

Example:

declare filter Funnel
 input_type blr output_type text
 entry_point 'blr2asc' module_name 'myfilterlib'

User-defined mnemonics: If you want to define mnemonics for your own BLOB subtypes, you can add them
to the RDB$TYPES system table as shown below. Once committed, the mnemonics can be used in subsequent
filter declarations.

insert into rdb$types (rdb$field_name, rdb$type, rdb$type_name)
 values ('RDB$FIELD_SUB_TYPE', -33, 'MIDI')

The value for rdb$field_name must always be 'RDB$FIELD_SUB_TYPE'. If you define your mnemonics in
all-uppercase, you can use them case-insensitively and unquoted in your filter declarations.

INDEX

CREATE INDEX

Available in: DSQL, ESQL

Description: Creates an index on a table for faster searching, sorting and/or grouping.

Syntax:

CREATE [UNIQUE] [ASC[ENDING] | [DESC[ENDING]] INDEX indexname
 ON tablename
 { (<col> [, <col> ...]) | COMPUTED BY (expression) }

<col> ::= a column not of type ARRAY, BLOB or COMPUTED BY

UNIQUE indices now allow NULLs

Changed in: 1.5

Description: In compliance with the SQL-99 standard, NULLs – even multiple – are now allowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints

DDL statements

38

now allow NULLs. As far as NULLs are concerned, the rules for unique indices are exactly the same as those
for unique keys.

Indexing on expressions

Added in: 2.0

Description: Instead of one or more columns, you can now also specify a single COMPUTED BY expression in
an index definition. Expression indices will be used in appropriate queries, provided that the expression in the
WHERE, ORDER BY or GROUP BY clause exactly matches the expression in the index definition. Multi-segment
expression indices are not supported, but the expression itself may involve multiple columns.

Examples:

create index ix_upname on persons computed by (upper(name));
commit;

-- the following queries will use ix_upname:
select * from persons order by upper(name);
select * from persons where upper(name) starting with 'VAN';
delete from persons where upper(name) = 'BROWN';
delete from persons where upper(name) = 'BROWN' and age > 65;

create descending index ix_events_yt
 on MyEvents
 computed by (extract(year from StartDate) || Town);
commit;

-- the following query will use ix_events_yt:
select * from MyEvents
 order by extract(year from StartDate) || Town desc;

Maximum index key length increased

Changed in: 2.0

Description: The maximum length of index keys, which used to be fixed at 252 bytes, is now equal to 1/4 of
the page size, i.e. varying from 256 to 4096. The maximum indexable string length in bytes is 9 less than the
key length. The table below shows the indexable string lengths in characters for the various page sizes and
character sets.

Table 6.2. Maximum indexable (VAR)CHAR length

Maximum indexable string length per charset typePage size

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char

1024 247 123 82 61

2048 503 251 167 125

4096 1015 507 338 253

8192 2039 1019 679 509

16384 4087 2043 1362 1021

DDL statements

39

Maximum number of indices per table increased

Changed in: 1.0.3, 1.5, 2.0

Description: The maximum number of 65 indices per table has been removed in Firebird 1.0.3, reintroduced at
the higher level of 257 in Firebird 1.5, and removed once again in Firebird 2.0.

Although there is no longer a “hard” ceiling, the number of indices creatable in practice is still limited by the
database page size and the number of columns per index, as shown in the table below.

Table 6.3. Max. indices per table, Firebird 2.0

Number of indices depending on column countPage size

1 col 2 cols 3 cols

1024 50 35 27

2048 101 72 56

4096 203 145 113

8192 408 291 227

16384 818 584 454

Please be aware that under normal circumstances, even 50 indices is way too many and will drastically reduce
mutation speeds. The maximum was removed to accommodate data-warehousing applications and the like,
which perform lots of bulk operations with the indices temporarily inactivated.

For a full table also including Firebird versions 1.0–1.5, see the Notes at the end of the book.

PROCEDURE

A stored procedure (SP) is a code module that can be called by the client, by another stored procedure, an
executable block or a trigger. Stored procedures, executable blocks and triggers are written in Procedural SQL
(PSQL). Most SQL statements are also available in PSQL, sometimes with restrictions or extensions. Notable
exceptions are DDL and transaction control statements.

Stored procedures can accept and return multiple parameters.

CREATE PROCEDURE

Available in: DSQL, ESQL

Description: Creates a stored procedure.

DDL statements

40

Syntax:

CREATE PROCEDURE procname
 [(<inparam> [, <inparam> ...])]
 [RETURNS (<outparam> [, <outparam> ...])]
AS
 [<declarations>]
BEGIN
 [<PSQL statements>]
END

<inparam> ::= <param_decl> [{= | DEFAULT} value]
<outparam> ::= <param_decl>
<param_decl> ::= paramname <type> [NOT NULL] [COLLATE collation]
<type> ::= sql_datatype | [TYPE OF] domain | TYPE OF COLUMN rel.col
<declarations> ::= See PSQL::DECLARE for the exact syntax

/* If sql_datatype is a string type, it may include a character set */

TYPE OF COLUMN in parameter and variable declarations

Added in: 2.5

Description: Analogous to the “TYPE OF domain” syntax supported since version 2.1, it is now also possible to
declare variables and parameters as having the type of an existing table or view column. Only the type itself is
used; in the case of string types, this includes the character set and the collation. Constraints and default values
are never copied from the source column.

Example:

/* Assuming DDL autocommit and connection charset UTF8 */

create domain dphrase as
 varchar(200) character set utf8 collate unicode_ci_ai;

create table phrases (phrase dphrase);

set term #;
create procedure equalphrases (a type of column phrases.phrase,
 b type of column phrases.phrase)
 returns (res varchar(30))
as
begin
 if (a = b) then res = 'Yes'; else res = 'No';
 suspend;
end#
set term ;#

select res from equalphrases('Appel', 'appèl');

-- result is 'Yes'

DDL statements

41

Warnings

• For text types, character set and collation are included by TYPE OF COLUMN – just as when [TYPE OF]
<domain> is used. However, due to a bug, the collation is not always taken into consideration when com-
parisons (e.g. equality tests) are made. In cases where the collation is of importance, test your code thor-
oughly before deploying! This bug is fixed for Firebird 3.

• If the column's type is changed at a later time, PSQL code using that column may become invalid. For
information on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this
document.

Domains supported in parameter and variable declarations

Changed in: 2.1

Description: Firebird 2.1 and up support the use of domains instead of SQL datatypes when declaring input/out-
put parameters and local variables. With the “TYPE OF” modifier, only the domain's type is used – not its NOT
NULL setting, CHECK constraint and/or default value. If the domain is of a text type, its character set and col-
lation are always preserved.

Example:

create domain bool3
 smallint
 check (value is null or value in (0,1));

create domain bigposnum
 bigint
 check (value >= 0);

/* Determines if A is a multiple of B: */
set term #;
create procedure ismultiple (a bigposnum, b bigposnum)
 returns (res bool3)
as
 declare ratio type of bigposnum; -- ratio is a bigint
 declare remainder type of bigposnum; -- so is remainder
begin
 if (a is null or b is null) then res = null;
 else if (b = 0) then
 begin
 if (a = 0) then res = 1; else res = 0;
 end
 else
 begin
 ratio = a / b; -- integer division!
 remainder = a - b*ratio;
 if (remainder = 0) then res = 1; else res = 0;
 end
end#
set term ;#

Warning

If a domain's definition is changed, existing PSQL code using that domain may become invalid. For information
on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

DDL statements

42

COLLATE in variable and parameter declarations

Changed in: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example:

create procedure SpanishToDutch
 (es_1 varchar(20) character set iso8859_1 collate es_es,
 es_2 my_char_domain collate es_es)
returns
 (nl_1 varchar(20) character set iso8859_1 collate du_nl,
 nl_2 my_char_domain collate du_nl)
as
declare s_temp varchar(100) character set utf8 collate unicode;
begin
 ...
 ...
end

NOT NULL in variable and parameter declarations

Changed in: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in declarations of input/output parameters and
local variables.

Example:

create procedure RegisterOrder
 (order_no int not null, description varchar(200) not null)
returns
 (ticket_no int not null)
as
declare temp int not null;
begin
 ...
 ...
end

Default argument values

Changed in: 2.0

Description: It is now possible to provide default values for stored procedure arguments, allowing the caller to
omit one or more items (possibly even all) from the end of the argument list.

DDL statements

43

Syntax:

CREATE PROCEDURE procname (<inparam> [, <inparam> ...])
 ...

<inparam> ::= paramname datatype [{= | DEFAULT} value]

Important: If you provide a default value for a parameter, you must do the same for any and all
parameters following it.

BEGIN ... END blocks may be empty

Changed in: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create procedure grab_ints (a integer, b integer)
as
begin
end

ALTER PROCEDURE

Available in: DSQL, ESQL

Default argument values

Added in: 2.0

Description: You can now provide default values for stored procedure arguments, allowing the caller to omit
one or more items from the end of the argument list. See CREATE PROCEDURE for syntax and details.

Example:

alter procedure TestProc
 (a int, b int default 1007, s varchar(12) = '-')
 ...

Classic Server: Altered procedure immediately visible to other clients

Changed in: 2.5

Description: Traditionally, when a client used ALTER PROCEDURE on a Classic server, other clients would
keep seeing (and possibly executing) the old version for the duration of their connection. This has been fixed in
2.5. Now, all clients see the new version as soon as the changes have been committed.

DDL statements

44

COLLATE in variable and parameter declarations

Changed in: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables. See CREATE PROCEDURE for syntax and details.

Domains supported in parameter and variable declarations

Changed in: 2.1

Description: Firebird 2.1 and up support the use of domains instead of SQL datatypes when declaring input/out-
put parameters and local variables. See CREATE PROCEDURE for syntax and details.

NOT NULL in variable and parameter declarations

Changed in: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in declarations of input/output parameters and
local variables. See CREATE PROCEDURE for syntax and details.

Restriction on altering used procedures

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

TYPE OF COLUMN in parameter and variable declarations

Added in: 2.5

Description: Analogous to the “TYPE OF domain” syntax supported since version 2.1, it is now also possible
to declare variables and parameters as having the type of an existing table or view column. See CREATE PRO-
CEDURE for syntax and details.

CREATE OR ALTER PROCEDURE

Available in: DSQL

Added in: 1.5

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
already exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

DDL statements

45

Syntax: Exactly the same as for CREATE PROCEDURE.

DROP PROCEDURE

Available in: DSQL, ESQL

Restriction on dropping used procedures

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE PROCEDURE

Available in: DSQL

Added in: 1.0

Description: Creates or recreates a stored procedure. If a procedure with the same name already exists, RECRE-
ATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if the ex-
isting SP is in use.

Syntax: Exactly the same as CREATE PROCEDURE.

Restriction on recreating used procedures

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

SEQUENCE or GENERATOR

CREATE SEQUENCE

Available in: DSQL

Added in: 2.0

DDL statements

46

Description: Creates a new sequence or generator. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. CREATE SEQUENCE is fully equivalent to CREATE GENERATOR
and is the recommended syntax from Firebird 2.0 onward.

Syntax:

CREATE SEQUENCE sequence-name

Example:

create sequence seqtest

Because internally sequences and generators are the same thing, you can freely mix the generator and sequence
syntaxes, even when operating on the same object. This is not recommended however.

Sequences (or generators) are always stored as 64-bit integer values, regardless of the database dialect. However:

• If the client dialect is set to 1, the server passes generator values as truncated 32-bit values to the client.
• If generator values are fed into a 32-bit field or variable, all goes well until the actual value exceeds the 32-bit

range. At that point, a dialect 3 database will raise an error whereas a dialect 1 database will silently truncate
the value (which could also lead to an error, e.g. if the receiving field has a unique key defined on it).

See also: ALTER SEQUENCE, NEXT VALUE FOR, DROP SEQUENCE

CREATE GENERATOR

Available in: DSQL, ESQL

Better alternative: CREATE SEQUENCE

CREATE SEQUENCE preferred

Changed in: 2.0

Description: From Firebird 2.0 onward, the SQL-compliant CREATE SEQUENCE syntax is preferred.

Maximum number of generators significantly raised

Changed in: 1.0

Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K
pages) – 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

ALTER SEQUENCE

Available in: DSQL

Added in: 2.0

DDL statements

47

Description: (Re)initializes a sequence or generator to the given value. SEQUENCE is the SQL-compliant term
for what InterBase and Firebird have always called a generator. “ALTER SEQUENCE ... RESTART WITH” is fully
equivalent to “SET GENERATOR ... TO” and is the recommended syntax from Firebird 2.0 onward.

Syntax:

ALTER SEQUENCE sequence-name RESTART WITH <newval>

<newval> ::= A signed 64-bit integer value.

Example:

alter sequence seqtest restart with 0

Warning

Careless use of ALTER SEQUENCE is a mighty fine way of screwing up your database! Under normal circum-
stances you should only use it right after CREATE SEQUENCE, to set the initial value.

See also: CREATE SEQUENCE

SET GENERATOR

Available in: DSQL, ESQL

Better alternative: ALTER SEQUENCE

Description: (Re)initializes a generator or sequence to the given value. From Firebird 2 onward, the SQL-com-
pliant ALTER SEQUENCE syntax is preferred.

Syntax:

SET GENERATOR generator-name TO <new-value>

<new-value> ::= A 64-bit integer.

Warning

Once a generator or sequence is up and running, you should not tamper with its value (other than retrieving
next values with GEN_ID or NEXT VALUE FOR) unless you know exactly what you are doing.

DROP SEQUENCE

Available in: DSQL

Added in: 2.0

Description: Removes a sequence or generator from the database. Its (very small) storage space will be freed for
re-use after a backup-restore cycle. SEQUENCE is the SQL-compliant term for what InterBase and Firebird have
always called a generator. DROP SEQUENCE is fully equivalent to DROP GENERATOR and is the recommended
syntax from Firebird 2.0 onward.

DDL statements

48

Syntax:

DROP SEQUENCE sequence-name

Example:

drop sequence seqtest

See also: CREATE SEQUENCE

DROP GENERATOR

Available in: DSQL

Added in: 1.0

Better alternative: DROP SEQUENCE

Description: Removes a generator or sequence from the database. Its (very small) storage space will be freed
for re-use after a backup-restore cycle.

Syntax:

DROP GENERATOR generator-name

From Firebird 2.0 onward, the SQL-compliant DROP SEQUENCE syntax is preferred.

TABLE

CREATE TABLE

Available in: DSQL, ESQL

Global Temporary Tables (GTTs)

Added in: 2.1

Description: Global temporary tables have persistent metadata, but their contents are transaction-bound (the
default) or connection-bound. Every transaction or connection has its own private instance of a GTT, isolated
from all the others. Instances are only created if and when the GTT is referenced, and destroyed upon transaction
end or disconnection. To modify or remove a GTT's metadata, ALTER TABLE and DROP TABLE can be used.

Syntax:

CREATE GLOBAL TEMPORARY TABLE name
 (column_def [, column_def | table_constraint ...])
 [ON COMMIT {DELETE | PRESERVE} ROWS]

DDL statements

49

• ON COMMIT DELETE ROWS creates a transaction-level GTT (the default), ON COMMIT PRE-
SERVE ROWS a connection-level GTT.

• An EXTERNAL [FILE] clause is not allowed on a global temporary table.

Restrictions: GTTs can be “dressed up” with all the features and paraphernalia of ordinary tables (keys, refer-
ences, indices, triggers...) but there are a few restrictions:

• GTTs and regular tables cannot reference one another.

• A connection-bound (“PRESERVE ROWS”) GTT cannot reference a transaction-bound (“DELETE ROWS”)
GTT.

• Domain constraints cannot reference any GTT.

• The destruction of a GTT instance at the end of its life cycle does not cause any before/after delete triggers
to fire.

Example:

create global temporary table MyConnGTT (
 id int not null primary key,
 txt varchar(32),
 ts timestamp default current_timestamp
)
on commit preserve rows;

commit;

create global temporary table MyTxGTT (
 id int not null primary key,
 parent_id int not null references MyConnGTT(id),
 txt varchar(32),
 ts timestamp default current_timestamp
);

commit;

Tip

In an existing database, it's not always easy to tell a regular table from a GTT, or a transaction-level GTT from
a connection-level GTT. Use this query to find out a table's type:

select t.rdb$type_name
 from rdb$relations r
 join rdb$types t on r.rdb$relation_type = t.rdb$type
 where t.rdb$field_name = 'RDB$RELATION_TYPE'
 and r.rdb$relation_name = 'TABLENAME'

Or, for an overview of all your relations:

select r.rdb$relation_name, t.rdb$type_name
 from rdb$relations r
 join rdb$types t on r.rdb$relation_type = t.rdb$type
 where t.rdb$field_name = 'RDB$RELATION_TYPE'
 and coalesce (r.rdb$system_flag, 0) = 0

DDL statements

50

GENERATED ALWAYS AS

Added in: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAYS AS for computed fields.

Syntax:

colname [coltype] GENERATED ALWAYS AS (expression)

Example:

create table Persons (
 id int primary key,
 firstname varchar(24) not null,
 middlename varchar(24),
 lastname varchar(24) not null,
 fullname varchar(74) generated always as
 (firstname || coalesce(' ' || middlename, '') || ' ' || lastname),
 street varchar(32),
 ...
 ...
)

Note: GENERATED ALWAYS AS is not currently supported in index definitions.

CHECK accepts NULL outcome

Changed in: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLs pass and only consider the check failed if the
outcome is false.

Example:

Checks like these:

check (value > 10000)

check (Town like 'Amst%')

check (upper(value) in ('A', 'B', 'X'))

check (Minimum <= Maximum)

all fail in pre-2.0 Firebird versions if the value to be checked is NULL. In 2.0 and above they succeed.

Warning

This change may cause existing databases to behave differently when migrated to Firebird 2.0+. Carefully
examine your CREATE/ALTER TABLE statements and add “and XXX is not null” predicates to your
CHECKs if they should continue to reject NULL input.

DDL statements

51

Context variables as column defaults

Changed in: IB

Description: Any context variable that is assignment-compatible to the column datatype can be used as a default.
This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

create table MyData (
 id int not null primary key,
 record_created timestamp default current_timestamp,
 ...
)

FOREIGN KEY without target column references PK

Changed in: IB

Description: If you create a foreign key without specifying a target column, it will reference the primary key
of the target table. This was already the case in InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
 a int not null primary key,
 b int not null unique
);

create table beuk (
 b int references eik
);

-- beuk.b references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access

Changed in: 2.0

Description: In Firebird 2.0 and above, creating a foreign key constraint no longer requires exclusive access
to the database.

UNIQUE constraints now allow NULLs

Changed in: 1.5

Description: In compliance with the SQL-99 standard, NULLs – even multiple – are now allowed in columns
with a UNIQUE constraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

DDL statements

52

For UNIQUE keys that span multiple columns, the logic is a little complicated:

• Multiple rows having all the UK columns NULL are allowed.

• Multiple rows having a different subset of UK colums NULL are allowed.

• Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

• Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

One way of summarizing this is as follows: In principle, all NULLs are considered distinct. But if two rows have
exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just as if they constituted the entire unique key.

USING INDEX subclause

Available in: DSQL

Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of a primary, unique or foreign key definition.
Its purpose is to
• provide a user-defined name for the automatically created index that enforces the constraint, and
• optionally define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraints are named after the constraint (this is new behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDB$FOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

Syntax:

[CONSTRAINT constraint-name]
 <constraint-type> <constraint-definition>
 [USING [ASC[ENDING] | DESC[ENDING]] INDEX index_name]

Examples:

The first example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:

create table customers (
 custno int not null constraint pk_cust primary key using index ix_custno,
 ...

DDL statements

53

This, however:

create table customers (
 custno int not null primary key using index ix_custno,
 ...

...will give you a PK constraint called INTEG_7 or something similar, and an index IX_CUSTNO.

Some more examples:

create table people (
 id int not null,
 nickname varchar(12) not null,
 country char(4),
 ..
 ..
 constraint pk_people primary key (id),
 constraint uk_nickname unique (nickname) using index ix_nick
)

alter table people
 add constraint fk_people_country
 foreign key (country) references countries(code)
 using desc index ix_people_country

Important

If you define a descending constraint-enforcing index on a primary or unique key, be sure to make any foreign
keys referencing it descending as well.

ALTER TABLE

Available in: DSQL, ESQL

ADD column: Context variables as defaults

Changed in: IB

Description: Any context variable that is assignment-compatible to the new column's datatype can be used as a
default. This was already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter table MyData
 add MyDay date default current_date

ALTER COLUMN also for generated (computed) columns

Available in: DSQL

Added in: 2.5

DDL statements

54

Description: Firebird 2.5 supports the altering of generated (computed) columns, something that was previously
impossible. Only the data type and the generation expression can be changed; you cannot change a base column
into a generated column or vice versa.

Syntax:

ALTER TABLE tablename ALTER [COLUMN] gencolname
 [TYPE datatype]
 {GENERATED ALWAYS AS | COMPUTED BY} (expression)

Example:

create table nums (a int, b generated always as (3*a));
commit;

alter table nums alter b generated always as (4*a + 7);
commit;

Notice that you can use GENERATED ALWAYS AS when altering columns defined with COMPUTED BY and
vice versa.

ALTER COLUMN ... TYPE no longer fails if column is used in trigger or SP

Changed in: 2.5

Description: Previously, if a table column was referenced in a stored procedure or trigger, the column's type
could not be changed, even if the change would not break the PSQL code. Now such changes are permitted –
even if they do break the code.

Warning

This means that, in the current situation, you can commit changes that break SP's or triggers without getting
as much as a warning! For information on how to track down invalidated PSQL modules after a column type
change, please read the note The RDB$VALID_BLR field, near the end of this document.

ALTER COLUMN: DROP DEFAULT

Available in: DSQL

Added in: 2.0

Description: Firebird 2 adds the possibility to drop a column-level default. Once the default is dropped, there
will either be no default in place or – if the column's type is a DOMAIN with a default – the domain default
will resurface.

Syntax:

ALTER TABLE tablename ALTER [COLUMN] colname DROP DEFAULT

Example:

alter table Trees alter Girth drop default

DDL statements

55

An error is raised if you use DROP DEFAULT on a column that doesn't have a default or whose effective default
is domain-based.

ALTER COLUMN: SET DEFAULT

Available in: DSQL

Added in: 2.0

Description: Firebird 2 adds the possibility to set/alter defaults on existing columns. If the column already had
a default, the new default will replace it. Column-level defaults always override domain-level defaults.

Syntax:

ALTER TABLE tablename ALTER [COLUMN] colname SET DEFAULT <default>

<default> ::= literal-value | context-variable | NULL

Example:

alter table Customers alter EnteredBy set default current_user

Tip

If you want to switch off a domain-based default on a column, set the column default to NULL.

ALTER COLUMN: POSITION now 1-based

Changed in: 1.0

Description: When changing a column's position, the engine now interprets the new position as 1-based. This
is in accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as 0-based.

Syntax:

ALTER TABLE tablename ALTER [COLUMN] colname POSITION <newpos>

<newpos> ::= an integer between 1 and the number of columns

Example:

alter table Stock alter Quantity position 3

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain 0-
based.

CHECK accepts NULL outcome

Changed in: 2.0

DDL statements

56

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLs pass and only consider the check failed if the
outcome is false. For more information see under CREATE TABLE.

FOREIGN KEY without target column references PK

Changed in: IB

Description: If you create a foreign key without specifying a target column, it will reference the primary key
of the target table. This was already the case in InterBase 6, but the IB Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
 a int not null primary key,
 b int not null unique
);

create table beuk (
 b int
);

alter table beuk
 add constraint fk_beuk
 foreign key (b) references eik;

-- beuk.b now references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access

Changed in: 2.0

Description: In Firebird 2.0 and above, adding a foreign key constraint no longer requires exclusive access to
the database.

GENERATED ALWAYS AS

Added in: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAYS AS for computed fields.

Syntax:

colname [coltype] GENERATED ALWAYS AS (expression)

Example:

alter table Friends
 add fullname varchar(74)
 generated always as
 (firstname || coalesce(' ' || middlename, '') || ' ' || lastname)

DDL statements

57

UNIQUE constraints now allow NULLs

Changed in: 1.5

Description: In compliance with the SQL-99 standard, NULLs – even multiple – are now allowed in columns
with a UNIQUE constraint. For a full discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLs.

USING INDEX subclause

Available in: DSQL

Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of a primary, unique or foreign key definition.
Its purpose is to
• provide a user-defined name for the automatically created index that enforces the constraint, and
• optionally define the index to be ascending or descending (the default being ascending).

Syntax:

[ADD] [CONSTRAINT constraint-name]
 <constraint-type> <constraint-definition>
 [USING [ASC[ENDING] | DESC[ENDING]] INDEX index_name]

For a full discussion and examples, see CREATE TABLE :: USING INDEX subclause.

RECREATE TABLE

Available in: DSQL

Added in: 1.0

Description: Creates or recreates a table. If a table with the same name already exists, RECREATE TABLE will
try to drop it (destroying all its data in the process!) and create a new table. RECREATE TABLE will fail if the
existing table is in use.

Syntax: Exactly the same as CREATE TABLE.

TRIGGER

CREATE TRIGGER

Available in: DSQL, ESQL

Description: Creates a trigger, a block of PSQL code that is executed automatically upon certain database events
or mutations to a table or view.

DDL statements

58

Syntax:

CREATE TRIGGER name
 {<relation_trigger_legacy>
 | <relation_trigger_sql2003>
 | <database_trigger> }
 AS
 [<declarations>]
 BEGIN
 [<statements>]
 END

<relation_trigger_legacy> ::= FOR {tablename | viewname}
 [ACTIVE | INACTIVE]
 {BEFORE | AFTER} <mutation_list>
 [POSITION number]

<relation_trigger_sql2003> ::= [ACTIVE | INACTIVE]
 {BEFORE | AFTER} <mutation_list>
 [POSITION number]
 ON {tablename | viewname}

<database_trigger> ::= [ACTIVE | INACTIVE]
 ON db_event
 [POSITION number]

<mutation_list> ::= mutation [OR mutation [OR mutation]]
mutation ::= INSERT | UPDATE | DELETE

db_event ::= CONNECT | DISCONNECT | TRANSACTION START
 | TRANSACTION COMMIT | TRANSACTION ROLLBACK

number ::= 0..32767 (default is 0)

<declarations> ::= See PSQL::DECLARE for the exact syntax

• “Legacy” and “sql2003” relation triggers are exactly the same. The only thing that differs is the
creation syntax.

• Triggers with lower position numbers fire first. Position numbers need not be unique, but if two
or more triggers have the same position, the firing order between them is undefined.

• When defining relation triggers, each mutation type (INSERT, UPDATE or DELETE) may occur
at most once in the mutation list.

SQL-2003-compliant syntax for relation triggers

Added in: 2.1

Description: Since Firebird 2.1, an alternative, SQL-2003-compliant syntax can be used for triggers on tables
and views. Instead of specifying “FOR relationname” before the event type and the optional directives sur-
rounding it, you can now put “ON relationname” after it, as shown in the syntax earlier in this chapter.

Example:

create trigger biu_books
 active before insert or update position 3
 on books

DDL statements

59

as
begin
 if (new.id is null)
 then new.id = next value for gen_bookids;
end

Database triggers

Added in: 2.1

Description: Since Firebird 2.1, triggers can be defined to fire upon the database events CONNECT, DISCON-
NECT, TRANSACTION START, TRANSACTION COMMIT and TRANSACTION ROLLBACK. Only the database
owner and SYSDBA can create, alter and drop these triggers.

Syntax:

CREATE TRIGGER name
 [ACTIVE | INACTIVE]
 ON db_event
 [POSITION number]
 AS
 [<declarations>]
 BEGIN
 [<statements>]
 END

db_event ::= CONNECT | DISCONNECT | TRANSACTION START
 | TRANSACTION COMMIT | TRANSACTION ROLLBACK

number ::= 0..32767 (default is 0)

<declarations> ::= See PSQL::DECLARE for the exact syntax

Example:

create trigger tr_connect
 on connect
as
begin
 insert into dblog (wie, wanneer, wat)
 values (current_user, current_timestamp, 'verbind');
end

Execution of database triggers and handling of exceptions:

• CONNECT and DISCONNECT triggers are executed in a transaction created specifically for this purpose. If
all goes well, the transaction is committed. Uncaught exceptions roll back the transaction, and:

- In the case of a CONNECT trigger, the connection is then broken and the exception returned to the client.
- With a DISCONNECT trigger, exceptions are not reported and the connection is broken as foreseen.

• TRANSACTION triggers are executed within the transaction whose opening, committing or rolling-back
evokes them. The actions taken after an uncaught exception depend on the type:

- In a START trigger, the exception is reported to the client and the transaction is rolled back.
- In a COMMIT trigger, the exception is reported, the trigger's actions so far are undone and the commit

is canceled.
- In a ROLLBACK trigger, the exception is not reported and the transaction is rolled back as foreseen.

DDL statements

60

• It follows from the above that there is no direct way of knowing if a DISCONNECT or TRANSACTION ROLL-
BACK trigger caused an exception.

• It also follows that you can't connect to a database if a CONNECT trigger causes an exception, and that you
can't start a transaction if a TRANSACTION START trigger does so. Both phenomena effectively lock you
out of your database while you need to get in there to fix the problem. See the note below for a way around
this Catch-22 situation.

• In the case of a two-phase commit, TRANSACTION COMMIT triggers fire in the prepare, not the commit
phase.

Note

Some Firebird command-line tools have been supplied with new switches to suppress the automatic firing of
database triggers:

gbak -nodbtriggers
isql -nodbtriggers
nbackup -T

These switches can only be used by the database owner and SYSDBA.

TYPE OF COLUMN in variable declarations

Added in: 2.5

Description: Analogous to the “TYPE OF domain” syntax supported since version 2.1, it is now also possible
to declare variables as having the type of an existing table or view column. See PSQL::DECLARE for syntax
and details.

Domains instead of datatypes

Changed in: 2.1

Description: Firebird 2.1 and up allow the use of domains instead of SQL datatypes when declaring local trigger
variables. See PSQL::DECLARE for the exact syntax and details.

COLLATE in variable declarations

Changed in: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in local variable declarations. See PSQL::DECLARE
for syntax and details.

NOT NULL in variable declarations

Changed in: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in local variable declarations. See
PSQL::DECLARE for syntax and details.

DDL statements

61

Multi-action triggers

Added in: 1.5

Description: Relation triggers can be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (INSERTING, UPDATING and DELETING) have been added so
you can execute code conditionally within the trigger body depending on the type of operation.

Example:

create trigger biu_parts for parts
 before insert or update
as
begin
 /* conditional code when inserting: */
 if (inserting and new.id is null)
 then new.id = gen_id(gen_partrec_id, 1);

 /* common code: */
 new.partname_upper = upper(new.partname);
end

Note

In multi-action triggers, both context variables OLD and NEW are always available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

• If you try to read their field values, NULL is returned.
• If you try to assign values to them, a runtime exception is thrown.

BEGIN ... END blocks may be empty

Changed in: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position 0
as
begin
end

CREATE TRIGGER no longer increments table change count

Changed in: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

DDL statements

62

PLAN allowed in trigger code

Changed in: 1.5

Description: Before Firebird 1.5, a trigger containing a PLAN statement would be rejected by the compiler. Now
a valid plan can be included and will be used.

ALTER TRIGGER

Available in: DSQL, ESQL

Description: Alters an existing trigger. Relation triggers cannot be changed into database triggers or vice versa.
The associated table or view of a relation trigger cannot be changed.

Syntax:

ALTER TRIGGER name
 [ACTIVE | INACTIVE]
 [{BEFORE | AFTER} <mutation_list> | ON db_event]
 [POSITION number]
 [AS
 [<declarations>]
 BEGIN
 [<statements>]
 END]

• See CREATE TRIGGER for the meaning of <mutation_list> etc.

Database triggers

Added in: 2.1

Description: The ALTER TRIGGER syntax (see above) has been extended to support database triggers. For a full
discussion of this feature, see CREATE TRIGGER :: Database triggers.

TYPE OF COLUMN in variable declarations

Added in: 2.5

Description: Analogous to the “TYPE OF domain” syntax supported since version 2.1, it is now also possible
to declare variables as having the type of an existing table or view column. See PSQL::DECLARE for syntax
and details.

Domains instead of datatypes

Changed in: 2.1

Description: Firebird 2.1 and up allow the use of domains instead of SQL datatypes when declaring local trigger
variables. See PSQL::DECLARE for the exact syntax and details.

DDL statements

63

COLLATE in variable declarations

Changed in: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in local variable declarations. See PSQL::DECLARE
for syntax and details.

NOT NULL in variable declarations

Changed in: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in local variable declarations. See
PSQL::DECLARE for syntax and details.

Multi-action triggers

Added in: 1.5

Description: The ALTER TRIGGER syntax (see above) has been extended to support multi-action triggers. For
a full discussion of this feature, see CREATE TRIGGER :: Multi-action triggers.

Restriction on altering used triggers

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

PLAN allowed in trigger code

Changed in: 1.5

Description: Before Firebird 1.5, a trigger containing a PLAN statement would be rejected by the compiler. Now
a valid plan can be included and will be used.

ALTER TRIGGER no longer increments table change count

Changed in: 1.0

Description: Each time you use CREATE, ALTER or DROP TRIGGER, InterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can still work with the data though). A backup-restore cycle is needed to reset the counter and perform
metadata operations again.

While this obligatory cleanup after many metadata changes is in itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivate triggers during e.g. bulk import operations are forced to backup
and restore much more often then needed.

DDL statements

64

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the
table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, alter or drop triggers for that table.

CREATE OR ALTER TRIGGER

Available in: DSQL

Added in: 1.5

Description: If the trigger does not yet exist, it is created just as if CREATE TRIGGER were used. If it already
exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE TRIGGER.

DROP TRIGGER

Available in: DSQL, ESQL

Restriction on dropping used triggers

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

DROP TRIGGER no longer increments table change count

Changed in: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

RECREATE TRIGGER

Available in: DSQL

Added in: 2.0

Description: Creates or recreates a trigger. If a trigger with the same name already exists, RECREATE TRIGGER
will try to drop it and create a new trigger. RECREATE TRIGGER will fail if the existing trigger is in use.

Syntax: Exactly the same as CREATE TRIGGER.

DDL statements

65

Restriction on recreating used triggers

Changed in: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

VIEW

CREATE VIEW

Available in: DSQL, ESQL

Syntax:

CREATE VIEW viewname [<full_column_list>]
 AS
 <select_statement>
 [WITH CHECK OPTION]

<full_column_list> ::= (colname [, colname ...])

Views can select from stored procedures

Changed in: 2.5

Description: In Firebird 2.5 and up, views can select from selectable stored procedures.

Example:

create view low_bones as
 select id, name, description from them_bones('human')
 where name in ('leg_bone', 'foot_bone', 'toe_bone')

Views can infer column names from derived tables or GROUP BY

Changed in: 2.5

Description: In Firebird 2.5 and up, views can infer the names of columns from a derived table or involved
in a GROUP BY clause. Previously it was necessary to specify explicit aliases for these columns (either per
column or in a full list).

Examples:

create view tickle as
 select t from (select t from tackle)

DDL statements

66

create view vstocks as
 select kind, sum(stock) s from stocks
 group by kind

In the second example, notice that it is still necessary to alias the SUM column. Previous Firebird
versions also required an explicit alias for the KIND column.

Per-column aliases supported in view definition

Changed in: 2.1

Description: Firebird 2.1 and up allow the use of column aliases in the SELECT statement. You can alias none,
some or all of the columns; each alias used becomes the name of the corresponding view column.

Syntax (partial):

CREATE VIEW viewname [<full_column_list>]
 AS
 SELECT <column_def> [, <column_def> ...]
 ...

<full_column_list> ::= (colname [, colname ...])

<column_def> ::= {source_col | expr} [[AS] colalias]

Notes:

• If the full column list is also present, specifying column aliases is futile as they will be overridden by the
names in the column list.

• The full column list used to be mandatory for views whose SELECT statement contains expression-based
columns or identical column names. Now you can omit the full column list, provided that you alias such
columns in the SELECT clause.

Full SELECT syntax supported

Changed in: 2.0, 2.5

Description: From Firebird 2.0 onward view definitions are considered full-fledged SELECT statements. Con-
sequently, the following elements are (re)allowed in view definitions: FIRST, SKIP, ROWS, ORDER BY, PLAN
and UNION.

Note

In Firebird 2.5 and up, it is no longer necessary to supply a view column list if the view is based on a UNION:

create view vplanes as
 select make, model from jets
 union
 select make, model from props
 union
 select make, model from gliders

The column names will be taken from the union. Of course you can still override them with a view column list.

DDL statements

67

PLAN subclause disallowed in 1.5, reallowed in 2.0

Changed in: 1.5, 2.0

Description: Firebird versions 1.5.x forbid the use of a PLAN subclause in a view definition. From 2.0 onward
a PLAN is allowed again.

Triggers on updatable views block auto-writethrough

Changed in: 2.0

Description: In versions prior to 2.0, Firebird often did not block the automatic writethrough to the underlying
table if one or more triggers were defined on a naturally updatable view. This could cause mutations to be
performed twice unintentionally, sometimes leading to data corruption and other mishaps. Starting at Firebird
2.0, this misbehaviour has been corrected: now if you define a trigger on a naturally updatable view, no mutations
to the view will be automatically passed on to the table; either your trigger takes care of that, or nothing will.
This is in accordance with the description in the InterBase 6 Data Definition Guide under Updating views with
triggers.

Warning

Some people have developed code that counts on or takes advantage of the prior behaviour. Such code should
be corrected for Firebird 2.0 and higher, or mutations may not reach the table at all.

View with non-participating NOT NULL columns in base table can be made
insertable

Changed in: 2.0

Description: Any view whose base table contains one or more non-participating NOT NULL columns is read-
only by nature. It can be made updatable by the use of triggers, but even with those, all INSERT attempts into
such views used to fail because the NOT NULL constraint on the base table was checked before the view trigger
got a chance to put things right. In Firebird 2.0 and up this is no longer the case: provided the right trigger is
in place, such views are now insertable.

Example:

The view below would give validation errors for any insert attempts in Firebird 1.5 and earlier. In
Firebird 2.0 and up it is insertable:

create table base (x int not null, y int not null);

create view vbase as select x from base;

set term #;
create trigger bi_base for vbase before insert
as
begin
 if (new.x is null) then new.x = 33;
 insert into base values (new.x, 0);

DDL statements

68

end#
set term ;#

Notes:

• Please notice that the problem described above only occurred for NOT NULL columns that were left outside
the view.

• Oddly enough, the problem would be gone if the base table itself had a trigger converting NULL input to
something valid. But then there was a risk that the insert would take place twice, due to the auto-writethrough
bug that has also been fixed in Firebird 2.

ALTER VIEW

Available in: DSQL

Added in: 2.5

Description: Firebird 2.5 and up support ALTER VIEW, allowing you to change a view's definition without
having to drop it first. Existing dependencies are preserved.

Syntax: Exactly the same as CREATE VIEW.

CREATE OR ALTER VIEW

Available in: DSQL

Added in: 2.5

Description: CREATE OR ALTER VIEW will create the view if it doesn't exist. Otherwise, it will alter the existing
view, preserving existing dependencies.

Syntax: Exactly the same as CREATE VIEW.

RECREATE VIEW

Available in: DSQL

Added in: 1.5

Description: Creates or recreates a view. If a view with the same name already exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view is in use.

Syntax: Exactly the same as CREATE VIEW.

69

Chapter 7

DML statements

DELETE

Available in: DSQL, ESQL, PSQL

Description: Deletes rows from a database table (or from one or more tables underlying a view), depending on
the WHERE and ROWS clauses.

Syntax:

DELETE
 [TRANSACTION name]
 FROM {tablename | viewname} [[AS] alias]
 [WHERE {search-conditions | CURRENT OF cursorname}]
 [PLAN plan_items]
 [ORDER BY sort_items]
 [ROWS <m> [TO <n>]]
 [RETURNING <values> [INTO <variables>]]

<m>, <n> ::= Any expression evaluating to an integer.
<values> ::= value_expression [, value_expression ...]
<variables> ::= :varname [, :varname ...]

Restrictions

• The TRANSACTION directive is only available in ESQL.
• In a pure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL

statement to create a cursor.
• The PLAN, ORDER BY and ROWS clauses are not available in ESQL.
• The RETURNING clause is not available in ESQL.
• The “INTO <variables>” subclause is only available in PSQL.
• When returning values into the context variable NEW, this name must not be preceded by a

colon (“:”).

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBs.

Example:

delete from MyTable
 where NameBlob collate pt_br = 'João'

DML statements

70

ORDER BY

Available in: DSQL, PSQL

Added in: 2.0

Description: DELETE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN

Available in: DSQL, PSQL

Added in: 2.0

Description: DELETE now allows a PLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changed in: 2.0

Description: If you give a table or view an alias in a Firebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:

Correct usage:

delete from Cities where name starting 'Alex'

delete from Cities where Cities.name starting 'Alex'

delete from Cities C where name starting 'Alex'

delete from Cities C where C.name starting 'Alex'

No longer possible:

delete from Cities C where Cities.name starting 'Alex'

RETURNING

Available in: DSQL, PSQL

Added in: 2.1

DML statements

71

Description: A DELETE statement removing at most one row may optionally include a RETURNING clause in
order to return values from the deleted row. The clause, if present, need not contain all of the relation's columns
and may also contain other columns or expressions.

Examples:

delete from Scholars
 where firstname = 'Henry' and lastname = 'Higgins'
 returning lastname, fullname, id

delete from Dumbbells
 order by iq desc
 rows 1
 returning lastname, iq into :lname, :iq;

Notes:

• In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually
deleted, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In PSQL,
if no row was deleted, nothing is returned, and the receiving variables keep their existing values.

ROWS

Available in: DSQL, PSQL

Added in: 2.0

Description: Limits the amount of rows deleted to a specified number or range.

Syntax:

ROWS <m> [TO <n>]

<m>, <n> ::= Any expression evaluating to an integer.

With a single argument m, the deletion is limited to the first m rows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

• If m > the total number of rows in the dataset, the entire set is deleted.
• If m = 0, no rows are deleted.
• If m < 0, an error is raised.

With two arguments m and n, the deletion is limited to rows m to n inclusively. Row numbers are 1-based.

Points to note when using two arguments:

• If m > the total number of rows in the dataset, no rows are deleted.
• If m lies within the set but n doesn't, the rows from m to the end of the set are deleted.
• If m < 1 or n < 1, an error is raised.
• If n = m-1, no rows are deleted.
• If n < m-1, an error is raised.

DML statements

72

ROWS can also be used with the SELECT and UPDATE statements.

EXECUTE BLOCK

Available in: DSQL

Added in: 2.0

Changed in: 2.1, 2.5

Description: Executes a block of PSQL code as if it were a stored procedure, optionally with input and output
parameters and variable declarations. This allows the user to perform “on-the-fly” PSQL within a DSQL context.

Syntax:

EXECUTE BLOCK [(<inparams>)]
 [RETURNS (<outparams>)]
AS
 [<declarations>]
BEGIN
 [<PSQL statements>]
END

<inparams> ::= <param_decl> = ? [, <inparams>]
<outparams> ::= <param_decl> [, <outparams>]
<param_decl> ::= paramname <type> [NOT NULL] [COLLATE collation]
<type> ::= sql_datatype | [TYPE OF] domain | TYPE OF COLUMN rel.col
<declarations> ::= See PSQL::DECLARE for the exact syntax

Examples:

This example injects the numbers 0 through 127 and their corresponding ASCII characters into the
table ASCIITABLE:

execute block
as
declare i int = 0;
begin
 while (i < 128) do
 begin
 insert into AsciiTable values (:i, ascii_char(:i));
 i = i + 1;
 end
end

The next example calculates the geometric mean of two numbers and returns it to the user:

execute block (x double precision = ?, y double precision = ?)
returns (gmean double precision)
as
begin
 gmean = sqrt(x*y);
 suspend;
end

DML statements

73

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all – see the notes below.

Our last example takes two integer values, smallest and largest. For all the numbers in the range
smallest .. largest, the block outputs the number itself, its square, its cube and its fourth power.

execute block (smallest int = ?, largest int = ?)
returns (number int, square bigint, cube bigint, fourth bigint)
as
begin
 number = smallest;
 while (number <= largest) do
 begin
 square = number * number;
 cube = number * square;
 fourth = number * cube;
 suspend;
 number = number + 1;
 end
end

Again, it depends on the client software if and how you can set the parameter values.

Notes:

• Some clients, especially those allowing the user to submit several statements at once, may require you to
surround the EXECUTE BLOCK statement with SET TERM lines, like this:

set term #;
execute block (...)
as
begin
 statement1;
 statement2;
end
#
set term ;#

In Firebird's isql client you must set the terminator to something other than “;” before you type in the EXE-
CUTE BLOCK statement. Otherwise isql, being line-oriented, will try to execute the part you have entered as
soon as it encounters the first semicolon.

• Executing a block without input parameters should be possible with every Firebird client that allows the user
to enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters
must get their values after the statement is prepared but before it is executed. This requires special provisions,
which not every client application offers. (Firebird's own isql, for one, doesn't.)

• The server only accepts question marks (“?”) as placeholders for the input values, not “:a”, “:MyParam”
etc., or literal values. Client software may support the “:xxx” form though, which it will preprocess before
sending it to the server.

• If the block has output parameters, you must use SUSPEND or nothing will be returned.

• Output is always returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there's only one result row.

DML statements

74

COLLATE in variable and parameter declarations

Changed in: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example:

execute block
 (es_1 varchar(20) character set iso8859_1 collate es_es = ?)
returns
 (nl_1 varchar(20) character set iso8859_1 collate du_nl)
as
 declare s_temp varchar(100) character set utf8 collate unicode;
begin
 ...
 ...
end

NOT NULL in variable and parameter declarations

Changed in: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in declarations of input/output parameters and
local variables.

Example:

execute block (a int not null = ?, b int not null = ?)
returns (product bigint not null, message varchar(20) not null)
as
 declare useless_dummy timestamp not null;
begin
 product = a*b;
 if (product < 0) then message = 'This is below zero.';
 else if (product > 0) then message = 'This is above zero.';
 else message = 'This must be zero.';
 suspend;
end

Domains instead of datatypes

Changed in: 2.1

Description: Firebird 2.1 and up allow the use of domains instead of SQL datatypes when declaring input/output
parameters and local variables. With the “TYPE OF” modifier only the domain's type is used, not its NOT NULL
setting, CHECK constraint and/or default value. If the domain is of a text type, its character set and collation
are always included.

DML statements

75

Example:

execute block (a my_domain = ?, b type of my_other_domain = ?)
returns (p my_third_domain)
as
 declare s_temp type of my_third_domain;
begin
 ...
 ...
end

Warning

For input parameters, the collation that comes with the domain is not taken into consideration when comparisons
(e.g. equality tests) are made. This is caused by a bug that has been fixed for Firebird 3.

TYPE OF COLUMN in parameter and variable declarations

Added in: 2.5

Description: Analogous to the “TYPE OF domain” syntax supported since version 2.1, it is now also possible to
declare variables and parameters as having the type of an existing table or view column. Only the type itself is
used; in the case of string types, this includes the character set and the collation. Constraints and default values
are never copied from the source column.

Example:

create table numbers (
 bignum numeric(18),
 smallnum numeric(9)
)

execute block (dividend type of column numbers.bignum = ?,
 divisor type of column numbers.smallnum = ?)
 returns (quotient type of column numbers.bignum,
 remainder type of column numbers.smallnum)
as
begin
 quotient = dividend / divisor;
 remainder = mod (dividend, divisor);
 suspend;
end

Warning

For input parameters, the collation that comes with the column's type is not taken into consideration when
comparisons (e.g. equality tests) are made. For local variables, the behaviour varies. This is caused by a bug
that has been fixed for Firebird 3.

EXECUTE PROCEDURE

Available in: DSQL, ESQL, PSQL

DML statements

76

Changed in: 1.5

Description: Executes a stored procedure. In Firebird 1.0.x as well as in InterBase, any input parameters for the
SP must be supplied as literals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5
and above, input parameters may also be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE procname
 [TRANSACTION transaction]
 [<in_item> [, <in_item> ...]]
 [RETURNING_VALUES <out_item> [, <out_item> ...]]

<in_item> ::= <inparam> [<nullind>]
<out_item> ::= <outvar> [<nullind>]
<inparam> ::= an expression evaluating to the declared parameter type
<outvar> ::= a host language or PSQL variable to receive the return value
<nullind> ::= [INDICATOR]:host_lang_intvar

Notes

• TRANSACTION clauses are not supported in PSQL.

• Expression parameters are not supported in static ESQL, and not in Firebird versions below 1.5.

• NULL indicators are only valid in ESQL code. They must be host language variables of type
integer.

• In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:”). In
PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
NEW.

Examples:

In PSQL (with optional colons):

execute procedure MakeFullName
 :FirstName, :MiddleName, :LastName
 returning_values :FullName;

The same call in ESQL (with obligatory colons):

exec sql
 execute procedure MakeFullName
 :FirstName, :MiddleName, :LastName
 returning_values :FullName;

...and in Firebird's command-line utility isql (with literal parameters):

execute procedure MakeFullName
 'J', 'Edgar', 'Hoover';

Note: In isql, don't use RETURNING_VALUES. Any output values are shown automatically.

Finally, a PSQL example with expression parameters, only possible in Firebird 1.5 and up:

execute procedure MakeFullName
 'Mr./Mrs. ' || FirstName, MiddleName, upper(LastName)
 returning_values FullName;

DML statements

77

INSERT

Available in: DSQL, ESQL, PSQL

Description: Adds rows to a database table, or to one or more tables underlying a view. Field values can be
given in the VALUES clause, they can be totally absent (in both cases, exactly one row is inserted), or they can
come from a SELECT statement (0 to many rows inserted).

Syntax:

INSERT [TRANSACTION name]
 INTO {tablename | viewname}
 {DEFAULT VALUES | [(<column_list>)] <value_source>}
 [RETURNING <value_list> [INTO <variables>]]

<column_list> ::= colname [, colname ...]
<value_source> ::= VALUES (<value_list>) | <select_stmt>
<value_list> ::= value_expression [, value_expression ...]
<variables> ::= :varname [, :varname ...]
<select_stmt> ::= a SELECT whose result set fits the target columns

Restrictions

• The TRANSACTION directive is only available in ESQL.
• The RETURNING clause is not available in ESQL.
• The “INTO <variables>” subclause is only available in PSQL.
• When returning values into the context variable NEW, this name must not be preceded by a

colon (“:”).
• Since v. 2.0, no column may appear more than once in the insert list.

INSERT ... DEFAULT VALUES

Available in: DSQL, PSQL

Added in: 2.1

Description: The DEFAULT VALUES clause allows insertion of a record without providing any values at all,
neither directly nor from a SELECT statement. This is only possible if every NOT NULL or CHECKed column in
the table either has a valid default declared or gets such a value from a BEFORE INSERT trigger. Furthermore,
triggers providing required field values must not depend on the presence of input values.

Example:

insert into journal default values
 returning entry_id

RETURNING clause

Available in: DSQL, PSQL

DML statements

78

Added in: 2.0

Changed in: 2.1

Description: An INSERT statement adding at most one row may optionally include a RETURNING clause in
order to return values from the inserted row. The clause, if present, need not contain all of the insert columns
and may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE tiggers, but not those in AFTER triggers.

Examples:

insert into Scholars (firstname, lastname, address, phone, email)
 values ('Henry', 'Higgins', '27A Wimpole Street', '3231212', null)
 returning lastname, fullname, id

insert into Dumbbells (firstname, lastname, iq)
 select fname, lname, iq from Friends order by iq rows 1
 returning id, firstname, iq into :id, :fname, :iq;

Notes:

• RETURNING is only supported for VALUES inserts and – since version 2.1 – singleton SELECT inserts.

• In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually
inserted, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was inserted, nothing is returned, and the receiving variables keep their existing values.

UNION allowed in feeding SELECT

Changed in: 2.0

Description: A SELECT query used in an INSERT statement may now be a UNION.

Example:

insert into Members (number, name)
 select number, name from NewMembers where Accepted = 1
 union
 select number, name from SuspendedMembers where Vindicated = 1

MERGE

Available in: DSQL, PSQL

Added in: 2.1

Description: Merges data into a table or view. The source may a table, view or derived table (i.e. a parenthesized
SELECT statement or CTE). Each source record will be used to update one or more target records, insert a new
record in the target table, or neither. The action taken depends on the provided condition and the WHEN clause(s).
The condition will typically contain a comparison of fields in the source and target relations.

DML statements

79

Syntax:

MERGE INTO {tablename | viewname} [[AS] alias]
 USING {tablename | viewname | (select_stmt)} [[AS] alias]
 ON condition
 WHEN MATCHED THEN UPDATE SET colname = value [, colname = value ...]
 WHEN NOT MATCHED THEN INSERT [(<columns>)] VALUES (<values>)

<columns> ::= colname [, colname ...]
<values> ::= value [, value ...]

Note: It is allowed to provide only one of the WHEN clauses

Examples:

merge into books b
 using purchases p
 on p.title = b.title and p.type = 'bk'
 when matched then
 update set b.desc = b.desc || '; ' || p.desc
 when not matched then
 insert (title, desc, bought) values (p.title, p.desc, p.bought)

merge into customers c
 using (select * from customers_delta where id > 10) cd
 on (c.id = cd.id)
 when matched then update set name = cd.name
 when not matched then insert (id, name) values (cd.id, cd.name)

Note

WHEN NOT MATCHED should be interpreted from the point of view of the source (the relation in the USING
clause). That is: if a source record doesn't have a match in the target table, the INSERT clause is executed.
Conversely, records in the target table without a matching source record don't trigger any action.

Warning

If the WHEN MATCHED clause is present and multiple source records match the same record in the target table,
the UPDATE clause is executed for all the matching source records, each update overwriting the previous one.
This is non-standard behaviour: SQL-2003 specifies that in such a case an exception must be raised.

SELECT

Available in: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality
Changed in: 1.5

Description: Several types of mixing and nesting aggragate functions are supported since Firebird 1.5. They
will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

DML statements

80

Mixing aggregate functions from different contexts

Firebird 1.5 and up allow the use of aggregate functions from different contexts inside a single expression.

Example:

select
 r.rdb$relation_name as "Table name",
 (select max(i.rdb$statistics) || ' (' || count(*) || ')'
 from rdb$relation_fields rf
 where rf.rdb$relation_name = r.rdb$relation_name
) as "Max. IndexSel (# fields)"
from
 rdb$relations r
 join rdb$indices i on (i.rdb$relation_name = r.rdb$relation_name)
group by r.rdb$relation_name
having max(i.rdb$statistics) > 0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on a table, followed by the table's field count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contexts in a single expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

Since Firebird 1.5 it is possible to use aggregate functions and/or expressions contained in the GROUP BY clause
inside a subquery.

Examples:

This query returns each table's ID and field count. The subquery refers to flds.rdb$relation_name,
which is also a GROUP BY item:

select
 flds.rdb$relation_name as "Relation name",
 (select rels.rdb$relation_id
 from rdb$relations rels
 where rels.rdb$relation_name = flds.rdb$relation_name
) as "ID",
 count(*) as "Fields"
from rdb$relation_fields flds
group by flds.rdb$relation_name

The next query shows the last field from each table and and its 1-based position. It uses the aggregate
function MAX in a subquery.

select
 flds.rdb$relation_name as "Table",

DML statements

81

 (select flds2.rdb$field_name
 from rdb$relation_fields flds2
 where
 flds2.rdb$relation_name = flds.rdb$relation_name
 and flds2.rdb$field_position = max(flds.rdb$field_position)
) as "Last field",
 max(flds.rdb$field_position) + 1 as "Last fieldpos"
from rdb$relation_fields flds
group by 1

The subquery also contains the GROUP BY item flds.rdb$relation_name, but that's not imme-
diately obvious because in this case the GROUP BY clause uses the column number.

Subqueries inside aggregate functions

Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.

Example:

select
 r.rdb$relation_name as "Table",
 sum((select count(*)
 from rdb$relation_fields rf
 where rf.rdb$relation_name = r.rdb$relation_name)
) as "Ind. x Fields"
from
 rdb$relations r
 join rdb$indices i
 on (i.rdb$relation_name = r.rdb$relation_name)
group by
 r.rdb$relation_name

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from a lower
SQL context. Direct nesting of aggregate function calls, as in “COUNT(MAX(price))”, is still forbidden and
punishable by exception.

Example: See under Subqueries inside aggregate functions, where COUNT() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can be included in the HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in a HAVING or ORDER BY item contains
a column name, it is only accepted if one of the following is true:

• The column name appears in an aggregate function call (e.g. “HAVING MAX(SALARY) > 10000”).

• The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list (by name
or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose there's a
non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”, “STR || '!'”

DML statements

82

or “SUBSTRING(STR FROM 4 FOR 2)” in the HAVING clause – even if these expressions don't appear as such
in the SELECT or GROUP BY list.

COLLATE subclause for text BLOB columns

Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBs.

Example:

select NameBlob from MyTable
 where NameBlob collate pt_br = 'João'

Common Table Expressions (“WITH ... AS ... SELECT”)

Available in: DSQL, PSQL

Added in: 2.1

Description: A common table expression or CTE can be described as a virtual table or view, defined in a preamble
to a main query, and going out of scope after the main query's execution. The main query can reference any
CTEs defined in the preamble as if they were regular tables or views. CTEs can be recursive, i.e. self-referencing,
but they cannot be nested.

Syntax:

<cte-construct> ::= <cte-defs>
 <main-query>

<cte-defs> ::= WITH [RECURSIVE] <cte> [, <cte> ...]

<cte> ::= name [(<column-list>)] AS (<cte-stmt>)

<column-list> ::= column-alias [, column-alias ...]

<cte-stmt> ::= any SELECT statement or UNION

<main-query> ::= the main SELECT statement, which can refer to the
 CTEs defined in the preamble

Example:

with dept_year_budget as (
 select fiscal_year,
 dept_no,
 sum(projected_budget) as budget
 from proj_dept_budget
 group by fiscal_year, dept_no
)
select d.dept_no,
 d.department,

DML statements

83

 dyb_2008.budget as budget_08,
 dyb_2009.budget as budget_09
from department d
 left join dept_year_budget dyb_2008
 on d.dept_no = dyb_2008.dept_no
 and dyb_2008.fiscal_year = 2008
 left join dept_year_budget dyb_2009
 on d.dept_no = dyb_2009.dept_no
 and dyb_2009.fiscal_year = 2009
where exists (
 select * from proj_dept_budget b
 where d.dept_no = b.dept_no
)

Notes:

• A CTE definition can contain any legal SELECT statement, as long as it doesn't have a “WITH...” preamble
of its own (no nesting).

• CTEs defined for the same main query can reference each other, but care should be taken to avoid loops.

• CTEs can be referenced from anywhere in the main query.

• Each CTE can be referenced multiple times in the main query, possibly with different aliases.

• When enclosed in parentheses, CTE constructs can be used as subqueries in SELECT statements, but also in
UPDATEs, MERGEs etc.

• In PSQL, CTEs are also supported in FOR loop headers:

for with my_rivers as (select * from rivers where owner = 'me')
 select name, length from my_rivers into :rname, :rlen
do
begin
 ..
end

Recursive CTEs

A recursive (self-referencing) CTE is a UNION which must have at least one non-recursive member, called the
anchor. The non-recursive member(s) must be placed before the recursive member(s). Recursive members are
linked to each other and to their non-recursive neighbour by UNION ALL operators. The unions between non-
recursive members may be of any type.

Recursive CTEs require the RECURSIVE keyword to be present right after WITH. Each recursive union member
may reference itself only once, and it must do so in a FROM clause.

A great benefit of recursive CTEs is that they use far less memory and CPU cycles than an equivalent recursive
stored procedure.

The execution pattern of a recursive CTE is as follows:

• The engine begins execution from a non-recursive member.

• For each row evaluated, it starts executing each recursive member one-by-one, using the current values from
the outer row as parameters.

DML statements

84

• If the currently executing instance of a recursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

Example with a recursive CTE:

with recursive
 dept_year_budget as (
 select fiscal_year,
 dept_no,
 sum(projected_budget) as budget
 from proj_dept_budget
 group by fiscal_year, dept_no
),
 dept_tree as (
 select dept_no,
 head_dept,
 department,
 cast('' as varchar(255)) as indent
 from department
 where head_dept is null
 union all
 select d.dept_no,
 d.head_dept,
 d.department,
 h.indent || ' '
 from department d
 join dept_tree h on d.head_dept = h.dept_no
)
select d.dept_no,
 d.indent || d.department as department,
 dyb_2008.budget as budget_08,
 dyb_2009.budget as budget_09
from dept_tree d
 left join dept_year_budget dyb_2008
 on d.dept_no = dyb_2008.dept_no
 and dyb_2008.fiscal_year = 2008
 left join dept_year_budget dyb_2009
 on d.dept_no = dyb_2009.dept_no
 and dyb_2009.fiscal_year = 2009

Notes on recursive CTEs:

• Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are not
allowed in recursive union members.

• A recursive reference cannot participate in an outer join.

• The maximum recursion depth is 1024.

Derived tables (“SELECT FROM SELECT”)

Added in: 2.0

Description: A derived table is the result set of a SELECT query, used in an outer SELECT as if it were an ordinary
table. Put otherwise, it is a subquery in the FROM clause.

DML statements

85

Syntax:

(select-query)
 [[AS] derived-table-alias]
 [(<derived-column-aliases>)]

<derived-column-aliases> := column-alias [, column-alias ...]

Examples:

The derived table in the query below (shown in boldface) contains all the relation names in the
database followed by their field count. The outer SELECT produces, for each existing field count, the
number of relations having that field count.

select fieldcount,
 count(relation) as num_tables
from (select r.rdb$relation_name as relation,
 count(*) as fieldcount
 from rdb$relations r
 join rdb$relation_fields rf
 on rf.rdb$relation_name = r.rdb$relation_name
 group by relation)
group by fieldcount

A trivial example demonstrating the use of a derived table alias and column aliases list (both are
optional):

select dbinfo.descr,
 dbinfo.def_charset
from (select * from rdb$database) dbinfo
 (descr, rel_id, sec_class, def_charset)

Notes:

• Derived tables can be nested.

• Derived tables can be unions and can be used in unions. They can contain aggregate functions, subselects and
joins, and can themselves be used in aggregate functions, subselects and joins. They can also be or contain
queries on selectable stored procedures. They can have WHERE, ORDER BY and GROUP BY clauses, FIRST,
SKIP or ROWS directives, etc. etc.

• Every column in a derived table must have a name. If it doesn't have one by nature (e.g. because it's a constant)
it must either be given an alias in the usual way, or a column aliases list must be added to the derived table
specification.

• The column aliases list is optional, but if it is used it must be complete. That is: it must contain an alias for
every column in the derived table.

• The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subquery, then no join order can be made.

FIRST and SKIP

Available in: DSQL, PSQL

Added in: 1.0

DML statements

86

Changed in: 1.5

Better alternative: ROWS

Description: FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

Tip

In Firebird 2.0 and up, use the SQL-compliant ROWS syntax instead.

Syntax:

SELECT [FIRST (<int-expr>)] [SKIP (<int-expr>)] <columns> FROM ...

<int-expr> ::= Any expression evaluating to an integer.
<columns> ::= The usual output column specifications.

Note

If <int-expr> is an integer literal or a query parameter, the “()” may be omitted. Subselects on
the other hand require an extra pair of parentheses.

FIRST and SKIP are both optional. When used together as in “FIRST m SKIP n”, the n topmost rows of the output
set are discarded and the first m rows of the remainder are returned.

SKIP 0 is allowed, but of course rather pointless. FIRST 0 is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always result in an error.

If a SKIP lands past the end of the dataset, an empty set is returned. If the number of rows in the dataset (or the
remainder after a SKIP) is less than the value given after FIRST, that smaller number of rows is returned. These
are valid results, not error situations.

Examples:

The following query will return the first 10 names from the People table:

select first 10 id, name from People
 order by name asc

The following query will return everything but the first 10 names:

select skip 10 id, name from People
 order by name asc

And this one returns the last 10 rows. Notice the double parentheses:

select skip ((select count(*) - 10 from People))
 id, name from People
 order by name asc

This query returns rows 81–100 of the People table:

select first 20 skip 80 id, name from People
 order by name asc

DML statements

87

Two Gotchas with FIRST in subselects

• This:

delete from MyTable where ID in (select first 10 ID from MyTable)

will delete all of the rows in the table. Ouch! The sub-select is evaluating each 10 candidate rows for deletion,
deleting them, slipping forward 10 more... ad infinitum, until there are no rows left. Beware! Or better: use
the ROWS syntax, available since Firebird 2.0.

• Queries like:

...where F1 in (select first 5 F2 from Table2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EXISTS predicate shown below. It's obvious that in this case FIRST N doesn't make any sense:

...where exists
 (select first 5 F2 from Table2
 where Table2.F2 = Table1.F1
 order by 1 desc)

GROUP BY

Description: GROUP BY merges rows that have the same combination of values and/or NULLs in the item list
into a single row. Any aggregate functions in the select list are applied to each group individually instead of
to the dataset as a whole.

Syntax:

SELECT ... FROM ...
 GROUP BY <item> [, <item> ...]
 ...

<item> ::= column-name [COLLATE collation-name]
 | column-alias
 | column-position
 | expression

• Only non-negative integer literals will be interpreted as column positions. If they are outside the
range from 1 to the number of columns, an error is raised. Integer values resulting from expressions
or parameter substitutions are simply invariables and will be used as such in the grouping. They
will have no effect though, as their value is the same for each row.

• A GROUP BY item cannot be a reference to an aggregate function (including one that is buried
inside an expression) from the same context.

• The select list may not contain expressions that can have different values within a group. To avoid
this, the rule of thumb is to include each non-aggregate item from the select list in the GROUP BY
list (whether by copying, alias or position).

Note: If you group by a column position, the expression at that position is copied internally from the select list.
If it concerns a subquery, that subquery will be executed at least twice.

DML statements

88

Grouping by alias, position and expressions

Changed in: 1.0, 1.5, 2.0

Description: In addition to column names, Firebird 2 allows column aliases, column positions and arbitrary
valid expressions as GROUP BY items.

Examples:

These three queries all achieve the same result:

select strlen(lastname) as len_name, count(*)
 from people
 group by len_name

select strlen(lastname) as len_name, count(*)
 from people
 group by 1

select strlen(lastname) as len_name, count(*)
 from people
 group by strlen(lastname)

History: Grouping by UDF results was added in Firebird 1. Grouping by column positions, CASE outcomes and
a limited number of internal functions in Firebird 1.5. Firebird 2 added column aliases and expressions in general
as valid GROUP BY items (“expressions in general” absorbing the UDF, CASE and internal functions lot).

HAVING: Stricter rules

Changed in: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

JOIN

Ambiguous field names rejected

Changed in: 1.0

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

select buses.name, garages.name
 from buses join garages on buses.garage_id = garage.id
 where name = 'Phideaux III'

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
names in JOIN statements. Dialect 1 gives a warning but will execute the query anyway.

DML statements

89

CROSS JOIN

Added in: 2.0

Description: Firebird 2.0 and up support CROSS JOIN, which performs a full set multiplication on the tables
involved. Previously you had to achieve this by joining on a tautology (a condition that is always true) or by
using the comma syntax, now deprecated.

Syntax:

SELECT ...
 FROM <relation> CROSS JOIN <relation>
 ...

<relation> ::= {table | view | cte | (select_stmt)} [[AS] alias]

Note: If you use CROSS JOIN, you can't use ON.

Example:

select * from Men cross join Women
order by Men.age, Women.age

-- old syntax:
-- select * from Men join Women on 1 = 1
-- order by Men.age, Women.age

-- comma syntax:
-- select * from Men, Women
-- order by Men.age, Women.age

Named colums JOIN

Added in: 2.1

Description: A named colums join is an equi-join on the columns named in the USING clause. These columns
must exist in both relations.

Syntax:

SELECT ...
 FROM <relation> [<join_type>] JOIN <relation>
 USING (colname [, colname ...])
 ...

<relation> ::= {table | view | cte | (select_stmt)} [[AS] alias]
<join_type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

Example:

select *
 from books join shelves
 using (shelf, bookcase)

DML statements

90

The equivalent in traditional syntax:

select *
 from books b join shelves s
 on b.shelf = s.shelf and b.bookcase = s.bookcase

Notes:

• The columns in the USING clause can be selected without qualifier. Be aware, however, that doing so in outer
joins doesn't always give the same result as selecting left.colname or right.colname. One of the latter
may be NULL while the other isn't; plain colname always returns the non-NULL alternative in such cases.

• SELECT * from a named columns join returns each USING column only once. In outer joins, such a column
always contains the non-NULL alternative except for rows where the field is NULL in both tables.

Natural JOIN

Added in: 2.1

Description: A natural join is an automatic equi-join on all the columns that exist in both relations. If there are
no common column names, a CROSS JOIN is produced.

Syntax:

SELECT ...
 FROM <relation> NATURAL [<join_type>] JOIN <relation>
 ...

<relation> ::= {table | view | cte | (select_stmt)} [[AS] alias]
<join_type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

Example:

select * from Pupils natural left join Tutors

Assuming that the Pupils and Tutors tables have two field names in common: TUTOR and CLASS,
the equivalent traditional syntax is:

select * from Pupils p left join Tutors t
 on p.tutor = t.tutor and p.class = t.class

Notes:

• Common columns can be selected from a natural join without qualifier. Beware, however, that doing so in
outer joins doesn't always gives the same result as selecting left.colname or right.colname. One of the
latter may be NULL while the other isn't; plain colname always returns the non-NULL alternative in such cases.

• SELECT * from a natural join returns each common column only once. In outer joins, such a column always
contains the non-NULL alternative except for rows where the field is NULL in both tables.

DML statements

91

ORDER BY

Syntax:

SELECT ... FROM ...
 ...
 ORDER BY <ordering-item> [, <ordering-item> ...]

<ordering-item> ::= {col-name | col-alias | col-position | expression}
 [COLLATE collation-name]
 [ASC[ENDING] | DESC[ENDING]]
 [NULLS {FIRST|LAST}]

Order by column alias

Added in: 2.0

Description: Firebird 2.0 and above support ordering by column alias.

Example:

select rdb$character_set_id as charset_id,
 rdb$collation_id as coll_id,
 rdb$collation_name as name
from rdb$collations
order by charset_id, coll_id

Ordering by column position causes * expansion

Changed in: 2.0

Description: If you order by column position in a “SELECT *” query, the engine will now expand the * to
determine the sort column(s).

Examples:

The following wasn't possible in pre-2.0 versions:

select * from rdb$collations
order by 3, 2

The following would sort the output set on Films.Director in previous versions. In Firebird 2
and up, it will sort on the second column of Books:

select Books.*, Films.Director from Books, Films
order by 2

Ordering by expressions

Added in: 1.5

DML statements

92

Description: Firebird 1.5 introduced the possibility to use expressions as ordering items. Please note that ex-
pressions consisting of a single non-negative whole number will be interpreted as column positions and cause
an exception if they're not in the range from 1 to the number of columns.

Example:

select x, y, note from Pairs
order by x+y desc

Note

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedure is
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

Notes:

• The number of function or procedure invocations resulting from a sort based on a UDF or stored procedure is
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

• Only non-negative whole number literals are interpreted as column positions. A whole number resulting from
an expression evaluation or parameter substitution is seen as an integer invariable and will lead to a dummy
sort, since its value is the same for each row.

NULLs placement

Changed in: 1.5, 2.0

Description: Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST directives to specify
where NULLs appear in the sorted column. Firebird 2.0 has changed the default placement of NULLs.

Unless overridden by NULLS FIRST or NULLS LAST, NULLs in ordered columns are placed as follows:

• In Firebird 1.0 and 1.5: at the end of the sort, regardless whether the order is ascending or descending.

• In Firebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See also the table below for an overview of the different versions.

Table 7.1. NULLs placement in ordered columns

NULLs placementOrdering

Firebird 1 Firebird 1.5 Firebird 2

order by Field [asc] bottom bottom top

order by Field desc bottom bottom bottom

order by Field [asc | desc] nulls first — top top

order by Field [asc | desc] nulls last — bottom bottom

DML statements

93

Notes

• Pre-existing databases may need a backup-restore cycle before they show the correct NULL ordering be-
haviour under Firebird 2.0 and up.

• No index will be used on columns for which a non-default NULLS placement is chosen. In Firebird 1.5, that
is the case with NULLS FIRST. In 2.0 and higher, with NULLS LAST on ascending and NULLS FIRST on
descending sorts.

Examples:

select * from msg
 order by process_time desc nulls first

select * from document
 order by strlen(description) desc
 rows 10

select doc_number, doc_date from payorder
union all
select doc_number, doc_date from budgorder
 order by 2 desc nulls last, 1 asc nulls first

Stricter ordering rules with aggregate statements

Changed in: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

PLAN

Available in: DSQL, ESQL, PSQL

Description: Specifies a user plan for the data retrieval, overriding the plan that the optimizer would have gen-
erated automatically.

Syntax:

PLAN <plan_expr>

<plan_expr> ::= [JOIN | [SORT] [MERGE]] (<plan_item> [, <plan_item> ...])

<plan_item> ::= <basic_item> | <plan_expr>

<basic_item> ::= {table | alias}
 {NATURAL
 | INDEX (<indexlist>))
 | ORDER index [INDEX (<indexlist>)]}

<indexlist> ::= index [, index ...]

Handling of user PLANs improved

Changed in: 2.0

DML statements

94

Description: Firbird 2 has implemented the following improvements in the handling of user-specified PLANs:

• Plan fragments are propagated to nested levels of joins, enabling manual optimization of complex outer joins.

• User-supplied plans will be checked for correctness in outer joins.

• Short-circuit optimization for user-supplied plans has been added.

• A user-specified access path can be supplied for any SELECT-based statement or clause.

ORDER with INDEX

Changed in: 2.0

Description: A single plan item can now contain both an ORDER and an INDEX directive (in that order).

Example:

plan (MyTable order ix_myfield index (ix_this, ix_that))

PLAN must include all tables

Changed in: 2.0

Description: In Firebird 2 and up, a PLAN clause must handle all the tables in the query. Previous versions
sometimes accepted incomplete plans, but this is no longer the case.

Relation alias makes real name unavailable

Changed in: 2.0

Description: If you give a table or view an alias in a Firebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:

Correct usage:

select pears from Fruit

select Fruit.pears from Fruit

select pears from Fruit F

select F.pears from Fruit F

No longer possible:

select Fruit.pears from Fruit F

DML statements

95

ROWS

Available in: DSQL, PSQL

Added in: 2.0

Description: Limits the amount of rows returned by the SELECT statement to a specified number or range.

Syntax:

With a single SELECT:

SELECT <columns> FROM ...
 [WHERE ...]
 [ORDER BY ...]
 ROWS <m> [TO <n>]

<columns> ::= The usual output column specifications.
<m>, <n> ::= Any expression evaluating to an integer.

With a UNION:

SELECT [FIRST p] [SKIP q] <columns> FROM ...
 [WHERE ...]
 [ORDER BY ...]

UNION [ALL | DISTINCT]

SELECT [FIRST r] [SKIP s] <columns> FROM ...
 [WHERE ...]
 [ORDER BY ...]

ROWS <m> [TO <n>]

With a single argument m, the first m rows of the dataset are returned.

Points to note:

• If m > the total number of rows in the dataset, the entire set is returned.
• If m = 0, an empty set is returned.
• If m < 0, an error is raised.

With two arguments m and n, rows m to n of the dataset are returned, inclusively. Row numbers are 1-based.

Points to note when using two arguments:

• If m > the total number of rows in the dataset, an empty set is returned.
• If m lies within the set but n doesn't, the rows from m to the end of the set are returned.
• If m < 1 or n < 1, an error is raised.
• If n = m-1, an empty set is returned.
• If n < m-1, an error is raised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP without
FIRST, which returns the entire remainder of the set after skipping a given number of rows. (You can often “fake
it” though, by supplying a second argument that you know to be bigger than the number of rows in the set.)

DML statements

96

You cannot use ROWS together with FIRST and/or SKIP in a single SELECT statement, but is it valid to use one
form in the top-level statement and the other in subselects, or to use the two syntaxes in different subselects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed after
the last SELECT. If you want to limit the output of one or more individual SELECTs within the UNION, you
have two options: either use FIRST/SKIP on those SELECT statements, or convert them to derived tables with
ROWS clauses.

ROWS can also be used with the UPDATE and DELETE statements.

UNION

Available in: DSQL, ESQL, PSQL

UNIONs in subqueries

Changed in: 2.0

Description: UNIONs are now allowed in subqueries. This applies not only to column-level subqueries in a
SELECT list, but also to subqueries in ANY|SOME, ALL and IN predicates, as well as the optional SELECT
expression that feeds an INSERT.

Example:

select name, phone, hourly_rate from clowns
where hourly_rate < all
 (select hourly_rate from jugglers
 union
 select hourly_rate from acrobats)
order by hourly_rate

UNION DISTINCT

Added in: 2.0

Description: You can now use the optional DISTINCT keyword when defining a UNION. This will show duplicate
rows only once instead of every time they occur in one of the tables. Since DISTINCT, being the opposite of
ALL, is the default mode anyway, this doesn't add any new functionality.

Syntax:

SELECT (...) FROM (...)
UNION [DISTINCT | ALL]
SELECT (...) FROM (...)

Example:

select name, phone from translators
 union distinct
select name, phone from proofreaders

Translators who also work as proofreaders (a not uncommon combination) will show up only once
in the result set, provided their phone number is the same in both tables. The same result would have
been obtained without DISTINCT. With ALL, they would appear twice.

DML statements

97

WITH LOCK

Available in: DSQL, PSQL

Added in: 1.5

Description: WITH LOCK provides a limited explicit pessimistic locking capability for cautious use in conditions
where the affected row set is:
a. extremely small (ideally, a singleton), and
b. precisely controlled by the application code.

This is for experts only!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

It is essential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:

SELECT ... FROM single_table
 [WHERE ...]
 [FOR UPDATE [OF ...]]
 WITH LOCK

If the WITH LOCK clause succeeds, it will secure a lock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, as it is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

WITH LOCK can only be used with a top-level, single-table SELECT statement. It is not available:

• in a subquery specification;
• for joined sets;
• with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
• with a view;
• with the output of a selectable stored procedure;
• with an external table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” is included in the Notes. It is a must-read
for everybody who considers using this feature.

UPDATE

Available in: DSQL, ESQL, PSQL

DML statements

98

Description: Changes values in a table (or in one or more tables underlying a view). The columns affected are
specified in the SET clause; the rows affected may be limited by the WHERE and ROWS clauses.

Syntax:

UPDATE [TRANSACTION name] {tablename | viewname} [[AS] alias]
 SET col = newval [, col = newval ...]
 [WHERE {search-conditions | CURRENT OF cursorname}]
 [PLAN plan_items]
 [ORDER BY sort_items]
 [ROWS <m> [TO <n>]]
 [RETURNING <values> [INTO <variables>]]

<m>, <n> ::= Any expression evaluating to an integer.
<values> ::= value_expression [, value_expression ...]
<variables> ::= :varname [, :varname ...]

Restrictions

• The TRANSACTION directive is only available in ESQL.
• In a pure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL

statement to create a cursor.
• The PLAN, ORDER BY and ROWS clauses are not available in ESQL.
• Since v. 2.0, no column may be SET more than once in the same UPDATE statement.
• The RETURNING clause is not available in ESQL.
• The “INTO <variables>” subclause is only available in PSQL.
• When returning values into the context variable NEW, this name must not be preceded by a

colon (“:”).

Changed SET semantics

Changed in: 2.5

Description: In previous Firebird versions, if multiple assignments were done in the SET clause, the new column
values would become immediately available to subsequent assigments in the same clause. That is, in a clause like
“set a=3, b=a”, b would be set to 3, not to a's old value. This non-standard behaviour has now been corrected.
In Firebird 2.5 and up, any assignments in the SET clause will use the old column values.

Example:

Given table TSET:

A B

1 0
2 0

the following statement:

update tset set a=5, b=a

DML statements

99

will change its state to

A B

5 1
5 2

In versions prior to Firebird 2.5, this would have been:

A B

5 5
5 5

Retaining the old behaviour: For a limited time, you can keep the old, non-standard behaviour by setting the
OldSetClauseSemantics parameter in firebird.conf to 1. This parameter will be deprecated and re-
moved in the future. If set, it will be used for all database connections made through the server.

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBs.

Example:

update MyTable
 set NameBlobSp = 'Juan'
 where NameBlobBr collate pt_br = 'João'

ORDER BY

Available in: DSQL, PSQL

Added in: 2.0

Description: UPDATE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but is also valid without it.

PLAN

Available in: DSQL, PSQL

Added in: 2.0

Description: UPDATE now allows a PLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable
Changed in: 2.0

DML statements

100

Description: If you give a table or view an alias in a Firebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:

Correct usage:

update Fruit set soort = 'pisang' where ...

update Fruit set Fruit.soort = 'pisang' where ...

update Fruit F set soort = 'pisang' where ...

update Fruit F set F.soort = 'pisang' where ...

No longer possible:

update Fruit F set Fruit.soort = 'pisang' where ...

RETURNING

Available in: DSQL, PSQL

Added in: 2.1

Description: An UPDATE statement modifying at most one row may optionally include a RETURNING clause
in order to return values from the updated row. The clause, if present, need not contain all the modified columns
and may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE tiggers, but not those in AFTER triggers. OLD.fieldname and NEW.fieldname may both be
used in the list of columns to return; for field names not preceded by either of these, the new value is returned.

Example:

update Scholars
 set firstname = 'Hugh', lastname = 'Pickering'
 where firstname = 'Henry' and lastname = 'Higgins'
 returning id, old.lastname, new.lastname

Notes:

• In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually
updated, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was updated, nothing is returned, and the receiving variables keep their existing values.

ROWS

Available in: DSQL, PSQL

Added in: 2.0

Description: Limits the amount of rows updated to a specified number or range.

DML statements

101

Syntax:

ROWS <m> [TO <n>]

<m>, <n> ::= Any expression evaluating to an integer.

With a single argument m, the update is limited to the first m rows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

• If m > the total number of rows in the dataset, the entire set is updated.
• If m = 0, no rows are updated.
• If m < 0, an error is raised.

With two arguments m and n, the update is limited to rows m to n inclusively. Row numbers are 1-based.

Points to note when using two arguments:

• If m > the total number of rows in the dataset, no rows are updated.
• If m lies within the set but n doesn't, the rows from m to the end of the set are updated.
• If m < 1 or n < 1, an error is raised.
• If n = m-1, no rows are updated.
• If n < m-1, an error is raised.

ROWS can also be used with the SELECT and DELETE statements.

UPDATE OR INSERT

Available in: DSQL, PSQL

Added in: 2.1

Description: UPDATE OR INSERT checks if any existing records already contain the new values supplied for
the MATCHING columns. If so, those records are updated. If not, a new record is inserted. In the absence of a
MATCHING clause, matching is done against the primary key. If a RETURNING clause is present and more than
one matching record is found, an error is raised.

Syntax:

UPDATE OR INSERT INTO
 {tablename | viewname} [(<columns>)]
 VALUES (<values>)
 [MATCHING (<columns>)]
 [RETURNING <values> [INTO <variables>]]

<columns> ::= colname [, colname ...]
<values> ::= value [, value ...]
<variables> ::= :varname [, :varname ...]

DML statements

102

Restrictions

• No column may appear more than once in the update/insert column list.
• If the table has no PK, the MATCHING clause becomes mandatory.
• The “INTO <variables>” subclause is only available in PSQL.
• When values are returned into the context variable NEW, this name must not be preceded by

a colon (“:”).

Example:

update or insert into Cows (Name, Number, Location)
 values ('Suzy Creamcheese', 3278823, 'Green Pastures')
 matching (Number)
 returning rec_id into :id;

Notes:

• Matches are determined with IS NOT DISTINCT, not with the “=” operator. This means that one NULL matches
another.

• The optional RETURNING clause:

- ...may contain any or all columns of the target table, regardless if they were mentioned earlier in the
statement, but also other expressions.

- ...may contain OLD and NEW qualifiers for field names; by default, the new field value is returned.
- ...returns field values as they are after the BEFORE triggers have run, but before any AFTER triggers.

103

Chapter 8

Transaction
control statements

RELEASE SAVEPOINT

Available in: DSQL

Added in: 1.5

Description: Deletes a named savepoint, freeing up all the resources it binds.

Syntax:

RELEASE SAVEPOINT name [ONLY]

Unless ONLY is added, all the savepoints created after the named savepoint are released as well.

For a full discussion of savepoints, see SAVEPOINT.

ROLLBACK

Available in: DSQL, ESQL

Syntax:

ROLLBACK [WORK]
 [TRANSACTION tr_name]
 [RETAIN [SNAPSHOT] | TO [SAVEPOINT] sp_name | RELEASE]

• The TRANSACTION clause is only available in ESQL.

• The RELEASE clause is only available in ESQL, and is discouraged.

• RETAIN and TO are only available in DSQL.

ROLLBACK RETAIN

Available in: DSQL

Transaction control statements

104

Added in: 2.0

Description: Undoes all the database changes carried out in the transaction without closing it. User variables
set with RDB$SET_CONTEXT() remain unchanged.

Syntax:

ROLLBACK [WORK] RETAIN [SNAPSHOT]

Note

The functionality provided by ROLLBACK RETAIN has been present since InterBase 6, but the only way to
access it was through the API call isc_rollback_retaining().

ROLLBACK TO SAVEPOINT

Available in: DSQL

Added in: 1.5

Description: Undoes everything that happened in a transaction since the creation of the savepoint.

Syntax:

ROLLBACK [WORK] TO [SAVEPOINT] name

ROLLBACK TO SAVEPOINT performs the following operations:

• All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SET_CONTEXT() remain unchanged.

• All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the save-
point itself. This means that you can rollback to the same savepoint several times.

• All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested access to rows locked after the savepoint must continue to wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

For a full discussion of savepoints, see SAVEPOINT.

SAVEPOINT

Available in: DSQL

Added in: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “nested transactions”.

Transaction control statements

105

Syntax:

SAVEPOINT <name>

<name> ::= a user-chosen identifier, unique within the transaction

If the supplied name exists already within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:

ROLLBACK [WORK] TO [SAVEPOINT] name

ROLLBACK TO SAVEPOINT performs the following operations:

• All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SET_CONTEXT() remain unchanged.

• All savepoints created after the one named are destroyed. All earlier savepoints are preserved, as is the save-
point itself. This means that you can rollback to the same savepoint several times.

• All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested access to rows locked after the savepoint must continue to wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especially if you update the same
records multiple times in one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can delete the savepoint and free the resources it uses with:

RELEASE SAVEPOINT name [ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
are released as well.

Example DSQL session using a savepoint:

create table test (id integer);
commit;
insert into test values (1);
commit;
insert into test values (2);
savepoint y;
delete from test;
select * from test; -- returns no rows
rollback to y;
select * from test; -- returns two rows
rollback;
select * from test; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue a ROLLBACK statement, all changes performed in this transaction are backed out via a transac-

Transaction control statements

106

tion-level savepoint and the transaction is then committed. This logic reduces the amount of garbage collection
caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (104–106 records
affected), the engine releases the transaction-level savepoint and uses the TIP mechanism to roll back the trans-
action if needed.

Tip

If you expect the volume of changes in your transaction to be large, you can specify the NO AUTO UNDO option
in your SET TRANSACTION statement, or – if you use the API – set the TPB flag isc_tpb_no_auto_undo.
Both prevent the creation of the transaction-level savepoint.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptions in PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

• undo all actions in a BEGIN...END block where an exception occurs;

• undo all actions performed by the SP/trigger (or, in the case of a selectable SP, all actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is also bounded by automatic system savepoints.

SET TRANSACTION

Available in: DSQL, ESQL

Changed in: 2.0

Description: Starts and optionally configures a transaction.

Syntax:

SET TRANSACTION
 [NAME hostvar]
 [READ WRITE | READ ONLY]
 [[ISOLATION LEVEL] { SNAPSHOT [TABLE STABILITY]
 | READ COMMITTED [[NO] RECORD_VERSION] }]
 [WAIT | NO WAIT]
 [LOCK TIMEOUT seconds]
 [NO AUTO UNDO]
 [IGNORE LIMBO]
 [RESERVING <tables> | USING <dbhandles>]

<tables> ::= <table_spec> [, <table_spec> ...]

Transaction control statements

107

<table_spec> ::= tablename [, tablename ...]
 [FOR [SHARED | PROTECTED] {READ | WRITE}]

<dbhandles> ::= dbhandle [, dbhandle ...]

• The NAME option is only available in ESQL. It must be followed by a previously declared and ini-
tialized host-language variable. Without NAME, SET TRANSACTION applies to the default trans-
action.

• The USING option is also ESQL-only. It limits the databases that the transaction can access to the
ones mentioned here.

• IGNORE LIMBO and LOCK TIMEOUT are not supported in ESQL.

• LOCK TIMEOUT and NO WAIT are mutually exclusive.

• Default option settings are: READ WRITE + WAIT + SNAPSHOT.

IGNORE LIMBO

Available in: DSQL

Added in: 2.0

Description: With this option, records created by limbo transactions are ignored. Transactions are in limbo if
the second stage of a two-phase commit fails.

Note

IGNORE LIMBO surfaces the isc_tpb_ignore_limbo TPB parameter, available in the API since InterBase
times and mainly used by gfix.

LOCK TIMEOUT

Available in: DSQL

Added in: 2.0

Description: This option is only available for WAIT transactions. It takes a non-negative integer as argument,
prescribing the maximum number of seconds that the transaction should wait when a lock conflict occurs. If the
the waiting time has passed and the lock has still not been released, an error is generated.

Note

This is a brand new feature in Firebird 2. Its API equivalent is the new isc_tpb_lock_timeout TPB pa-
rameter.

NO AUTO UNDO

Available in: DSQL, ESQL

Transaction control statements

108

Added in: 2.0

Description: With NO AUTO UNDO, the transaction refrains from keeping the log that is normally used to undo
changes in the event of a rollback. Should the transaction be rolled back after all, other transactions will pick up
the garbage (eventually). This option can be useful for massive insertions that don't need to be rolled back. For
transactions that don't perform any mutations, NO AUTO UNDO makes no difference at all.

Note

NO AUTO UNDO is the SQL equivalent of the isc_tpb_no_auto_undo TPB parameter, available in the API
since InterBase times.

109

Chapter 9

PSQL statements
PSQL – Procedural SQL – is the Firebird programming language used in stored procedures, triggers and exe-
cutable blocks.

BEGIN ... END blocks may be empty
Available in: PSQL

Changed in: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position 0
as
begin
end

BREAK

Available in: PSQL

Added in: 1.0

Better alternative: LEAVE

Description: BREAK immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

Example:

create procedure selphrase(num int)
returns (phrase varchar(40))
as
begin
 for select Phr from Phrases into phrase do
 begin
 if (num < 1) then break;
 suspend;
 num = num - 1;
 end

PSQL statements

110

 phrase = '*** Ready! ***';
 suspend;
end

This selectable SP returns at most num rows from the table Phrases. The variable num is decremented
in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues at the line “phrase = '*** Ready! ***';”.

Important

Since Firebird 1.5, use of the SQL-99 compliant alternative LEAVE is preferred.

CLOSE cursor
Available in: PSQL

Added in: 2.0

Description: Closes an open cursor. Any cursors still open when the trigger, stored procedure or EXECUTE
BLOCK statement they belong to is exited, will be closed automatically.

Syntax:

CLOSE cursorname;

Example: See DECLARE ... CURSOR.

DECLARE

Available in: PSQL

Description: Declares a PSQL local variable.

Syntax:

DECLARE [VARIABLE] varname <var_spec>;

<var_spec> ::= <type> [NOT NULL] [<coll>] [<default>]
 | CURSOR FOR (select-statement)
<type> ::= sql_datatype | [TYPE OF] domain | TYPE OF COLUMN rel.col
<coll> ::= COLLATE collation
<default> ::= {= | DEFAULT} value

• If sql_datatype is a text type, it may include a character set.
• Obviously, a COLLATE clause is only allowed with text types.

DECLARE ... CURSOR

Added in: 2.0

PSQL statements

111

Description: Declares a named cursor and binds it to its own SELECT statement. The cursor can later be opened,
used to walk the result set, and closed again. Positioned updates and deletes (using WHERE CURRENT OF) are
also supported. PSQL cursors are available in triggers, stored procedures and EXECUTE BLOCK statements.

Example:

execute block
returns (relation char(31), sysflag int)
as
declare cur cursor for
 (select rdb$relation_name, rdb$system_flag from rdb$relations);
begin
 open cur;
 while (1=1) do
 begin
 fetch cur into relation, sysflag;
 if (row_count = 0) then leave;
 suspend;
 end
 close cur;
end

Notes:

• A “FOR UPDATE” clause is allowed in the SELECT statement, but not required for a positioned update or
delete to succeed.

• Make sure that declared cursor names do not clash with any names defined later on in AS CURSOR clauses.

• If you need a cursor to loop through an output set, it is almost always easier – and less error-prone – to use
a FOR SELECT statement with an AS CURSOR clause. Declared cursors must be explicitly opened, fetched
from, and closed. Furthermore, you need to check row_count after every fetch and break out of the loop
if it is zero. AS CURSOR takes care of all of that automagically. However, declared cursors give you more
control over the sequence of events, and allow you to operate several cursors in parallel.

• The SELECT statement may contain named SQL parameters, like in “select name || :sfx from names
where number = :num”. Each parameter must be a PSQL variable that has been declared previously (this
includes any in/out params of the PSQL module). When the cursor is opened, the parameter is assigned the
current value of the variable.

• Caution! If the value of a PSQL variable that is used in the SELECT statement changes during execution of
the loop, the statement may (but will not always) be re-evaluated for the remaining rows. In general, this
situation should be avoided. If you really need this behaviour, test your code thoroughly and make sure you
know how variable changes affect the outcome. Also be advised that the behaviour may depend on the query
plan, in particular the use of indices. As it is currently not strictly defined, it may change in some future
version of Firebird.

See also: OPEN cursor, FETCH cursor, CLOSE cursor

DECLARE [VARIABLE] with initialization

Changed in: 1.5

Description: In Firebird 1.5 and above, a PSQL local variable can be initialized upon declaration. The VARIABLE
keyword has become optional.

PSQL statements

112

Example:

create procedure proccie (a int)
returns (b int)
as
 declare p int;
 declare q int = 8;
 declare r int default 9;
 declare variable s int;
 declare variable t int = 10;
 declare variable u int default 11;
begin
 <intelligent code here>
end

DECLARE with DOMAIN instead of datatype

Added in: 2.1

Description: In Firebird 2.1 and above, PSQL local variables and input/output parameters can be declared with
a domain instead of a datatype. The TYPE OF modifier allows using only the domain's datatype and not its
NOT NULL setting, CHECK constraint and/or default value. If the domain is of a text type, its character set and
collation are always included.

Example:

create procedure MyProc (a int, f ternbool)
 returns (b int, x type of bigfloat)
as
 declare p int;
 declare q int = 8;
 declare y stocknum default -1;
begin
 <very intelligent code here>
end

(This example presupposes that TERNBOOL, BIGFLOAT and STOCKNUM are domains already de-
fined in the database.)

Warning

If you change a domain's definition, existing PSQL code using that domain may become invalid. For informa-
tion on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

TYPE OF COLUMN in variable declaration

Added in: 2.5

Description: Analogous to the “TYPE OF domain” syntax supported since version 2.1, it is now also possible to
declare variables and parameters as having the type of an existing table or view column. Only the type itself is
used; in the case of string types, this includes the character set and the collation. Constraints and default values
are never copied from the source column.

PSQL statements

113

Example:

create table cars (
 make varchar(20),
 model varchar(20),
 weight numeric(4),
 topspeed numeric(3),
 constraint uk_make_model unique (make, model)
)

create procedure max_kinetic_energy
 (make type of column cars.make,
 model type of column cars.model)
 returns (max_e_kin double precision)
as
 declare mass type of column cars.weight;
 declare velocity type of column cars.topspeed;
begin
 select weight, topspeed from cars
 where make = :make and model = :model
 into mass, velocity;
 max_e_kin = 0.5 * mass * velocity * velocity;
end

Warnings

• The collation of the source column is not always taken into consideration when comparisons (e.g. equality
tests) are made, even though it should. This is due to a bug that has been fixed for Firebird 3.

• PSQL code using TYPE OF COLUMN may become invalid if the column's type is changed at a later time.
For information on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this
document.

COLLATE in variable declaration

Added in: 2.1

Description: In Firebird 2.1 and above, a COLLATE clause is allowed in the declaration of text-type PSQL local
variables and input/output parameters.

Example:

create procedure GimmeText
 returns (txt char(32) character set utf8 collate unicode)
as
 declare simounao mytextdomain collate pt_br default 'não';
begin
 <stunningly intelligent code here>
end

NOT NULL in variable declaration

Added in: 2.1

PSQL statements

114

Description: In Firebird 2.1 and above, a NOT NULL constraint is allowed in the declaration of PSQL local
variables and input/output parameters.

Example:

create procedure Compute(a int not null, b int not null)
 returns (outcome bigint not null)
as
 declare temp bigint not null;
begin
 <slightly disappointing code here>
end

EXCEPTION

Available in: PSQL

Changed in: 1.5

Description: The EXCEPTION syntax has been extended so that the user can
a. Rethrow a caught exception or error.
b. Provide a custom message when throwing a user-defined exception.

Syntax:

EXCEPTION [<exception-name> [custom-message]]

<exception-name> ::= A previously defined exception name

Rethrowing a caught exception
Within the exception handling block only, you can rethrow the caught exception or error by giving the EXCEP-
TION command without any arguments. Outside such blocks, this “bare” command has no effect.

Example:

when any do
begin
 insert into error_log (...) values (sqlcode, ...);
 exception;
end

This example first logs some information about the exception or error, and then rethrows it.

Providing a custom error message
Firebird 1.5 and up allow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

Examples:

exception ex_data_error 'You just lost some valuable data';

PSQL statements

115

exception ex_bad_type 'Wrong type for record with id ' || new.id;

Note

Starting at version 2.0, the maximum message length is 1021 instead of 78 characters.

EXECUTE PROCEDURE

Available in: DSQL, PSQL

Changed in: 1.5

Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored
procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

EXECUTE STATEMENT

Available in: PSQL

Added in: 1.5

Changed in: 2.5

Description: EXECUTE STATEMENT takes a string argument and executes it as if it had been submitted as a
DSQL statement. If the statement returns data, the INTO clause assigns these to local variables. If the statement
may return more than one row of data, the “FOR ... DO” form must be used to create a loop.

Syntax (full):

<execute-statement> ::= EXECUTE STATEMENT <argument>
 [<option> ...]
 [INTO <variables>]

<looped-version> ::= FOR <execute-statement> DO <psql-statement>

<argument> ::= paramless-stmt
 | (paramless-stmt)
 | (<stmt-with-params>) (<param-values>)

<stmt-with-params> ::= A statement containing one or more parameters,
 in one of these forms:
 - named: ':' + paramname, e.g. :a, :b, :size
 - positional: each param is designated by '?'
 Named and positional parameters may not be mixed.

<param-values> ::= <named-values> | <positional-values>
<named-values> ::= paramname := value-expr [, paramname := value-expr ...]
<positional-values> ::= value-expr [, value-expr ...]

PSQL statements

116

<option> ::= WITH {AUTONOMOUS|COMMON} TRANSACTION
 | WITH CALLER PRIVILEGES
 | AS USER user
 | PASSWORD password
 | ROLE role
 | ON EXTERNAL [DATA SOURCE] <connect-string>

<connect-string> ::= [<hostspec>]path-or-alias
<hostspec> ::= <tcpip-hostspec> | <netbeui-hostspec>
<tcpip-hostspec> ::= hostname:
<netbeui-hostspec> ::= \\hostname\

<variables> ::= [:]varname [, [:]varname ...]

<psql-statement> ::= A simple or compound PSQL statement.

NOTICE:
paramless-stmt, <stmt-with-params>, user, password, role and <connect-string>
are string expressions. When given directly, i.e. as literal strings, they must
be enclosed in single-quote characters.

The following paragraphs first explain the basic usage of EXECUTE STATEMENT as it has been since Firebird
1.5. After that, the new features in 2.5 are introduced.

No data returned

This form is used with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.

Syntax (partial):

EXECUTE STATEMENT <statement>

<statement> ::= An SQL statement returning no data.

Example:

create procedure DynamicSampleOne (ProcName varchar(100))
as
declare variable stmt varchar(1024);
declare variable param int;
begin
 select min(SomeField) from SomeTable into param;
 stmt = 'execute procedure '
 || ProcName
 || '('
 || cast(param as varchar(20))
 || ')';
 execute statement stmt;
end

Warning

Although this form of EXECUTE STATEMENT can also be used with all kinds of DDL strings (except CRE-
ATE/DROP DATABASE), it is generally very, very unwise to use this trick in order to circumvent the no-DDL
rule in PSQL.

PSQL statements

117

One row of data returned
This form is used with singleton SELECT statements.

Syntax (partial):

EXECUTE STATEMENT <select-statement> INTO <var> [, <var> ...]

<select-statement> ::= An SQL statement returning at most one row of data.
<var> ::= A PSQL variable, optionally preceded by “:”

Example:

create procedure DynamicSampleTwo (TableName varchar(100))
as
declare variable param int;
begin
 execute statement
 'select max(CheckField) from ' || TableName into :param;
 if (param > 100) then
 exception Ex_Overflow 'Overflow in ' || TableName;
end

Any number of data rows returned
This form – analogous to “FOR SELECT ... DO” – is used with SELECT statements that may return a multi-row
dataset.

Syntax (partial):

FOR EXECUTE STATEMENT <select-statement> INTO <var> [, <var> ...]
 DO <psql-statement>

<select-statement> ::= Any SELECT statement.
<var> ::= A PSQL variable, optionally preceded by “:”
<psql-statement> ::= A simple or compound PSQL statement.

Example:

create procedure DynamicSampleThree
 (TextField varchar(100),
 TableName varchar(100))
returns
 (LongLine varchar(32000))
as
declare variable Chunk varchar(100);
begin
 Chunk = '';
 for execute statement
 'select ' || TextField || ' from ' || TableName into :Chunk
 do
 if (Chunk is not null) then
 LongLine = LongLine || Chunk || ' ';
 suspend;
end

PSQL statements

118

Improved performance
Changed in: 2.5

Description: In previous versions, if EXECUTE STATEMENT occurred in a loop, the SQL statement would be
prepared, executed and released upon every iteration. In Firebird 2.5 and above, such a statement is only prepared
once, giving a huge performance benefit.

WITH {AUTONOMOUS|COMMON} TRANSACTION

Added in: 2.5

Description: Traditionally, the executed SQL statement always ran within the current transaction, and this is
still the default. WITH AUTONOMOUS TRANSACTION causes a separate transaction to be started, with the same
parameters as the current transaction. It will be committed if the statement runs to completion without errors and
rolled back otherwise. WITH COMMON TRANSACTION uses the current transaction if possible. If the statement
must run in a separate connection, an already started transaction within that connection is used, if available.
Otherwise, a new transaction is started with the same parameters as the current transaction. Any new transactions
started under the “COMMON” regime are committed or rolled back with the current transaction.

Syntax (partial):

[FOR]
 EXECUTE STATEMENT sql-statement
 WITH {AUTONOMOUS|COMMON} TRANSACTION
 [...other options...]
 [INTO <variables>]
[DO psql-statement]

WITH CALLER PRIVILEGES

Added in: 2.5

Description: By default, the SQL statement is executed with the privileges of the current user. Specifying WITH
CALLER PRIVILEGES adds to this the privileges of the calling SP or trigger, just as if the statement were executed
directly by the routine. WITH CALLER PRIVILEGES has no effect if the ON EXTERNAL clause is also present.

Syntax (partial):

[FOR]
 EXECUTE STATEMENT sql-statement
 WITH CALLER PRIVILEGES
 [...other options...]
 [INTO <variables>]
[DO psql-statement]

ON EXTERNAL [DATA SOURCE]
Added in: 2.5

PSQL statements

119

Description: With ON EXTERNAL DATA SOURCE, the SQL statement is executed in a separate connection to
the same or another database, possibly even on another server. If the connect string is NULL or '' (empty string),
the entire ON EXTERNAL clause is considered absent and the statement is executed against the current database.

Syntax (partial):

[FOR]
 EXECUTE STATEMENT sql-statement
 ON EXTERNAL [DATA SOURCE] <connect-string>
 [AS USER user]
 [PASSWORD password]
 [ROLE role]
 [...other options...]
 [INTO <variables>]
[DO psql-statement]

<connect-string> ::= [<hostspec>]path-or-alias
<hostspec> ::= <tcpip-hostspec> | <netbeui-hostspec>
<tcpip-hostspec> ::= hostname:
<netbeui-hostspec> ::= \\hostname\

NOTICE:
sql-statement, user, password, role and <connect-string> are string
expressions. When given directly, i.e. as literal strings, they must
be enclosed in single-quote characters.

Connection pooling:

• External connections made by statements WITH COMMON TRANSACTION (the default) will remain open
until the current transaction ends. They can be reused by subsequent calls to EXECUTE STATEMENT, but
only if the connect string is exactly the same, including case.

• External connections made by statements WITH AUTONOMOUS TRANSACTION are closed as soon as the
statement has been executed.

• Notice that statements WITH AUTONOMOUS TRANSACTION can and will reuse connections that were
opened earlier by statements WITH COMMON TRANSACTION. If this happens, the reused connection will
be left open after the statement has been executed. (It must be, because it has at least one uncommitted trans-
action!)

Transaction pooling:

• If WITH COMMON TRANSACTION is in effect, transactions will be reused as much as possible. They will be
committed or rolled back together with the current transaction.

• If WITH AUTONOMOUS TRANSACTION is specified, a fresh transaction will always be started for the state-
ment. This transaction will be committed or rolled back immediately after the statement's execution.

Exception handling: When ON EXTERNAL is used, the extra connection is always made via a so-called ex-
ternal provider, even if the connection is to the current database. One of the consequences is that you can't
catch exceptions the way you are used to. Every exception caused by the statement is wrapped in either an
eds_connection or an eds_statement error. In order to catch them in your PSQL code, you have to use WHEN
GDSCODE eds_connection, WHEN GDSCODE eds_statement or WHEN ANY. (Without ON EXTERNAL, excep-
tions are caught in the usual way, even if an extra connection is made to the current database.)

Miscellaneous notes:

• The character set used for the external connection is the same as that for the current connection.

PSQL statements

120

• Two-phase commits are not supported.

• For authentication details, please look under AS USER, PASSWORD and ROLE :: Authentication, below.

AS USER, PASSWORD and ROLE

Added in: 2.5

Description: Optionally, a user name, password and/or role can be specified under which the statement must
be executed.

Syntax (partial):

[FOR]
 EXECUTE STATEMENT sql-statement
 AS USER user
 PASSWORD password
 ROLE role
 [...other options...]
 [INTO <variables>]
[DO psql-statement]

NOTICE:
sql-statement, user, password and role are string expressions.
When given directly, i.e. as literal strings, they must be
enclosed in single-quote characters.

Authentication: How a user is authenticated and whether a separate connection is opened depends on the presence
and values of the parameters ON EXTERNAL [DATA SOURCE], AS USER, PASSWORD and ROLE.

• If ON EXTERNAL is present, a new connection is always opened, and:

- If at least one of AS USER, PASSWORD and ROLE is present, native authentication is attempted with the
given parameter values (locally or remotely, depending on the connect string). No defaults are used for
missing parameters.

- If all three are absent and the connect string contains no hostname, then the new connection is established
on the local host with the same user and role as the current connection. The term 'local' means 'on the same
machine as the server' here. This is not necessarily the location of the client.

- If all three are absent and the connect string contains a hostname, then trusted authentication is attempted
on the remote host (again, remote from the POV of the server). If this succeeds, the remote OS will provide
the user name (usually the OS account under which the Firebird process runs).

• If ON EXTERNAL is absent:

- If at least one of AS USER, PASSWORD and ROLE is present, a new connection to the current database is
opened with the given parameter values. No defaults are used for missing parameters.

- If all three are absent, the statement is executed within the current connection.

Notice: If a parameter value is NULL or '' (empty string), the entire parameter is considered absent. Additionally,
AS USER is considered absent if its value is equal to CURRENT_USER, and ROLE if it's equal to CURRENT_ROLE.

PSQL statements

121

The comparison is made case-sensitively; in most cases this means that only user and role names given in all-
caps can be equal tot CURRENT_USER or CURRENT_ROLE.

Parameterized statements

Added in: 2.5

Description: Since Firebird 2.5, the SQL statement to be executed may contain parameters. When [FOR] EXE-
CUTE STATEMENT is called, a value must be provided for each parameter.

Syntax (partial):

[FOR]
 EXECUTE STATEMENT (<parameterized-statement>) (<param-assignments>)
 [...options...]
 [INTO <variables>]
[DO psql-statement]

<parameterized-statement> ::= An SQL statement containing
 <named-param>s or <positional-param>s

<named-param> ::= :paramname
<positional-param> ::= ?

<param-assignments> ::= <named-assignments> | <positional-assignments>
<named-assignments> ::= paramname := value [, paramname := value ...]
<positional-assignments> ::= value [, value ...]

NOTICE:
<parameterized-statement> is a string expression. When given directly,
i.e. as a literal string, it must be enclosed in single-quote characters.

Examples:

With named parameters:

...
declare license_num varchar(15);
declare connect_string varchar(100);
declare stmt varchar(100) =
 'select license from cars where driver = :driver and location = :loc';
begin
 ...
 select connstr from databases where cust_id = :id into connect_string;
 ...
 for select id from drivers into current_driver do
 begin
 for select location from driver_locations
 where driver_id = :current_driver
 into current_location do
 begin
 ...
 execute statement (stmt) (driver := current_driver,
 loc := current_location)
 on external connect_string
 into license_num;
 ...

PSQL statements

122

The same code with positional parameters:

...
declare license_num varchar(15);
declare connect_string varchar(100);
declare stmt varchar(100) =
 'select license from cars where driver = ? and location = ?';
begin
 ...
 select connstr from databases where cust_id = :id into connect_string;
 ...
 for select id from drivers into current_driver do
 begin
 for select location from driver_locations
 where driver_id = :current_driver
 into current_location do
 begin
 ...
 execute statement (stmt) (current_driver, current_location)
 on external connect_string
 into license_num;
 ...

Notes: Some things to be aware of:

• When a statement has parameters, it must be placed in parentheses when EXECUTE STATEMENT is called,
regardless whether it is given directly as a string, as a variable name, or by another expression.

• Named parameters must be preceded by a colon (“:”) in the statement itself, but not in the parameter assign-
ments.

• Each named parameter may occur several times in the statement, but only once in the assignments.

• Each named parameter must be assigned a value when EXECUTE STATEMENT is called; the assignments
can be placed in any order.

• The assignment operator for named parameters is “:=”, not “=” like in SQL.

• With positional parameters, the number of values supplied must exactly equal the number of parameters
(question marks) in the statement.

Caveats with EXECUTE STATEMENT

1. There is no way to validate the syntax of the enclosed statement.

2. There are no dependency checks to discover whether tables or columns have been dropped.

3. Even though the performance in loops has been significantly improved in Firebird 2.5, execution is still
considerably slower than that of statements given directly.

4. Return values are strictly checked for data type in order to avoid unpredictable type-casting exceptions. For
example, the string '1234' would convert to an integer, 1234, but 'abc' would give a conversion error.

All in all, this feature is meant to be used very cautiously and you should always take the above factors into
account. If you can achieve the same result with PSQL and/or DSQL, then this is nearly always preferable.

PSQL statements

123

EXIT

Available in: PSQL

Changed in: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versions it is only supported in
stored procedures, not in triggers.

FETCH cursor
Available in: PSQL

Added in: 2.0

Description: Fetches the next data row from a cursor's result set and stores the column values in PSQL variables.

Syntax:

FETCH cursorname INTO [:]varname [, [:]varname ...];

Notes:

• The ROW_COUNT context variable will be 1 if the fetch returned a data row and 0 if the end of the set has
been reached.

• You can do a positioned UPDATE or DELETE on the fetched row with the WHERE CURRENT OF clause.

Example: See DECLARE ... CURSOR.

FOR EXECUTE STATEMENT ... DO

Available in: PSQL

Added in: 1.5

Description: See EXECUTE STATEMENT :: Any number of data rows returned.

FOR SELECT ... INTO ... DO

Available in: PSQL

PSQL statements

124

Description: Executes a SELECT statement and retrieves the result set. In each iteration of the loop, the field
values of the current row are copied into local variables. Adding an AS CURSOR clause enables positioned
deletes and updates. FOR SELECT statements may be nested.

Syntax:

FOR <select-stmt>
 INTO <var> [, <var> ...]
 [AS CURSOR name]
DO
 <psql-stmt>

<select-stmt> ::= A valid SELECT statement.
<var> ::= A PSQL variable name, optionally preceded by “:”
<psql-stmt> ::= A single statement or a block of PSQL code.

• The SELECT statement may contain named SQL parameters, like in “select name || :sfx
from names where number = :num”. Each parameter must be a PSQL variable that has been
declared previously (this includes any in/out params of the PSQL module).

• Caution! If the value of a PSQL variable that is used in the SELECT statement changes during
execution of the loop, the statement may (but will not always) be re-evaluated for the remaining
rows. In general, this situation should be avoided. If you really need this behaviour, test your code
thoroughly and make sure you know how variable changes affect the outcome. Also be advised
that the behaviour may depend on the query plan, in particular the use of indices. And as it is
currently not strictly defined, it may also change in some future version of Firebird.

Examples:

create procedure shownums
 returns (aa int, bb int, sm int, df int)
as
begin
 for select distinct a, b from numbers order by a, b
 into :aa, :bb
 do
 begin
 sm = aa + bb;
 df = aa - bb;
 suspend;
 end
end

create procedure relfields
 returns (relation char(32), pos int, field char(32))
as
begin
 for select rdb$relation_name from rdb$relations
 into :relation
 do
 begin
 for select rdb$field_position + 1, rdb$field_name
 from rdb$relation_fields
 where rdb$relation_name = :relation
 order by rdb$field_position
 into :pos, :field
 do
 begin
 if (pos = 2) then relation = ' "'; -- for nicer output

PSQL statements

125

 suspend;
 end
 end
end

AS CURSOR clause

Available in: PSQL

Added in: IB

Description: The optional AS CURSOR clause creates a named cursor that can be referenced (after WHERE
CURRENT OF) within the FOR SELECT loop in order to update or delete the current row. This feature was already
added in InterBase, but not mentioned in the Language Reference.

Example:

create procedure deltown (towntodelete varchar(24))
 returns (town varchar(24), pop int)
as
begin
 for select town, pop from towns into :town, :pop as cursor tcur do
 begin
 if (town = towntodelete)
 then delete from towns where current of tcur;
 else suspend;
 end
end

Notes:

• A “FOR UPDATE” clause is allowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

• Make sure that cursor names defined here do not clash with any names created earlier on in DECLARE CUR-
SOR statements.

• AS CURSOR is not supported in FOR EXECUTE STATEMENT loops, even if the statement to execute is a
suitable SELECT query.

IN AUTONOMOUS TRANSACTION

Available in: PSQL

Added in: 2.5

Description: Code running in an autonomous transaction will be committed immediately upon successful com-
pletion, regardless of how the parent transaction finishes. This is useful if you want to make sure that certain
actions will not be rolled back, even if an error is raised later.

Syntax:

IN AUTONOMOUS TRANSACTION DO <psql-statement>

PSQL statements

126

Example:

create trigger tr_connect on connect
as
begin
 -- make sure log message is always preserved:
 in autonomous transaction do
 insert into log (msg) values ('User ' || current_user || ' connects.');
 if (current_user in (select username from blocked_users)) then
 begin
 -- again, log message must be preserved and event posted, so:
 in autonomous transaction do
 begin
 insert into log (msg) values ('User ' || current_user || ' refused.');
 post_event 'Connection attempt by blocked user.';
 end
 -- now we can safely except:
 exception ex_baduser;
 end
end

Notes:

• Autonomous transactions have the same isolation level as their parent transaction.

• Because the autonomous transaction is completely independent of its parent, care must be taken to avoid
deadlocks.

• If an exception occurs within the autonomous transaction, the work will be rolled back.

LEAVE

Available in: PSQL

Added in: 1.5

Changed in: 2.0

Description: LEAVE immediately terminates the innermost WHILE or FOR loop. With the optional label ar-
gument introduced in Firebird 2.0, LEAVE can break out of surrounding loops as well. Execution continues with
the first statement after the outermost terminated loop.

Syntax:

[label:]
{FOR | WHILE} ... DO
 ...
 (possibly nested loops, with or without labels)
 ...
 LEAVE [label];

Example:

If an error occurs during the insert in the example below, the event is logged and the loop terminated.
The program continues at the line of code reading “c = 0;”

PSQL statements

127

while (b < 10) do
begin
 insert into Numbers(B) values (:b);
 b = b + 1;
 when any do
 begin
 execute procedure log_error (current_timestamp, 'Error in B loop');
 leave;
 end
end
c = 0;

The next example uses labels. “Leave LoopA” terminates the outer loop, “leave LoopB” the inner
loop. Notice that a plain “leave” would also suffice to terminate the inner loop.

stmt1 = 'select Name from Farms';
LoopA:
for execute statement :stmt1 into :farm do
begin
 stmt2 = 'select Name from Animals where Farm = ''';
 LoopB:
 for execute statement :stmt2 || :farm || '''' into :animal do
 begin
 if (animal = 'Fluffy') then leave LoopB;
 else if (animal = farm) then leave LoopA;
 else suspend;
 end
end

OPEN cursor
Available in: PSQL

Added in: 2.0

Description: Opens a previously declared cursor, executing its SELECT statement and enabling it to fetch records
from the result set.

Syntax:

OPEN cursorname;

Example: See DECLARE ... CURSOR.

PLAN allowed in trigger code
Changed in: 1.5

Description: Before Firebird 1.5, a trigger containing a PLAN statement would be rejected by the compiler. Now
a valid plan can be included and will be used.

PSQL statements

128

Subqueries as PSQL expressions
Changed in: 2.5

Description: Previously, subqueries could not be used as value expressions in PSQL, even if they returned a
single value. This made it necessary to use SELECT ... INTO, often assigning the result to a variable that wouldn't
have been necessary otherwise. Firebird 2.5 and up support the direct use of scalar subqueries as if they were
simple value expressions.

Examples:

Constructions like the following are now valid PSQL:

var = (select ... from ...);

if ((select ... from ...) = 1) then ...

if (1 = any (select ... from ...)) then ...

if (1 in (select ... from ...)) then ...

Of course, in the first two examples you have to be sure that the SELECT doesn't return multiple rows!

UDFs callable as void functions
Changed in: 2.0

Description: In Firebird 2.0 and above, PSQL code may call UDFs without assigning the result value, i.e. like a
Pascal procedure or C void function. In most cases this is senseless, because the main purpose of almost every
UDF is to produce the result value. Some functions however perform a specific task, and if you're not interested
in the result value you can now spare yourself the trouble of assigning it to a dummy variable.

Note

RDB$GET_CONTEXT and RDB$SET_CONTEXT, though classified in this guide under internal functions, are
actually a kind of auto-declared UDFs. You may therefore call them without catching the result. Of course this
only makes sense for RDB$SET_CONTEXT.

WHERE CURRENT OF valid again for view cursors
Changed in: 2.0, 2.1

Description: Because of possible reliability issues, Firebird 2.0 disallowed WHERE CURRENT OF for view cur-
sors. In Firebird 2.1, with its improved view validation logic, this restriction has been lifted.

129

Chapter 10

Security and access control

ALTER ROLE

Available in: DSQL

Added in: 2.5

Description: Currently, ALTER ROLE's only purpose is to control the automatic mapping of the RDB$ADMIN
role to Windows administrators. For a full discussion, see RDB$ADMIN and AUTO ADMIN MAPPING.

Syntax:

ALTER ROLE RDB$ADMIN {SET|DROP} AUTO ADMIN MAPPING

GRANT and REVOKE

GRANTED BY

Available in: DSQL

Added in: 2.5

Description: When a privilege is granted, it is normally stored in the database with the current user as the
grantor. With the GRANTED BY clause, the user who grants the privilege can have someone else registered as
the grantor. When GRANTED BY is used with REVOKE, the privilege (registered as) granted by the named user
will be removed. To make migration from certain other RDBMSes easier, the non-standard AS is supported as
a synonym of GRANTED BY.

Access: Use of the GRANTED BY clause is reserved to:
• The database owner;
• SYSDBA;
• anybody who has the RDB$ADMIN role in the database and specified it while connecting;
• if AUTO ADMIN MAPPING is on for the database: any Windows administrator who connected to the database

using trusted authentication without specifying a role.
Even the owner of the role can't use GRANTED BY if he isn't in the above list.

Security and access control

130

Syntax:

GRANT
 {<privileges> ON <object> | role}
 TO <grantees>
 [WITH {GRANT|ADMIN} OPTION]
 [{GRANTED BY | AS} [USER] grantor]

REVOKE
 [{GRANT|ADMIN} OPTION FOR]
 {<privileges> ON <object> | role}
 FROM <grantees>
 [{GRANTED BY | AS} [USER] grantor]

(These are not the complete GRANT and REVOKE syntaxes, but they are complete as far as GRANTED
BY is concerned.)

Example:

-- connected as database owner BOB:

create role digger;
grant digger to francis;
grant digger to fred;
grant digger to frank with admin option granted by fritz;
commit;

revoke digger from fred;
-- OK
revoke admin option for digger from frank;
-- error: "BOB is not grantor of Role on DIGGER to FRANK."
revoke admin option for digger from frank granted by fritz;
-- OK
revoke digger from frank
-- error: "BOB is not grantor of Role on DIGGER to FRANK."
commit;

-- exit BOB, enter FRITZ:

revoke digger from frank;
-- OK
revoke digger from francis;
-- error: "FRITZ is not grantor of Role on DIGGER to FRANCIS."
revoke digger from francis granted by bob;
-- error: "Only SYSDBA or database owner can use GRANTED BY clause"
commit;

Note: Please notice that a GRANT or ADMIN option is just a flag in the privilege record; it does not have a
separate grantor. So this line:

grant digger to frank with admin option granted by fritz

does not mean “Grant digger to Frank, and grant the admin option in Fritz's name”, but “Grant digger to Frank
with admin option – all in Fritz's name”.

REVOKE ALL ON ALL

Available in: DSQL

Security and access control

131

Added in: 2.5

Description: Revokes all privileges (including role memberships) on all objects from one or more users and/or
roles. This is a quick way to “clean up” when a user has left the system or must be locked out of the database.

Syntax:

REVOKE ALL ON ALL FROM <grantee> [, <grantee> ...]

<grantee> ::= [USER] username | [ROLE] rolename

Example:

revoke all on all from buddy, peggy, sue

Notes:

• When invoked by a privileged user (the database owner, SYSDBA or anyone whose CURRENT_ROLE is RDB
$ADMIN), all privileges are removed regardless of the grantor. Otherwise, only those privileges granted by
the current user are removed.

• The GRANTED BY clause is not supported.

• This statement cannot be used to revoke privileges from stored procedure, trigger or view grantees. (Privileges
ON such objects are removed, of course.)

REVOKE ADMIN OPTION

Available in: DSQL

Added in: 2.0

Description: Revokes a previously granted admin option (the right to pass on a granted role to others) from the
grantee, without revoking the role itself. Multiple roles and/or multiple grantees can be handled in one statement.

Syntax:

REVOKE ADMIN OPTION FOR <role-list> FROM <grantee-list>

<role-list> ::= role [, role ...]
<grantee-list> ::= [USER] <grantee> [, [USER] <grantee> ...]
<grantee> ::= username | PUBLIC

Example:

revoke admin option for manager from john, paul, george, ringo

If a user has received the admin option from several grantors, each of those grantors must revoke it or the user
will still be able to grant the role(s) in question to others.

The RDB$ADMIN role
Added in: 2.5

Security and access control

132

Description: Firebird 2.5 introduces the RDB$ADMIN system role, which is predefined in every database. Grant-
ing someone the RDB$ADMIN role in a database gives him or her SYSDBA rights in that database only. In a
normal database, this means full control over all objects. In the security database, it means the ability to create,
alter and drop user accounts. In both cases, the grantee can always pass the role on to others. In other words,
“WITH ADMIN OPTION” is built in and need not be specified.

In normal databases

Granting the RDB$ADMIN role in a normal database

In a regular database, the RDB$ADMIN role can be granted and revoked with the usual syntax:

GRANT RDB$ADMIN TO username
REVOKE RDB$ADMIN FROM username

Grantors can be:

• The database owner;
• SYSDBA;
• anybody who has the RDB$ADMIN role in the database and specified it while connecting;
• if AUTO ADMIN MAPPING is on for the database: any Windows administrator who connected to the database

using trusted authentication without specifying a role.

Using the RDB$ADMIN role in a normal database

To make use of his RDB$ADMIN privileges, the grantee simply specifies the role when connecting to the
database.

In the security database

Granting the RDB$ADMIN role in the security database

Since nobody can connect to the security database, the GRANT and REVOKE statements cannot be used here.
Instead, the RDB$ADMIN role is granted and revoked with the new SQL user management commands:

CREATE USER newuser PASSWORD 'password' GRANT ADMIN ROLE
ALTER USER existinguser GRANT ADMIN ROLE
ALTER USER existinguser REVOKE ADMIN ROLE

Please notice that GRANT ADMIN ROLE and REVOKE ADMIN ROLE are not GRANT and REVOKE statements.
They are three-word parameters to CREATE and ALTER USER.

Alternatively, gsec can be used with the -admin parameter:

gsec -add newuser -pw password -admin yes
gsec -mo existinguser -admin yes
gsec -mo existinguser -admin no

Security and access control

133

Depending on the situation, more parameters may be needed when invoking gsec, e.g. -user and -pass, or
-trusted.

Grantors can be:

• SYSDBA;
• anybody who has the RDB$ADMIN role in the security database and specified it while connecting (or while

invoking gsec);
• if AUTO ADMIN MAPPING is on for the security database: any Windows administrator who connected (or

invoked gsec) using trusted authentication without specifying a role.

Using the RDB$ADMIN role in the security database

To manage user accounts through SQL, the grantee must specify the RDB$ADMIN role when connecting. But
this poses a problem, because nobody can connect to the security database. The solution is that the user connects
to another – regular – database where he also has RDB$ADMIN rights. He specifies the role when connecting
to the regular database, and can then give any SQL user management command. It's not the most elegant of
solutions, but it is the only way. If there isn't a regular database where the grantee has the RDB$ADMIN role,
the SQL route is blocked.

To perform user management with gsec, the grantee must provide the extra parameter -role rdb$admin.

AUTO ADMIN MAPPING

Platform: Windows only

Added in: 2.5

Description: In Firebird 2.1, Windows administrators would automatically receive SYSDBA privileges if they
used trusted authentication to connect to the server. In Firebird 2.5, this is no longer the case. Whether admin-
istrators have automatic SYSDBA rights now depends on the setting of AUTO ADMIN MAPPING. This is a per-
database switch which is off by default. If AUTO ADMIN MAPPING is on, it will take effect whenever a Windows
administrator: a) connects using trusted authentication, and b) does not specify any role when connecting. After
a successful “auto admin” connect, the current role is set to RDB$ADMIN.

In normal databases

To turn the automatic mapping on and off in a regular database:

ALTER ROLE RDB$ADMIN SET AUTO ADMIN MAPPING
ALTER ROLE RDB$ADMIN DROP AUTO ADMIN MAPPING

These statements must be issued by a user with sufficient rights, that is:

• The database owner;
• SYSDBA;
• anybody who has the RDB$ADMIN role in the database and specified it while connecting;
• if AUTO ADMIN MAPPING is on for the database: any Windows administrator who connected to the database

using trusted authentication without specifying a role.

Security and access control

134

In normal databases, the status of AUTO ADMIN MAPPING is checked at connect time only. If an administrator
has the RDB$ADMIN role because the mapping was on when he connected, he will keep that role for the duration
of the connection, even if he or someone else turns off the mapping in the meantime. Likewise, setting AUTO
ADMIN MAPPING on will not change the current role to RDB$ADMIN for administrators who were already
connected.

In the security database

There are no SQL statements to turn the automatic mapping on and off in the security database. Instead, gsec
must be used:

gsec -mapping set
gsec -mapping drop

Depending on the situation, more parameters may be needed when invoking gsec, e.g. -user and -pass, or
-trusted.

These commands can be given by:

• SYSDBA;
• if AUTO ADMIN MAPPING is on for the security database: any Windows administrator who invokes gsec

using trusted authentication without specifying a role.

Unlike the case with regular databases, users connecting with the RDB$ADMIN role cannot turn AUTO ADMIN
MAPPING on or off in the security database. Also notice that the Windows administrator in the second listitem
can only turn the mapping off. In doing so, he shuts off the very mechanism that gave him access in the first
place, so he won't be able to turn it back on again. (Even in an interactive gsec session, the new setting takes
effect immediately.)

SQL user management commands
Available in: DSQL

Added in: 2.5

Description: Firebird 2.5 and up provide SQL statements for user account management. Except in one case,
they are only available to the following privileged users:
• SYSDBA;
• Any user who has been granted the RDB$ADMIN role in the security database and at least one other database.

The user must specify the role when connecting to the database.
• If AUTO ADMIN MAPPING is on for the security database: any Windows administrator connected to any

database using trusted authentication without specifying a role. Whether AUTO ADMIN MAPPING is on in the
connection database is unimportant.

Non-privileged users can only use ALTER USER, to change their own account details.

CREATE USER

Description: Creates a Firebird user account.

Security and access control

135

Syntax:

CREATE USER username PASSWORD 'password'
 [FIRSTNAME 'firstname']
 [MIDDLENAME 'middlename']
 [LASTNAME 'lastname']
 [GRANT ADMIN ROLE]

GRANT ADMIN ROLE gives the new user the RDB$ADMIN role in the security database. This allows
him to manage user accounts, but doesn't give him any special privileges in regular databases. For
more infomation, see The RDB$ADMIN role.

Examples:

create user bigshot password 'buckshot'
create user john password 'fYe_3Ksw' firstname 'John' lastname 'Doe'
create user mary password 'lamb_chop' firstname 'Mary' grant admin role

ALTER USER

Description: Alters details of a Firebird user account. This is the only account management statement that can
also be used by non-privileged users, in order to change their own account details.

Syntax:

ALTER USER username
 [PASSWORD 'password']
 [FIRSTNAME 'firstname']
 [MIDDLENAME 'middlename']
 [LASTNAME 'lastname']
 [{GRANT|REVOKE} ADMIN ROLE]

-- At least one of the optional parameters must be present.
-- GRANT/REVOKE ADMIN ROLE is reserved to privileged users.

Examples:

alter user bobby password '67-UiT_G8' grant admin role
alter user dan firstname 'No_Jack' lastname 'Kennedy'
alter user dumbbell revoke admin role

DROP USER

Description: Removes a Firebird user account.

Syntax:

DROP USER username

Example:

drop user timmy

136

Chapter 11

Context variables

CURRENT_CONNECTION

Available in: DSQL, PSQL

Added in: 1.5

Changed in: 2.1

Description: CURRENT_CONNECTION contains the unique identifier of the current connection.

Type: INTEGER

Examples:

select current_connection from rdb$database

execute procedure P_Login(current_connection)

The value of CURRENT_CONNECTION is stored on the database header page and reset to 0 upon restore. Since
version 2.1, it is incremented upon every new connection. (In previous versions, it was only incremented if the
client read it during a session.) As a result, CURRENT_CONNECTION now indicates the number of connections
since the creation – or most recent restoration – of the database.

CURRENT_ROLE

Available in: DSQL, PSQL

Added in: 1.0

Description: CURRENT_ROLE is a context variable containing the role of the currently connected user. If there
is no active role, CURRENT_ROLE is NONE.

Type: VARCHAR(31)

Example:

if (current_role <> 'MANAGER')
 then exception only_managers_may_delete;

Context variables

137

else
 delete from Customers where custno = :custno;

CURRENT_ROLE always represents a valid role or NONE. If a user connects with a non-existing role, the engine
silently resets it to NONE without returning an error.

CURRENT_TIME

Available in: DSQL, PSQL, ESQL

Changed in: 2.0

Description: CURRENT_TIME returns the current server time. In versions prior to 2.0, the fractional part used to
be always “.0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward you can specify a
precision when polling this variable. The default is still 0 decimals, i.e. seconds precision.

Type: TIME

Syntax:

CURRENT_TIME [(precision)]

precision ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Examples:

select current_time from rdb$database
-- returns e.g. 14:20:19.6170

select current_time(2) from rdb$database
-- returns e.g. 14:20:23.1200

Notes:

• Unlike CURRENT_TIME, the default precision of CURRENT_TIMESTAMP has changed to 3 decimals. As a
result, CURRENT_TIMESTAMP is no longer the exact sum of CURRENT_DATE and CURRENT_TIME, unless
you explicitly specify a precision.

• Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TIME will remain
constant every time it is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need a progressing value in PSQL – e.g. to measure
time intervals – use 'NOW' with a full cast (not shorthand syntax).

CURRENT_TIMESTAMP

Available in: DSQL, PSQL, ESQL

Context variables

138

Changed in: 2.0

Description: CURRENT_TIMESTAMP returns the current server date and time. In versions prior to 2.0, the frac-
tional part used to be always “.0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward
you can specify a precision when polling this variable. The default is 3 decimals, i.e. milliseconds precision.

Type: TIMESTAMP

Syntax:

CURRENT_TIMESTAMP [(precision)]

precision ::= 0 | 1 | 2 | 3

The optional precision argument is not supported in ESQL.

Examples:

select current_timestamp from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

select current_timestamp(2) from rdb$database
-- returns e.g. 2008-08-13 14:20:23.1200

Notes:

• The default precision of CURRENT_TIME is still 0 decimals, so in Firebird 2.0 and up CURRENT_TIMESTAMP
is no longer the exact sum of CURRENT_DATE and CURRENT_TIME, unless you explicitly specify a precision.

• Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TIMESTAMP will
remain constant every time it is read. If multiple modules call or trigger each other, the value will remain
constant throughout the duration of the outermost module. If you need a progressing value in PSQL – e.g. to
measure time intervals – use 'NOW' with a full cast (not shorthand syntax).

CURRENT_TRANSACTION

Available in: DSQL, PSQL

Added in: 1.5

Description: CURRENT_TRANSACTION contains the unique identifier of the current transaction.

Type: INTEGER

Examples:

select current_transaction from rdb$database

New.Txn_ID = current_transaction;

The value of CURRENT_TRANSACTION is stored on the database header page and reset to 0 upon restore. It is
incremented with every new transaction.

Context variables

139

CURRENT_USER

Available in: DSQL, PSQL

Added in: 1.0

Description: CURRENT_USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)

Example:

create trigger bi_customers for customers before insert as
begin
 New.added_by = CURRENT_USER;
 New.purchases = 0;
end

DELETING

Available in: PSQL

Added in: 1.5

Description: Available in triggers only, DELETING indicates if the trigger fired because of a DELETE operation.
Intended for use in multi-action triggers.

Type: boolean

Example:

if (deleting) then
begin
 insert into Removed_Cars (id, make, model, removed)
 values (old.id, old.make, old.model, current_timestamp);
end

GDSCODE

Available in: PSQL

Added in: 1.5

Changed in: 2.0

Context variables

140

Description: In a “WHEN ... DO” error handling block, the GDSCODE context variable contains the numerical rep-
resentation of the current Firebird error code. Prior to Firebird 2.0, GDSCODE was only set in WHEN GDSCODE
handlers. Now it may also be non-zero in WHEN ANY, WHEN SQLCODE and WHEN EXCEPTION blocks, pro-
vided that the condition raising the error corresponds with a Firebird error code. Outside error handlers, GDSCODE
is always 0. Outside PSQL it doesn't exist at all.

Type: INTEGER

Example:

when gdscode grant_obj_notfound, gdscode grant_fld_notfound,
 gdscode grant_nopriv, gdscode grant_nopriv_on_base
do
begin
 execute procedure log_grant_error(gdscode);
 exit;
end

Please notice: After WHEN GDSCODE, you must use symbolic names like grant_obj_notfound etc. But the
GDSCODE context variable is an INTEGER. If you want to compare it against a certain error, you have to use the
numeric value, e.g. 335544551 for grant_obj_notfound.

INSERTING

Available in: PSQL

Added in: 1.5

Description: Available in triggers only, INSERTING indicates if the trigger fired because of an INSERT opera-
tion. Intended for use in multi-action triggers.

Type: boolean

Example:

if (inserting or updating) then
begin
 if (new.serial_num is null) then
 new.serial_num = gen_id(gen_serials, 1);
end

NEW

Available in: PSQL, triggers only

Changed in: 1.5, 2.0

Description: NEW contains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it is read-only in AFTER triggers.

Context variables

141

Type: Data row

Note

In multi-action triggers – introduced in Firebird 1.5 – NEW is always available. But if the trigger is fired by
a DELETE, there will be no new version of the record. In that situation, reading from NEW will always return
NULL; writing to it will cause a runtime exception.

'NOW'

Available in: DSQL, PSQL, ESQL

Changed in: 2.0

Description: 'NOW' is not a variable but a string literal. It is, however, special in the sense that when you CAST()
it to a date/time type, you will get the current date and/or time. The fractional part of the time used to be always
“.0000”, giving an effective seconds precision. Since Firebird 2.0 the precision is 3 decimals, i.e. milliseconds.
'NOW' is case-insensitive, and the engine ignores leading or trailing spaces when casting.

Type: CHAR(3)

Examples:

select 'Now' from rdb$database
-- returns 'Now'

select cast('Now' as date) from rdb$database
-- returns e.g. 2008-08-13

select cast('now' as time) from rdb$database
-- returns e.g. 14:20:19.6170

select cast('NOW' as timestamp) from rdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

select date 'Now' from rdb$database
select time 'now' from rdb$database
select timestamp 'NOW' from rdb$database

Notes:

• When used with CAST(), 'NOW' always returns the actual date/time, even in PSQL modules, where
CURRENT_DATE, CURRENT_TIME and CURRENT_TIMESTAMP return the same value throughout the duration
of the outermost routine. This makes 'NOW' useful for measuring time intervals in triggers, procedures and
executable blocks.

• When used with the shorthand syntax, 'NOW' is evaluated at parse time and the value is frozen for as long as
the statement stays prepared – even across multiple executions of the prepared statement! This is something
to be aware of.

Context variables

142

• Unless you really need progressing values in PSQL, or frozen values during multiple executions, read-
ing CURRENT_DATE, CURRENT_TIME and CURRENT_TIMESTAMP is generally preferable to using 'NOW'.
Be aware though that CURRENT_TIME defaults to seconds precision; to get milliseconds precision, use
CURRENT_TIME(3).

OLD

Available in: PSQL, triggers only

Changed in: 1.5, 2.0

Description: OLD contains the existing version of a database record just before a deletion or update. Starting
with Firebird 2.0 it is read-only.

Type: Data row

Note

In multi-action triggers – introduced in Firebird 1.5 – OLD is always available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will
always return NULL; writing to it will cause a runtime exception.

ROW_COUNT

Available in: PSQL

Added in: 1.5

Changed in: 2.0

Description: The ROW_COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) in the current trigger, stored procedure or executable
block.

Type: INTEGER

Example:

update Figures set Number = 0 where id = :id;
if (row_count = 0) then
 insert into Figures (id, Number) values (:id, 0);

Behaviour with SELECT and FETCH:

• After a singleton SELECT, ROW_COUNT is 1 if a data row was retrieved and 0 otherwise.

• In a FOR SELECT loop, ROW_COUNT is incremented with every iteration (starting at 0 before the first).

Context variables

143

• After a FETCH from a cursor, ROW_COUNT is 1 if a data row was retrieved and 0 otherwise. Fetching more
records from the same cursor does not increment ROW_COUNT beyond 1.

• In Firebird 1.5.x, ROW_COUNT is 0 after any type of SELECT statement.

Note

ROW_COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or EXE-
CUTE PROCEDURE command.

SQLCODE

Available in: PSQL

Added in: 1.5

Changed in: 2.0

Deprecated in: 2.5.1

Description: In a “WHEN ... DO” error handling block, the SQLCODE context variable contains the current SQL
error code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and WHEN ANY handlers. Now it
may also be non-zero in WHEN GDSCODE and WHEN EXCEPTION blocks, provided that the condition raising
the error corresponds with an SQL error code. Outside error handlers, SQLCODE is always 0. Outside PSQL it
doesn't exist at all.

Type: INTEGER

Example:

when any
do
begin
 if (sqlcode <> 0) then
 Msg = 'An SQL error occurred!';
 else
 Msg = 'Something bad happened!';
 exception ex_custom Msg;
end

Important notice: SQLCODE is now deprecated in favour of the SQL-2003-compliant SQLSTATE status code.
Support for SQLCODE and WHEN SQLCODE will be discontinued in some future version of Firebird.

SQLSTATE

Available in: PSQL

Added in: 2.5.1

Context variables

144

Description: In a “WHEN ... DO” error handler, the SQLSTATE context variable contains the 5-character,
SQL-2003-compliant status code resulting from the statement that raised the error. Outside error handlers, SQL-
STATE is always '00000'. Outside PSQL it is not available at all.

Type: CHAR(5)

Example:

when any
do
begin
 Msg = case sqlstate
 when '22003' then 'Numeric value out of range.'
 when '22012' then 'Division by zero.'
 when '23000' then 'Integrity constraint violation.'
 else 'Something bad happened! SQLSTATE = ' || sqlstate
 end;
 exception ex_custom Msg;
end

Notes:

• SQLSTATE is destined to replace SQLCODE. The latter is now deprecated in Firebird and will disappear in
some future version.

• Firebird does not (yet) support the syntax “WHEN SQLSTATE ... DO”. You have to use WHEN ANY and test
the SQLSTATE variable within the handler.

• Each SQLSTATE code is the concatenation of a 2-character class and a 3-character subclass. Classes 00
(successful completion), 01 (warning) and 02 (no data) represent completion conditions. Every status code
outside these classes is an exception. Because classes 00, 01 and 02 don't raise an error, they won't ever show
up in the SQLSTATE variable.

• For a complete listing of SQLSTATE codes, consult the Appendix to the Firebird 2.5 Release Notes.

UPDATING

Available in: PSQL

Added in: 1.5

Description: Available in triggers only, UPDATING indicates if the trigger fired because of an UPDATE operation.
Intended for use in multi-action triggers.

Type: boolean

Example:

if (inserting or updating) then
begin
 if (new.serial_num is null) then
 new.serial_num = gen_id(gen_serials, 1);
end

http://www.firebirdsql.org/rlsnotesh/rlsnotes25.html#rnfb25-appx-sqlstates

145

Chapter 12

Operators and predicates

NULL literals allowed as operands
Changed in: 2.0

Description: Before Firebird 2.0, most operators and predicates did not allow NULL literals as operands. Tests
or operations like “A <> NULL”, “B + NULL” or “NULL < ANY(...)” would be rejected by the parser. Now
they are allowed almost everywhere, but please be aware of the following:

The vast majority of these newly allowed expressions return NULL regardless of the state or value of
the other operand, and are therefore worthless for any practicle purpose whatsoever.

In particular, don't try to determine (non-)nullness of a field or variable by testing with “= NULL” or “<> NULL”.
Always use “IS [NOT] NULL”.

Predicates: The IN, ANY/SOME and ALL predicates now also allow NULL literals where they were previously
taboo. Here too, there is no practical benefit to enjoy, but the situation is a little more complicated in that
predicates with NULLs do not always return a NULL result. For details, see the Firebird Null Guide, section
Predicates.

|| (string concatenator)
Available in: DSQL, ESQL, PSQL

Text BLOB concatenation

Changed in: 2.1

Description: Since Firebird 2.1 the concatenation operator supports BLOBs of any length and any character set.
If a mixture of BLOBs and non-BLOBs is involved, the result is a BLOB. If both text and binary BLOBs are
involved, the result is a binary BLOB.

Result type VARCHAR or BLOB

Changed in: 2.0, 2.1

http://www.firebirdsql.org/manual/nullguide-predicates.html

Operators and predicates

146

Description: Before Firebird 2.0, the result type of string concatenations used to be CHAR(n). In Firebird 2.0
this was changed to VARCHAR(n). As a result, the maximum length of a concatenation outcome became 32765
instead of 32767. In Firebird 2.1 and up, if at least one of the operands is a BLOB, the result is also a BLOB
and the maximum doesn't apply. For non-BLOB concatenations the result is still VARCHAR(n) with a maximum
of 32765 bytes.

Overflow checking

Changed in: 1.0, 2.0

Description: In Firebird versions 1.x, an error would be raised if the sum of the declared string lengths in a
concatenation exceeded 65535 bytes, even if the actual result lay within the maximum string length of 32767
bytes. In Firebird 2.0 and up, the declared string lengths will never cause an error. Only if the actual outcome
exceeds 32765 bytes (the new limit for concatenation results) will an error be raised.

ALL

Available in: DSQL, ESQL, PSQL

NULL literals allowed

Changed in: 2.0

Description: The ALL predicate now allows a NULL as the test value. Notice that this brings no practical benefits.
In particular, a NULL test value will not be considered equal to NULLs in the subquery result set. Even if the
entire set is filled with NULLs and the operator chosen is “=”, the predicate will not return true, but NULL.

UNION as subselect

Changed in: 2.0

Description: The subselect in an ALL predicate may now also be a UNION.

ANY / SOME

Available in: DSQL, ESQL, PSQL

NULL literals allowed

Changed in: 2.0

Operators and predicates

147

Description: The ANY (or SOME) predicate now allows a NULL as the test value. Notice that this brings no
practical benefits. In particular, a NULL test value will not be considered equal to a NULL in the subquery result
set.

UNION as subselect

Changed in: 2.0

Description: The subselect in an ANY (or SOME) predicate may now also be a UNION.

IN

Available in: DSQL, ESQL, PSQL

NULL literals allowed

Changed in: 2.0

Description: The IN predicate now allows NULL literals, both as the test value and in the list. Notice that this
brings no practical benefits. In particular, “NULL IN (..., NULL, ..., ...)” will not return true and “NULL NOT IN
(..., NULL, ..., ...)” will not return false.

UNION as subselect

Changed in: 2.0

Description: A subselect in an IN predicate may now also be a UNION.

IS [NOT] DISTINCT FROM

Available in: DSQL, PSQL

Added in: 2.0

Description: Two operands are considered DISTINCT if they have a different value or if one of them is NULL
and the other isn't. They are NOT DISTINCT if they have the same value or if both of them are NULL.

Result type: Boolean

Syntax:

op1 IS [NOT] DISTINCT FROM op2

Operators and predicates

148

Examples:

select id, name, teacher from courses
 where start_day is not distinct from end_day

if (New.Job is distinct from Old.Job)
 then post_event 'job_changed';

IS [NOT] DISTINCT FROM always returns true or false, never NULL (unknown). The “=” and “<>” operators,
by contrast, return NULL if one or both operands are NULL. See also the table below.

Table 12.1. Comparison of [NOT] DISTINCT to “=” and “<>”

Results with the different operatorsOperand char-
acteristics

= NOT DISTINCT <> DISTINCT

Same value true true false false

Different values false false true true

Both NULL NULL true NULL false

One NULL NULL false NULL true

NEXT VALUE FOR

Available in: DSQL, PSQL

Added in: 2.0

Description: Returns the next value in a sequence. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. NEXT VALUE FOR is fully equivalent to GEN_ID(..., 1) and is the
recommended syntax from Firebird 2.0 onward.

Syntax:

NEXT VALUE FOR sequence-name

Example:

new.cust_id = next value for custseq;

NEXT VALUE FOR doesn't support increment values other than 1. If you absolutely need other step values, use
the legacy GEN_ID function.

See also: CREATE SEQUENCE, GEN_ID()

SIMILAR TO

Available in: DSQL, PSQL

Operators and predicates

149

Added in: 2.5

Description: SIMILAR TO matches a string against an SQL regular expression pattern. Unlike in some other
languages, the pattern must match the entire string in order to succeed – matching a substring is not enough. If
any operand is NULL, the result is NULL. Otherwise, the result is TRUE or FALSE.

Result type: Boolean

Syntax: SIMILAR TO:

string-expression [NOT] SIMILAR TO <pattern> [ESCAPE <escape-char>]

<pattern> ::= an SQL regular expression
<escape-char> ::= a single character

Syntax: SQL regular expressions: The following syntax defines the SQL regular expression format. It is a com-
plete and correct top-down definition. It is also highly formal, rather long and probably perfectly fit to discour-
age everybody who hasn't already some experience with regular expessions (or with highly formal, rather long
top-down definitions). Feel free to skip it and read the next section, Building regular expressions, which uses
a bottom-up approach, aimed at the rest of us.

<regular expression> ::= <regular term> ['|' <regular term> ...]

<regular term> ::= <regular factor> ...

<regular factor> ::= <regular primary> [<quantifier>]

<quantifier> ::= ?
 | *
 | +
 | '{' <m> [,[<n>]] '}'

<m>, <n> ::= unsigned int, with <m> <= <n> if both present

<regular primary> ::= <character>
 | <character class>
 | %
 | (<regular expression>)

<character> ::= <escaped character>
 | <non-escaped character>

<escaped character> ::= <escape-char> <special character>
 | <escape-char> <escape-char>

<special character> ::= any of the characters []()|^-+*%_?{

<non-escaped character> ::= any character that is not a <special character>
 and not equal to <escape-char> (if defined)

<character class> ::= '_'
 | '[' <member> ... ']'
 | '[^' <non-member> ... ']'
 | '[' <member> ... '^' <non-member> ... ']'

<member>, <non-member> ::= <character>
 | <range>
 | <predefined class>

<range> ::= <character>-<character>

Operators and predicates

150

<predefined class> ::= '[:' <predefined class name> ':]'

<predefined class name> ::= ALPHA | UPPER | LOWER | DIGIT
 | ALNUM | SPACE | WHITESPACE

Building regular expressions

Characters

Within regular expressions, most characters represent themselves. The only exceptions are the special characters
below:

[] () | ^ - + * % _ ? {

...and the escape character, if it is defined.

A regular expression that doesn't contain any special or escape characters only matches strings that are identical
to itself (subject to the collation in use). That is, it functions just like the “=” operator:

'Apple' similar to 'Apple' -- true
'Apples' similar to 'Apple' -- false
'Apple' similar to 'Apples' -- false
'APPLE' similar to 'Apple' -- depends on collation

Wildcards

The known SQL wildchards _ and % match any single character and a string of any length, respectively:

'Birne' similar to 'B_rne' -- true
'Birne' similar to 'B_ne' -- false
'Birne' similar to 'B%ne' -- true
'Birne' similar to 'Bir%ne%' -- true
'Birne' similar to 'Birr%ne' -- false

Notice how % also matches the empty string.

Character classes

A bunch of characters enclosed in brackets define a character class. A character in the string matches a class in
the pattern if the character is a member of the class:

'Citroen' similar to 'Cit[arju]oen' -- true
'Citroen' similar to 'Ci[tr]oen' -- false
'Citroen' similar to 'Ci[tr][tr]oen' -- true

As can be seen from the second line, the class only matches a single character, not a sequence.

Within a class definition, two characters connected by a hyphen define a range. A range comprises the two
endpoints and all the characters that lie between them in the active collation. Ranges can be placed anywhere in
the class definition without special delimiters to keep them apart from the other elements.

Operators and predicates

151

'Datte' similar to 'Dat[q-u]e' -- true
'Datte' similar to 'Dat[abq-uy]e' -- true
'Datte' similar to 'Dat[bcg-km-pwz]e' -- false

The following predefined character classes can also be used in a class definition:

[:ALPHA:]
Latin letters a..z and A..Z. With an accent-insensitive collation, this class also matches accented forms of
these characters.

[:DIGIT:]
Decimal digits 0..9.

[:ALNUM:]
Union of [:ALPHA:] and [:DIGIT:].

[:UPPER:]
Uppercase Latin letters A..Z. Also matches lowercase with case-insensitive collation and accented forms
with accent-insensitive collation.

[:LOWER:]
Lowercase Latin letters a..z. Also matches uppercase with case-insensitive collation and accented forms
with accent-insensitive collation.

[:SPACE:]
Matches the space character (ASCII 32).

[:WHITESPACE:]
Matches vertical tab (ASCII 9), linefeed (ASCII 10), horizontal tab (ASCII 11), formfeed (ASCII 12), car-
riage return (ASCII 13) and space (ASCII 32).

Including a predefined class has the same effect as including all its members. Predefined classes are only allowed
within class definitions. If you need to match against a predefined class and nothing more, place an extra pair
of brackets around it.

'Erdbeere' similar to 'Erd[[:ALNUM:]]eere' -- true
'Erdbeere' similar to 'Erd[[:DIGIT:]]eere' -- false
'Erdbeere' similar to 'Erd[a[:SPACE:]b]eere' -- true
'Erdbeere' similar to [[:ALPHA:]] -- false
'E' similar to [[:ALPHA:]] -- true

If a class definition starts with a caret, everything that follows is excluded from the class. All other characters
match:

'Framboise' similar to 'Fra[^ck-p]boise' -- false
'Framboise' similar to 'Fr[^a][^a]boise' -- false
'Framboise' similar to 'Fra[^[:DIGIT:]]boise' -- true

If the caret is not placed at the start of the sequence, the class contains everything before the caret, except for
the elements that also occur after the caret:

'Grapefruit' similar to 'Grap[a-m^f-i]fruit' -- true
'Grapefruit' similar to 'Grap[abc^xyz]fruit' -- false
'Grapefruit' similar to 'Grap[abc^de]fruit' -- false
'Grapefruit' similar to 'Grap[abe^de]fruit' -- false

Operators and predicates

152

'3' similar to '[[:DIGIT:]^4-8]' -- true
'6' similar to '[[:DIGIT:]^4-8]' -- false

Lastly, the already mentioned wildcard “_” is a character class of its own, matching any single character.

Quantifiers

A question mark immediately following a character or class indicates that the preceding item may occur 0 or
1 times in order to match:

'Hallon' similar to 'Hal?on' -- false
'Hallon' similar to 'Hal?lon' -- true
'Hallon' similar to 'Halll?on' -- true
'Hallon' similar to 'Hallll?on' -- false
'Hallon' similar to 'Halx?lon' -- true
'Hallon' similar to 'H[a-c]?llon[x-z]?' -- true

An asterisk immediately following a character or class indicates that the preceding item may occur 0 or more
times in order to match:

'Icaque' similar to 'Ica*que' -- true
'Icaque' similar to 'Icar*que' -- true
'Icaque' similar to 'I[a-c]*que' -- true
'Icaque' similar to '_*' -- true
'Icaque' similar to '[[:ALPHA:]]*' -- true
'Icaque' similar to 'Ica[xyz]*e' -- false

A plus sign immediately following a character or class indicates that the preceding item must occur 1 or more
times in order to match:

'Jujube' similar to 'Ju_+' -- true
'Jujube' similar to 'Ju+jube' -- true
'Jujube' similar to 'Jujuber+' -- false
'Jujube' similar to 'J[jux]+be' -- true
'Jujube' sililar to 'J[[:DIGIT:]]+ujube' -- false

If a character or class is followed by a number enclosed in braces, it must be repeated exactly that number of
times in order to match:

'Kiwi' similar to 'Ki{2}wi' -- false
'Kiwi' similar to 'K[ipw]{2}i' -- true
'Kiwi' similar to 'K[ipw]{2}' -- false
'Kiwi' similar to 'K[ipw]{3}' -- true

If the number is followed by a comma, the item must be repeated at least that number of times in order to match:

'Limone' similar to 'Li{2,}mone' -- false
'Limone' similar to 'Li{1,}mone' -- true
'Limone' similar to 'Li[nezom]{2,}' -- true

If the braces contain two numbers seperated by a comma, the second number not smaller than the first, then the
item must be repeated at least the first number and at most the second number of times in order to match:

'Mandarijn' similar to 'M[a-p]{2,5}rijn' -- true
'Mandarijn' similar to 'M[a-p]{2,3}rijn' -- false
'Mandarijn' similar to 'M[a-p]{2,3}arijn' -- true

Operators and predicates

153

The quantifiers ?, * and + are shorthand for {0,1}, {0,} and {1,}, respectively.

OR-ing terms

Regular expression terms can be OR'ed with the | operator. A match is made when the argument string matches
at least one of the terms:

'Nektarin' similar to 'Nek|tarin' -- false
'Nektarin' similar to 'Nektarin|Persika' -- true
'Nektarin' similar to 'M_+|N_+|P_+' -- true

Subexpressions

One or more parts of the regular expression can be grouped into subexpressions (also called subpatterns) by
placing them between parentheses. A subexpression is a regular expression in its own right. It can contain all
the elements allowed in a regular expression, and can also have quantifiers added to it.

'Orange' similar to 'O(ra|ri|ro)nge' -- true
'Orange' similar to 'O(r[a-e])+nge' -- true
'Orange' similar to 'O(ra){2,4}nge' -- false
'Orange' similar to 'O(r(an|in)g|rong)?e' -- true

Escaping special characters

In order to match against a character that is special in regular expressions, that character has to be escaped. There
is no default escape character; rather, the user specifies one when needed:

'Peer (Poire)' similar to 'P[^]+ \(P[^]+\)' escape '\' -- true
'Pera [Pear]' similar to 'P[^]+ #[P[^]+#]' escape '#' -- true
'Päron-Äppledryck' similar to 'P%$-Ä%' escape '$' -- true
'Pärondryck' similar to 'P%--Ä%' escape '-' -- false

The last line demonstrates that the escape character can also escape itself, if needed.

SOME

See ANY

154

Chapter 13

Aggregate functions
Aggregate functions operate on groups of records, rather than on individual records or variables. They are often
used in combination with a GROUP BY clause.

LIST()

Available in: DSQL, PSQL

Added in: 2.1

Changed in: 2.5

Description: LIST returns a string consisting of the non-NULL argument values in the group, separated either
by a comma or by a user-supplied delimiter. If there are no non-NULL values (this includes the case where the
group is empty), NULL is returned.

Result type: BLOB

Syntax:

LIST ([ALL | DISTINCT] expression [, separator])

• ALL (the default) results in all non-NULL values to be listed. With DISTINCT, duplicates are re-
moved, except if expression is a BLOB.

• In Firebird 2.5 and up, the optional separator argument may be any string expression. This
makes it possible to specify e.g. ascii_char(13) as a separator. (This improvement has also been
backported to 2.1.4.)

• The expression and separator arguments support BLOBs of any size and character set.

• Date/time and numerical arguments are implicitly converted to strings before concatenation.

• The result is a text BLOB, except when expression is a BLOB of another subtype.

• The ordering of the list values is undefined.

MAX()

Available in: DSQL, ESQL, PSQL

Added in: IB

Aggregate functions

155

Changed in: 2.1

Description: MAX returns the maximum argument value in the group. If the argument is a string, this is the
value that comes last when the active collation is applied.

Result type: Varies

Syntax:

MAX (expression)

• If the group is empty or contains only NULLs, the result is NULL.

• Since Firebird 2.1, this function fully supports text BLOBs of any size and character set.

MIN()

Available in: DSQL, ESQL, PSQL

Added in: IB

Changed in: 2.1

Description: MIN returns the minimum argument value in the group. If the argument is a string, this is the value
that comes first when the active collation is applied.

Result type: Varies

Syntax:

MIN (expression)

• If the group is empty or contains only NULLs, the result is NULL.

• Since Firebird 2.1, this function fully supports text BLOBs of any size and character set.

156

Chapter 14

Internal functions

ABS()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the absolute value of the argument.

Result type: Numerical

Syntax:

ABS (number)

Important

If the external function ABS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ACOS()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the arc cosine of the argument.

Result type: DOUBLE PRECISION

Syntax:

ACOS (number)

• The result is an angle in the range [0, #].

• If the argument is outside the range [-1, 1], NaN is returned.

Important

If the external function ACOS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Internal functions

157

ASCII_CHAR()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the ASCII character corresponding to the number passed in the argument.

Result type: [VAR]CHAR(1) CHARACTER SET NONE

Syntax:

ASCII_CHAR (<code>)

<code> ::= an integer in the range [0..255]

Important

• If the external function ASCII_CHAR is declared in your database, it will override the internal function. To
make the internal function available, DROP or ALTER the external function (UDF).

• If you are used to the behaviour of the ASCII_CHAR UDF, which returns an empty string if the argument is
0, please notice that the internal function correctly returns a character with ASCII code 0 here.

ASCII_VAL()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the ASCII code of the character passed in.

Result type: SMALLINT

Syntax:

ASCII_VAL (ch)

ch ::= a [VAR]CHAR or text BLOB of max. 32767 bytes

• If the argument is a string with more than one character, the ASCII code of the first character is
returned.

• If the argument is an empty string, 0 is returned.

• If the argument is NULL, NULL is returned.

• If the first character of the argument string is multi-byte, an error is raised. (A bug in Firebird 2.1–
2.1.3 and 2.5 causes an error to be raised if any character in the string is multi-byte. This is fixed
in versions 2.1.4 and 2.5.1.)

Internal functions

158

Important

If the external function ASCII_VAL is declared in your database, it will override the internal function. To make
the internal function available, DROP or ALTER the external function (UDF).

ASIN()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the arc sine of the argument.

Result type: DOUBLE PRECISION

Syntax:

ASIN (number)

• The result is an angle in the range [-#/2, #/2].

• If the argument is outside the range [-1, 1], NaN is returned.

Important

If the external function ASIN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ATAN()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the arc tangent of the argument.

Result type: DOUBLE PRECISION

Syntax:

ATAN (number)

• The result is an angle in the range <-#/2, #/2>.

Important

If the external function ATAN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Internal functions

159

ATAN2()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.

Result type: DOUBLE PRECISION

Syntax:

ATAN2 (y, x)

• The result is an angle in the range [-#, #].

• If x is negative, the result is # if y is 0, and -# if y is -0.

• If both y and x are 0, the result is meaningless. Starting with Firebird 3, an error will be raised
if both arguments are 0.

Important

If the external function ATAN2 is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Notes:

• A fully equivalent description of this function is the following: ATAN2(y, x) is the angle between the posi-
tive X-axis and the line from the origin to the point (x, y). This also makes it obvious that ATAN2(0, 0) is
undefined.

• If x is greater than 0, ATAN2(y, x) is the same as ATAN(y/x).

• If both sine and cosine of the angle are already known, ATAN2(sin, cos) gives the angle.

BIN_AND()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the result of the bitwise AND operation on the argument(s).

Result type: INTEGER or BIGINT

Internal functions

160

Syntax:

BIN_AND (number [, number ...])

Important

If the external function BIN_AND is declared in your database, it will override the internal function. To make
the internal function available, DROP or ALTER the external function (UDF).

BIN_OR()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the result of the bitwise OR operation on the argument(s).

Result type: INTEGER or BIGINT

Syntax:

BIN_OR (number [, number ...])

Important

If the external function BIN_OR is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

BIN_SHL()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the first argument bitwise left-shifted by the second argument, i.e. a << b or a·2^b.

Result type: BIGINT

Syntax:

BIN_SHL (number, shift)

BIN_SHR()

Available in: DSQL, PSQL

Internal functions

161

Added in: 2.1

Description: Returns the first argument bitwise right-shifted by the second argument, i.e. a >> b or a/2^b.

Result type: BIGINT

Syntax:

BIN_SHR (number, shift)

• The operation performed is an arithmetic right shift (SAR), meaning that the sign of the first
operand is always preserved.

BIN_XOR()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the result of the bitwise XOR operation on the argument(s).

Result type: INTEGER or BIGINT

Syntax:

BIN_XOR (number [, number ...])

Important

If the external function BIN_XOR is declared in your database, it will override the internal function. To make
the internal function available, DROP or ALTER the external function (UDF).

BIT_LENGTH()

Available in: DSQL, PSQL

Added in: 2.0

Changed in: 2.1

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less
than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” bit length, not counting the trailing spaces,
right-TRIM the argument before passing it to BIT_LENGTH.

Internal functions

162

Result type: INTEGER

Syntax:

BIT_LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

select bit_length('Hello!') from rdb$database
 -- returns 48

select bit_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 64: ü and ß take up one byte each in ISO8859_1

select bit_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
from rdb$database
 -- returns 80: ü and ß take up two bytes each in UTF8

select bit_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
from rdb$database
 -- returns 208: all 24 CHAR positions count, and two of them are 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH()

CAST()

Available in: DSQL, ESQL, PSQL

Added in: IB

Changed in: 2.0, 2.1, 2.5

Description: CAST converts an expression to the desired datatype or domain. If the conversion is not possible,
an error is raised.

Result type: User-chosen.

Syntax:

CAST (expression AS <target_type>)

<target_type> ::= sql_datatype
 | [TYPE OF] domain
 | TYPE OF COLUMN relname.colname

Shorthand syntax:

Alternative syntax, supported only when casting a string literal to a DATE, TIME or TIMESTAMP:

datatype 'date/timestring'

Internal functions

163

This syntax was already available in InterBase, but was never properly documented. Please notice:
The shorthand syntax is evaluated immediately at parse time, causing the value to stay the same
until the statement is unprepared. For datetime literals like '12-Oct-2012' this doesn't make any
difference. But for the pseudo-variables 'NOW', 'YESTERDAY', 'TODAY' and 'TOMORROW' this
may not be what you want. If you need the value to be evaluated at every call, use CAST().

Examples:

A full-syntax cast:

select cast ('12' || '-June-' || '1959' as date) from rdb$database

A shorthand string-to-date cast:

update People set AgeCat = 'Old'
 where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the engine will under-
stand from the context (comparison to a DATE field) how to interpret the string:

update People set AgeCat = 'Old'
 where BirthDate < '1-Jan-1943'

But this is not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

select date 'today' - 7 from rdb$database

The following table shows the type conversions possible with CAST.

Table 14.1. Possible CASTs

From To

Numeric types Numeric types
[VAR]CHAR
BLOB

[VAR]CHAR
BLOB

[VAR]CHAR
BLOB
Numeric types
DATE
TIME
TIMESTAMP

DATE
TIME

[VAR]CHAR
BLOB
TIMESTAMP

TIMESTAMP [VAR]CHAR
BLOB
DATE
TIME

Internal functions

164

Keep in mind that sometimes information is lost, for instance when you cast a TIMESTAMP to a DATE. Also, the
fact that types are CAST-compatible is in itself no guarantee that a conversion will succeed. “CAST(123456789
as SMALLINT)” will definitely result in an error, as will “CAST('Judgement Day' as DATE)”.

Casting input fields: Since Firebird 2.0, you can cast statement parameters to a datatype:

cast (? as integer)

This gives you control over the type of input field set up by the engine. Please notice that with statement param-
eters, you always need a full-syntax cast – shorthand casts are not supported.

Casting to a domain or its type: Firebird 2.1 and above support casting to a domain or its base type. When casting
to a domain, any constraints (NOT NULL and/or CHECK) declared for the domain must be satisfied or the cast will
fail. Please be aware that a CHECK passes if it evaluates to TRUE or NULL! So, given the following statements:

create domain quint as int check (value >= 5000)
select cast (2000 as quint) from rdb$database -- (1)
select cast (8000 as quint) from rdb$database -- (2)
select cast (null as quint) from rdb$database -- (3)

only cast number (1) will result in an error.

When the TYPE OF modifier is used, the expression is cast to the base type of the domain, ignoring any con-
straints. With domain quint defined as above, the following two casts are equivalent and will both succeed:

select cast (2000 as type of quint) from rdb$database
select cast (2000 as int) from rdb$database

If TYPE OF is used with a (VAR)CHAR type, its character set and collation are retained:

create domain iso20 varchar(20) character set iso8859_1;
create domain dunl20 varchar(20) character set iso8859_1 collate du_nl;
create table zinnen (zin varchar(20));
commit;
insert into zinnen values ('Deze');
insert into zinnen values ('Die');
insert into zinnen values ('die');
insert into zinnen values ('deze');

select cast(zin as type of iso20) from zinnen order by 1;
 -- returns Deze -> Die -> deze -> die

select cast(zin as type of dunl20) from zinnen order by 1;
 -- returns deze -> Deze -> die -> Die

Warning

If a domain's definition is changed, existing CASTs to that domain or its type may become invalid. If these
CASTs occur in PSQL modules, their invalidation may be detected. See the note The RDB$VALID_BLR field,
near the end of this document.

Casting to a column's type: In Firebird 2.5 and above, it is possible to cast expressions to the type of an existing
table or view column. Only the type itself is used; in the case of string types, this includes the character set but
not the collation. Constraints and default values of the source column are not applied.

create table ttt (
 s varchar(40) character set utf8 collate unicode_ci_ai

Internal functions

165

);
commit;

select cast ('Jag har många vänner' as type of column ttt.s) from rdb$database;

Warnings

• For text types, character set and collation are preserved by the cast – just as when casting to a domain.
However, due to a bug, the collation is not always taken into consideration when comparisons (e.g. equality
tests) are made. In cases where the collation is of importance, test your code thoroughly before deploying!
This bug is fixed for Firebird 3.

• If a column's definition is altered, existing CASTs to that column's type may become invalid. If these CASTs
occur in PSQL modules, their invalidation may be detected. See the note The RDB$VALID_BLR field, near
the end of this document.

Casting BLOBs: Successful casting to and from BLOBs is possible since Firebird 2.1.

CEIL(), CEILING()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the smallest whole number greater than or equal to the argument.

Result type: BIGINT or DOUBLE PRECISION

Syntax:

CEIL[ING] (number)

Important

If the external function CEILING is declared in your database, it will override the internal function CEILING
(but not CEIL). To make the internal function available, DROP or ALTER the external function (UDF).

See also: FLOOR()

CHAR_LENGTH(), CHARACTER_LENGTH()

Available in: DSQL, PSQL

Added in: 2.0

Changed in: 2.1

Description: Gives the length in characters of the input string.

Internal functions

166

Note

With arguments of type CHAR, this function returns the formal string length (i.e. the declared length of a field or
variable). If you want to obtain the “logical” length, not counting the trailing spaces, right-TRIM the argument
before passing it to CHAR[ACTER]_LENGTH.

Result type: INTEGER

Syntax:

CHAR_LENGTH (str)
CHARACTER_LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

select char_length('Hello!') from rdb$database
 -- returns 6

select char_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 8

select char_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
from rdb$database
 -- returns 8; the fact that ü and ß take up two bytes each is irrelevant

select char_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
from rdb$database
 -- returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH()

CHAR_TO_UUID()

Available in: DSQL, PSQL

Added in: 2.5

Description: Converts a human-readable 36-char UUID string to the corresponding 16-byte UUID.

Result type: CHAR(16) CHARACTER SET OCTETS

Syntax:

CHAR_TO_UUID (ascii_uuid)

ascii_uuid ::= a string of length 36 with:
 * '-' (hyphen) at positions 9, 14, 19 and 24;
 * valid hex digits at every other position.

Internal functions

167

Examples:

select char_to_uuid('A0bF4E45-3029-2a44-D493-4998c9b439A3') from rdb$database
-- returns A0BF4E4530292A44D4934998C9B439A3 (16-byte string)

select char_to_uuid('A0bF4E45-3029-2A44-X493-4998c9b439A3') from rdb$database
-- error: -Human readable UUID argument for CHAR_TO_UUID must
-- have hex digit at position 20 instead of "X (ASCII 88)"

See also: UUID_TO_CHAR(), GEN_UUID()

COALESCE()

Available in: DSQL, PSQL

Added in: 1.5

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result is NULL.

Result type: Depends on input.

Syntax:

COALESCE (<exp1>, <exp2> [, <expN> ...])

Example:

select
 coalesce (Nickname, FirstName, 'Mr./Mrs.') || ' ' || LastName
 as FullName
from Persons

This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to FirstName. If
that too is NULL, “Mr./Mrs.” is used. Finally, it adds the family name. All in all, it tries to use the available data
to compose a full name that is as informal as possible. Notice that this scheme only works if absent nicknames
and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the *nvl external
functions.

COS()

Available in: DSQL, PSQL

Added in: 2.1

Internal functions

168

Description: Returns an angle's cosine. The argument must be given in radians.

Result type: DOUBLE PRECISION

Syntax:

COS (angle)

• Any non-NULL result is – obviously – in the range [-1, 1].

Important

If the external function COS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COSH()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the hyperbolic cosine of the argument.

Result type: DOUBLE PRECISION

Syntax:

COSH (number)

• Any non-NULL result is in the range [1, INF].

Important

If the external function COSH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COT()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns an angle's cotangent. The argument must be given in radians.

Result type: DOUBLE PRECISION

Syntax:

COT (angle)

Internal functions

169

Important

If the external function COT is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

DATEADD()

Available in: DSQL, PSQL

Added in: 2.1

Changed in: 2.5

Description: Adds the specified number of years, months, weeks, days, hours, minutes, seconds or milliseconds
to a date/time value. (The WEEK unit is new in 2.5.)

Result type: DATE, TIME or TIMESTAMP

Syntax:

DATEADD (<args>)

<args> ::= <amount> <unit> TO <datetime>
 | <unit>, <amount>, <datetime>

<amount> ::= an integer expression (negative to subtract)
<unit> ::= YEAR | MONTH | WEEK | DAY
 | HOUR | MINUTE | SECOND | MILLISECOND
<datetime> ::= a DATE, TIME or TIMESTAMP expression

• The result type is determined by the third argument.

• With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, units smaller
than DAY were disallowed for DATEs.)

• With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.

Examples:

dateadd (28 day to current_date)
dateadd (-6 hour to current_time)
dateadd (month, 9, DateOfConception)
dateadd (-38 week to DateOfBirth)
dateadd (minute, 90, time 'now')
dateadd (? year to date '11-Sep-1973')

DATEDIFF()

Available in: DSQL, PSQL

Internal functions

170

Added in: 2.1

Changed in: 2.5

Description: Returns the number of years, months, weeks, days, hours, minutes, seconds or milliseconds elapsed
between two date/time values. (The WEEK unit is new in 2.5.)

Result type: BIGINT

Syntax:

DATEDIFF (<args>)

<args> ::= <unit> FROM <moment1> TO <moment2>
 | <unit>, <moment1>, <moment2>

<unit> ::= YEAR | MONTH | WEEK | DAY
 | HOUR | MINUTE | SECOND | MILLISECOND
<momentN> ::= a DATE, TIME or TIMESTAMP expression

• DATE and TIMESTAMP arguments can be combined. No other mixes are allowed.

• With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, units smaller
than DAY were disallowed for DATEs.)

• With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.

Computation:

• DATEDIFF doesn't look at any smaller units than the one specified in the first argument. As a result,

- “datediff (year, date '1-Jan-2009', date '31-Dec-2009')” returns 0, but
- “datediff (year, date '31-Dec-2009', date '1-Jan-2010')” returns 1

• It does, however, look at all the bigger units. So:

- “datediff (day, date '26-Jun-1908', date '11-Sep-1973')” returns 23818

• A negative result value indicates that moment2 lies before moment1.

Examples:

datediff (hour from current_timestamp to timestamp '12-Jun-2059 06:00')
datediff (minute from time '0:00' to current_time)
datediff (month, current_date, date '1-1-1900')
datediff (day from current_date to cast(? as date))

DECODE()

Available in: DSQL, PSQL

Added in: 2.1

Description: DECODE is a shortcut for the so-called “simple CASE” construct, in which a given expression is
compared to a number of other expressions until a match is found. The result is determined by the value listed

Internal functions

171

after the matching expression. If no match is found, the default result is returned, if present. Otherwise, NULL
is returned.

Result type: Varies

Syntax:

DECODE (<test-expr>,
 <expr>, result
 [, <expr>, result ...]
 [, defaultresult])

The equivalent CASE construct:

CASE <test-expr>
 WHEN <expr> THEN result
 [WHEN <expr> THEN result ...]
 [ELSE defaultresult]
END

Caution

Matching is done with the “=” operator, so if <test-expr> is NULL, it won't match any of the
<expr>s, not even those that are NULL.

Example:

select name,
 age,
 decode(upper(sex),
 'M', 'Male',
 'F', 'Female',
 'Unknown'),
 religion
from people

See also: CASE, Simple CASE

EXP()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the natural exponential, enumber

Result type: DOUBLE PRECISION

Syntax:

EXP (number)

See also: LN()

Internal functions

172

EXTRACT()

Available in: DSQL, ESQL, PSQL

Added in: IB 6

Changed in: 2.1

Description: Extracts and returns an element from a DATE, TIME or TIMESTAMP expression. This function was
already added in InterBase 6, but not documented in the Language Reference at the time.

Result type: SMALLINT or NUMERIC

Syntax:

EXTRACT (<part> FROM <datetime>)

<part> ::= YEAR | MONTH | WEEK
 | DAY | WEEKDAY | YEARDAY
 | HOUR | MINUTE | SECOND | MILLISECOND
<datetime> ::= a DATE, TIME or TIMESTAMP expression

The returned datatypes and possible ranges are shown in the table below. If you try to extract a part that isn't
present in the date/time argument (e.g. SECOND from a DATE or YEAR from a TIME), an error occurs.

Table 14.2. Types and ranges of EXTRACT results

Part Type Range Comment

YEAR SMALLINT 1–9999

MONTH SMALLINT 1–12

WEEK SMALLINT 1–53

DAY SMALLINT 1–31

WEEKDAY SMALLINT 0–6 0 = Sunday

YEARDAY SMALLINT 0–365 0 = January 1

HOUR SMALLINT 0–23

MINUTE SMALLINT 0–59

SECOND NUMERIC(9,4) 0.0000–59.9999 includes millisecond as
fraction

MILLISECOND NUMERIC(9,1) 0.0–999.9 broken in 2.1, 2.1.1

MILLISECOND

Added in: 2.1 (with bug)

Internal functions

173

Fixed in: 2.1.2

Description: Firebird 2.1 and up support extraction of the millisecond from a TIME or TIMESTAMP. The datatype
returned is NUMERIC(9,1).

Note

If you extract the millisecond from CURRENT_TIME, be aware that this variable defaults to seconds precision,
so the result will always be 0. Extract from CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds
precision.

WEEK

Added in: 2.1

Description: Firebird 2.1 and up support extraction of the ISO-8601 week number from a DATE or TIMESTAMP.
ISO-8601 weeks start on a Monday and always have the full seven days. Week 1 is the first week that has a
majority (at least 4) of its days in the new year. The first 1–3 days of the year may belong to the last week (52
or 53) of the previous year. Likewise, a year's final 1–3 days may belong to week 1 of the following year.

Caution

Be careful when combining WEEK and YEAR results. For instance, 30 December 2008 lies in week 1 of 2009,
so “extract (week from date '30 Dec 2008')” returns 1. However, extracting YEAR always gives
the calendar year, which is 2008. In this case, WEEK and YEAR are at odds with each other. The same happens
when the first days of January belong to the last week of the previous year.

Please also notice that WEEKDAY is not ISO-8601 compliant: it returns 0 for Sunday, whereas ISO-8601
specifies 7.

FLOOR()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the largest whole number smaller than or equal to the argument.

Result type: BIGINT or DOUBLE PRECISION

Syntax:

FLOOR (number)

Important

If the external function FLOOR is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Internal functions

174

See also: CEIL() / CEILING()

GEN_ID()

Available in: DSQL, ESQL, PSQL

Added in: IB

Description: Increments a generator or sequence and returns its new value. From Firebird 2.0 onward, the SQL-
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

Result type: BIGINT

Syntax:

GEN_ID (generator-name, <step>)

<step> ::= An integer expression.

Example:

new.rec_id = gen_id(gen_recnum, 1);

Warning

Unless you know very well what you are doing, using GEN_ID() with step values lower than 1 may compromise
your data's integrity.

See also: NEXT VALUE FOR, CREATE GENERATOR

GEN_UUID()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns a universally unique ID as a 16-byte character string.

Result type: CHAR(16) CHARACTER SET OCTETS

Syntax:

GEN_UUID ()

Example:

select gen_uuid() from rdb$database
-- returns e.g. 017347BFE212B2479C00FA4323B36320 (16-byte string)

Internal functions

175

See also: UUID_TO_CHAR(), CHAR_TO_UUID()

HASH()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns a hash value for the input string. This function fully supports text BLOBs of any length
and character set.

Result type: BIGINT

Syntax:

HASH (string)

IIF()

Available in: DSQL, PSQL

Added in: 2.0

Description: IIF takes three arguments. If the first evaluates to true, the second argument is returned; otherwise
the third is returned.

Result type: Depends on input.

Syntax:

IIF (<condition>, ResultT, ResultF)

<condition> ::= A boolean expression.

Example:

select iif(sex = 'M', 'Sir', 'Madam') from Customers

IIF(Cond, Result1, Result2) is a shortcut for “CASE WHEN Cond THEN Result1 ELSE Result2 END”.
You can also compare IIF to the ternary “? :” operator in C-like languages.

LEFT()

Available in: DSQL, PSQL

Added in: 2.1

Internal functions

176

Description: Returns the leftmost part of the argument string. The number of characters is given in the second
argument.

Result type: VARCHAR or BLOB

Syntax:

LEFT (string, length)

• This function fully supports text BLOBs of any length, including those with a multi-byte character
set.

• If string is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the
length of the input string.

• If the length argument exceeds the string length, the input string is returned unchanged.

• If the length argument is not a whole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

See also: RIGHT()

LN()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the natural logarithm of the argument.

Result type: DOUBLE PRECISION

Syntax:

LN (number)

• An error is raised if the argument is negative or 0.

Important

If the external function LN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

See also: EXP()

LOG()

Available in: DSQL, PSQL

Internal functions

177

Added in: 2.1

Changed in: 2.5

Description: Returns the x-based logarithm of y.

Result type: DOUBLE PRECISION

Syntax:

LOG (x, y)

• If either argument is 0 or below, an error is raised. (Before 2.5, this would result in NaN, ±INF or
0, depending on the exact values of the arguments.)

• If both arguments are 1, NaN is returned.

• If x = 1 and y < 1, -INF is returned.

• If x = 1 and y > 1, INF is returned.

Important

If the external function LOG is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

LOG10()

Available in: DSQL, PSQL

Added in: 2.1

Changed in: 2.5

Description: Returns the 10-based logarithm of the argument.

Result type: DOUBLE PRECISION

Syntax:

LOG10 (number)

• An error is raised if the argument is negative or 0. (In versions prior to 2.5, such values would
result in NaN and -INF, respectively.)

Important

If the external function LOG10 is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Internal functions

178

LOWER()

Available in: DSQL, ESQL, PSQL

Added in: 2.0

Changed in: 2.1

Description: Returns the lower-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
set.

Result type: (VAR)CHAR or BLOB

Syntax:

LOWER (str)

Note

Because LOWER is a reserved word, the internal function wil take precedence even if the external function
by that name has also been declared. To call the (inferior!) external function, use double-quotes and the exact
capitalisation, as in "LOWER"(str).

Example:

select Sheriff from Towns
 where lower(Name) = 'cooper''s valley'

See also: UPPER

LPAD()

Available in: DSQL, PSQL

Added in: 2.1

Changed in: 2.5 (backported to 2.1.4)

Description: Left-pads a string with spaces or with a user-supplied string until a given length is reached.

Result type: VARCHAR or BLOB

Syntax:

LPAD (str, endlen [, padstr])

Internal functions

179

• This function fully supports text BLOBs of any length and character set.

• If str is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(endlen).

• If padstr is given and equals '' (empty string), no padding takes place.

• If endlen is less than the current string length, the string is truncated to endlen, even if padstr
is the empty string.

Important

If the external function LPAD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Note

In Firebird 2.1–2.1.3, all non-BLOB results were of type VARCHAR(32765), which made it advisable to cast
them to a more modest size. This is no longer the case.

Examples:

lpad ('Hello', 12) -- returns ' Hello'
lpad ('Hello', 12, '-') -- returns '-------Hello'
lpad ('Hello', 12, '') -- returns 'Hello'
lpad ('Hello', 12, 'abc') -- returns 'abcabcaHello'
lpad ('Hello', 12, 'abcdefghij') -- returns 'abcdefgHello'
lpad ('Hello', 2) -- returns 'He'
lpad ('Hello', 2, '-') -- returns 'He'
lpad ('Hello', 2, '') -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

See also: RPAD()

MAXVALUE()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the maximum value from a list of numerical, string, or date/time expressions. This function
fully supports text BLOBs of any length and character set.

Result type: Varies

Syntax:

MAXVALUE (expr [, expr ...])

Internal functions

180

• If one or more expressions resolve to NULL, MAXVALUE returns NULL. This behaviour differs
from the aggregate function MAX.

See also: MINVALUE()

MINVALUE()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the minimum value from a list of numerical, string, or date/time expressions. This function
fully supports text BLOBs of any length and character set.

Result type: Varies

Syntax:

MINVALUE (expr [, expr ...])

• If one or more expressions resolve to NULL, MINVALUE returns NULL. This behaviour differs
from the aggregate function MIN.

See also: MAXVALUE()

MOD()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the remainder of an integer division.

Result type: INTEGER or BIGINT

Syntax:

MOD (a, b)

• Non-integer arguments are rounded before the division takes place. So, “7.5 mod 2.5” gives 2 (8
mod 3), not 0.

Important

If the external function MOD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Internal functions

181

NULLIF()

Available in: DSQL, PSQL

Added in: 1.5

Description: NULLIF returns the value of the first argument, unless it is equal to the second. In that case, NULL
is returned.

Result type: Depends on input.

Syntax:

NULLIF (<exp1>, <exp2>)

Example:

select avg(nullif(Weight, -1)) from FatPeople

This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,
since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note

In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nullif external
functions.

OCTET_LENGTH()

Available in: DSQL, PSQL

Added in: 2.0

Changed in: 2.1

Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may
be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” byte length, not counting the trailing spaces,
right-TRIM the argument before passing it to OCTET_LENGTH.

Result type: INTEGER

Internal functions

182

Syntax:

OCTET_LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.

Examples:

select octet_length('Hello!') from rdb$database
 -- returns 6

select octet_length(_iso8859_1 'Grüß di!') from rdb$database
 -- returns 8: ü and ß take up one byte each in ISO8859_1

select octet_length
 (cast (_iso8859_1 'Grüß di!' as varchar(24) character set utf8))
from rdb$database
 -- returns 10: ü and ß take up two bytes each in UTF8

select octet_length
 (cast (_iso8859_1 'Grüß di!' as char(24) character set utf8))
from rdb$database
 -- returns 26: all 24 CHAR positions count, and two of them are 2-byte

See also: BIT_LENGTH(), CHARACTER_LENGTH()

OVERLAY()

Available in: DSQL, PSQL

Added in: 2.1

Description: Overwrites part of a string with another string. By default, the number of characters removed from
the host string equals the length of the replacement string. With the optional fourth argument, the user can specify
a different number of characters to be removed.

Result type: VARCHAR or BLOB

Syntax:

OVERLAY (string PLACING replacement FROM pos [FOR length])

• This function supports BLOBs of any length.

• If string or replacement is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(n) with n the sum of the lengths of string and replacement.

• As usual in SQL string functions, pos is 1-based.

• If pos is beyond the end of string, replacement is placed directly after string.

• If the number of characters from pos to the end of string is smaller than the length of replace-
ment (or than the length argument, if present), string is truncated at pos and replacement
placed after it.

Internal functions

183

• The effect of a “FOR 0” clause is that replacement is simply inserted into string.

• If any argument is NULL, the result is NULL.

• If pos or length is not a whole number, bankers' rounding (round-to-even) is applied, i.e. 0.5
becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Examples:

overlay ('Goodbye' placing 'Hello' from 2) -- returns 'GHelloe'
overlay ('Goodbye' placing 'Hello' from 5) -- returns 'GoodHello'
overlay ('Goodbye' placing 'Hello' from 8) -- returns 'GoodbyeHello'
overlay ('Goodbye' placing 'Hello' from 20) -- returns 'GoodbyeHello'

overlay ('Goodbye' placing 'Hello' from 2 for 0) -- r. 'GHellooodbye'
overlay ('Goodbye' placing 'Hello' from 2 for 3) -- r. 'GHellobye'
overlay ('Goodbye' placing 'Hello' from 2 for 6) -- r. 'GHello'
overlay ('Goodbye' placing 'Hello' from 2 for 9) -- r. 'GHello'

overlay ('Goodbye' placing '' from 4) -- returns 'Goodbye'
overlay ('Goodbye' placing '' from 4 for 3) -- returns 'Gooe'
overlay ('Goodbye' placing '' from 4 for 20) -- returns 'Goo'

overlay ('' placing 'Hello' from 4) -- returns 'Hello'
overlay ('' placing 'Hello' from 4 for 0) -- returns 'Hello'
overlay ('' placing 'Hello' from 4 for 20) -- returns 'Hello'

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

See also: REPLACE()

PI()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns an approximation of the value of #.

Result type: DOUBLE PRECISION

Syntax:

PI ()

Important

If the external function PI is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Internal functions

184

POSITION()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the (1-based) position of the first occurrence of a substring in a host string. With the
optional third argument, the search starts at a given offset, disregarding any matches that may occur earlier in
the string. If no match is found, the result is 0.

Result type: INTEGER

Syntax:

POSITION (<args>)

<args> ::= substr IN string
 | substr, string [, startpos]

• The optional third argument is only supported in the second syntax (comma syntax).

• The empty string is considered a substring of every string. Therefore, if substr is '' (empty string)
and string is not NULL, the result is:

- 1 if startpos is not given;
- startpos if startpos lies within string;
- 0 if startpos lies beyond the end of string.

Notice: A bug in Firebird 2.1–2.1.3 and 2.5 causes POSITION to always return 1 if substr is the
empty string. This is fixed in 2.1.4 and 2.5.1.

• This function fully supports text BLOBs of any size and character set.

Examples:

position ('be' in 'To be or not to be') -- returns 4
position ('be', 'To be or not to be') -- returns 4
position ('be', 'To be or not to be', 4) -- returns 4
position ('be', 'To be or not to be', 8) -- returns 17
position ('be', 'To be or not to be', 18) -- returns 0
position ('be' in 'Alas, poor Yorick!') -- returns 0

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

POWER()

Available in: DSQL, PSQL

Internal functions

185

Added in: 2.1

Description: Returns x to the y'th power.

Result type: DOUBLE PRECISION

Syntax:

POWER (x, y)

• If x negative, an error is raised.

Important

If the external function POWER is declared in your database as power instead of the default dPower, it will
override the internal function. To make the internal function available, DROP or ALTER the external function
(UDF).

RAND()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns a random number between 0 and 1.

Result type: DOUBLE PRECISION

Syntax:

RAND ()

Important

If the external function RAND is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

RDB$GET_CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDB$SET_CONTEXT are actually predeclared UDFs. They are listed
here as internal functions because they are always present – the user doesn't have to do anything to make them
available.

Available in: DSQL, ESQL, PSQL

Internal functions

186

Added in: 2.0

Changed in: 2.1

Description: Retrieves the value of a context variable from one of the namespaces SYSTEM, USER_SESSION
and USER_TRANSACTION.

Result type: VARCHAR(255)

Syntax:

RDB$GET_CONTEXT ('<namespace>', '<varname>')

<namespace> ::= SYSTEM | USER_SESSION | USER_TRANSACTION
<varname> ::= A case-sensitive string of max. 80 characters

The namespaces:
The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can create and set
variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The SYSTEM
namespace is read-only. It contains a number of predefined variables, shown in the table below.

Table 14.3. Context variables in the SYSTEM namespace

DB_NAME Either the full path to the database or – if connecting via the path is disallowed
– its alias.

NETWORK_PROTOCOL The protocol used for the connection: 'TCPv4', 'WNET', 'XNET' or NULL.

CLIENT_ADDRESS For TCPv4, this is the IP address. For XNET, the local process ID. For all other
protocols this variable is NULL.

CURRENT_USER Same as global CURRENT_USER variable.

CURRENT_ROLE Same as global CURRENT_ROLE variable.

SESSION_ID Same as global CURRENT_CONNECTION variable.

TRANSACTION_ID Same as global CURRENT_TRANSACTION variable.

ISOLATION_LEVEL The isolation level of the current transaction: 'READ COMMITTED', 'SNAPSHOT'
or 'CONSISTENCY'.

ENGINE_VERSION The Firebird engine (server) version. Added in 2.1.

Return values and error behaviour: If the polled variable exists in the given namespace, its value will be returned
as a string of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing variable
in the SYSTEM namespace, an error is raised. If you poll a non-existing variable in one of the other namespaces,
NULL is returned. Both namespace and variable names must be given as single-quoted, case-sensitive, non-NULL
strings.

Examples:

select rdb$get_context('SYSTEM', 'DB_NAME') from rdb$database

New.UserAddr = rdb$get_context('SYSTEM', 'CLIENT_ADDRESS');

Internal functions

187

insert into MyTable (TestField)
 values (rdb$get_context('USER_SESSION', 'MyVar'))

See also: RDB$SET_CONTEXT()

RDB$SET_CONTEXT()

Note

RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actually predeclared UDFs. They are listed
here as internal functions because they are always present – the user doesn't have to do anything to make them
available.

Available in: DSQL, ESQL, PSQL

Added in: 2.0

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

Result type: INTEGER

Syntax:

RDB$SET_CONTEXT ('<namespace>', '<varname>', <value> | NULL)

<namespace> ::= USER_SESSION | USER_TRANSACTION
<varname> ::= A case-sensitive string of max. 80 characters
<value> ::= A value of any type, as long as it's castable
 to a VARCHAR(255)

The namespaces:
The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can create and set vari-
ables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The USER_SESSION
context is bound to the current connection. Variables in USER_TRANSACTION only exist in the transaction in
which they have been set. When the transaction ends, the context and all the variables defined in it are destroyed.

Return values and error behaviour:
The function returns 1 if the variable already existed before the call and 0 if it didn't. To remove a variable from
a context, set it to NULL. If the given namespace doesn't exist, an error is raised. Both namespace and variable
names must be entered as single-quoted, case-sensitive, non-NULL strings.

Examples:

select rdb$set_context('USER_SESSION', 'MyVar', 493) from rdb$database

rdb$set_context('USER_SESSION', 'RecordsFound', RecCounter);

select rdb$set_context('USER_TRANSACTION', 'Savepoints', 'Yes')
 from rdb$database

Internal functions

188

Notes:

• The maximum number of variables in any single context is 1000.

• All USER_TRANSACTION variables will survive a ROLLBACK RETAIN or ROLLBACK TO SAVEPOINT un-
altered, no matter at which point during the transaction they were set.

• Due to its UDF-like nature, RDB$SET_CONTEXT can – in PSQL only – be called like a void function, without
assigning the result, as in the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

REPLACE()

Available in: DSQL, PSQL

Added in: 2.1

Description: Replaces all occurrences of a substring in a string.

Result type: VARCHAR or BLOB

Syntax:

REPLACE (str, find, repl)

• This function fully supports text BLOBs of any length and character set.

• If any argument is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n
calculated from the lengths of str, find and repl in such a way that even the maximum possible number
of replacements won't overflow the field.

• If find is the empty string, str is returned unchanged.

• If repl is the empty string, all occurrences of find are deleted from str.

• If any argument is NULL, the result is always NULL, even if nothing would have been replaced.

Examples:

replace ('Billy Wilder', 'il', 'oog') -- returns 'Boogly Woogder'
replace ('Billy Wilder', 'il', '') -- returns 'Bly Wder'
replace ('Billy Wilder', null, 'oog') -- returns NULL
replace ('Billy Wilder', 'il', null) -- returns NULL
replace ('Billy Wilder', 'xyz', null) -- returns NULL (!)
replace ('Billy Wilder', 'xyz', 'abc') -- returns 'Billy Wilder'
replace ('Billy Wilder', '', 'abc') -- returns 'Billy Wilder'

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

See also: OVERLAY()

Internal functions

189

REVERSE()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns a string backwards.

Result type: VARCHAR

Syntax:

REVERSE (str)

Examples:

reverse ('spoonful') -- returns 'lufnoops'
reverse ('Was it a cat I saw?') -- returns '?was I tac a ti saW'

Tip

This function comes in very handy if you want to group, search or order on string endings, e.g. when dealing
with domain names or email addresses:

create index ix_people_email on people
 computed by (reverse(email));

select * from people
 where reverse(email) starting with reverse('.br');

RIGHT()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the rightmost part of the argument string. The number of characters is given in the second
argument.

Result type: VARCHAR or BLOB

Syntax:

RIGHT (string, length)

• This function supports text BLOBs of any length, but has a bug in versions 2.1–2.1.3 and 2.5 that
makes it fail with text BLOBs larger than 1024 bytes that have a multi-byte character set. This has
been fixed in versions 2.1.4 and 2.5.1.

• If string is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the
length of the input string.

Internal functions

190

• If the length argument exceeds the string length, the input string is returned unchanged.

• If the length argument is not a whole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

Important

If the external function RIGHT is declared in your database as right instead of the default sright, it will
override the internal function. To make the internal function available, DROP or ALTER the external function
(UDF).

See also: LEFT()

ROUND()

Available in: DSQL, PSQL

Added in: 2.1

Description: Rounds a number to the nearest integer. If the fractional part is exactly 0.5, rounding is upward
for positive numbers and downward for negative numbers. With the optional scale argument, the number can
be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE

Syntax:

ROUND (<number> [, <scale>])

<number> ::= a numerical expression
<scale> ::= an integer specifying the number of decimal places
 toward which should be rounded, e.g.:
 2 for rounding to the nearest multiple of 0.01
 1 for rounding to the nearest multiple of 0.1
 0 for rounding to the nearest whole number
 -1 for rounding to the nearest multiple of 10
 -2 for rounding to the nearest multiple of 100

Notes:

• If the scale argument is present, the result usually has the same scale as the first argument, e.g.

- ROUND(123.654, 1) returns 123.700 (not 123.7)
- ROUND(8341.7, -3) returns 8000.0 (not 8000)
- ROUND(45.1212, 0) returns 45.0000 (not 45)

Otherwise, the result scale is 0:

Internal functions

191

- ROUND(45.1212) returns 45

Important

• If the external function ROUND is declared in your database, it will override the internal function. To make
the internal function available, DROP or ALTER the external function (UDF).

• If you are used to the behaviour of the external function ROUND, please notice that the internal function
always rounds halves away from zero, i.e. downward for negative numbers.

RPAD()

Available in: DSQL, PSQL

Added in: 2.1

Changed in: 2.5 (backported to 2.1.4)

Description: Right-pads a string with spaces or with a user-supplied string until a given length is reached.

Result type: VARCHAR or BLOB

Syntax:

RPAD (str, endlen [, padstr])

• This function fully supports text BLOBs of any length and character set.

• If str is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(endlen).

• If padstr is given and equals '' (empty string), no padding takes place.

• If endlen is less than the current string length, the string is truncated to endlen, even if padstr
is the empty string.

Important

If the external function RPAD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Note

In Firebird 2.1–2.1.3, all non-BLOB results were of type VARCHAR(32765), which made it advisable to cast
them to a more modest size. This is no longer the case.

Examples:

rpad ('Hello', 12) -- returns 'Hello '
rpad ('Hello', 12, '-') -- returns 'Hello-------'
rpad ('Hello', 12, '') -- returns 'Hello'
rpad ('Hello', 12, 'abc') -- returns 'Helloabcabca'
rpad ('Hello', 12, 'abcdefghij') -- returns 'Helloabcdefg'

Internal functions

192

rpad ('Hello', 2) -- returns 'He'
rpad ('Hello', 2, '-') -- returns 'He'
rpad ('Hello', 2, '') -- returns 'He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

See also: LPAD()

SIGN()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the sign of the argument: -1, 0 or 1.

Result type: SMALLINT

Syntax:

SIGN (number)

Important

If the external function SIGN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SIN()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns an angle's sine. The argument must be given in radians.

Result type: DOUBLE PRECISION

Syntax:

SIN (angle)

• Any non-NULL result is – obviously – in the range [-1, 1].

Important

If the external function SIN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Internal functions

193

SINH()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the hyperbolic sine of the argument.

Result type: DOUBLE PRECISION

Syntax:

SINH (number)

Important

If the external function SINH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SQRT()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the square root of the argument.

Result type: DOUBLE PRECISION

Syntax:

SQRT (number)

Important

If the external function SQRT is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SUBSTRING()

Available in: DSQL, PSQL

Added in: 1.0

Internal functions

194

Changed in: 2.0, 2.1, 2.1.5, 2.5.1

Description: Returns a string's substring starting at the given position, either to the end of the string or with
a given length.

Result type: VARCHAR(n) or BLOB

Syntax:

SUBSTRING (str FROM startpos [FOR length])

This function returns the substring starting at character position startpos (the first position being 1). Without
the FOR argument, it returns all the remaining characters in the string. With FOR, it returns length characters
or the remainder of the string, whichever is shorter.

In Firebird 1.x, startpos and length must be integer literals. In 2.0 and above they can be any valid integer
expression.

Starting with Firebird 2.1, this function fully supports binary and text BLOBs of any length and character set. If
str is a BLOB, the result is also a BLOB. For any other argument type, the result is a VARCHAR(n). Previously,
the result type used to be CHAR(n) if the argument was a CHAR(n) or a string literal.

For non-BLOB arguments, the width of the result field is always equal to the length of str, regardless of start-
pos and length. So, substring('pinhead' from 4 for 2) will return a VARCHAR(7) containing the
string 'he'.

If any argument is NULL, the result is NULL.

Bugs

• If str is a BLOB and the length argument is not present, the output is limited to 32767 characters.
Workaround: with long BLOBs, always specify char_length(str) – or a sufficiently high integer – as the
third argument, unless you are sure that the requested substring fits within 32767 characters.

This bug has been fixed in version 2.5.1; the fix was also backported to 2.1.5.

• A bug in Firebird 2.0 which caused the function to return “false emptystrings” if startpos or length
was NULL, has been fixed.

Example:

insert into AbbrNames(AbbrName)
 select substring(LongName from 1 for 3) from LongNames

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

TAN()

Available in: DSQL, PSQL

Internal functions

195

Added in: 2.1

Description: Returns an angle's tangent. The argument must be given in radians.

Result type: DOUBLE PRECISION

Syntax:

TAN (angle)

Important

If the external function TAN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TANH()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the hyperbolic tangent of the argument.

Result type: DOUBLE PRECISION

Syntax:

TANH (number)

• Due to rounding, any non-NULL result is in the range [-1, 1] (mathematically, it's <-1, 1>).

Important

If the external function TANH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TRIM()

Available in: DSQL, PSQL

Added in: 2.0

Changed in: 2.1

Description: Removes leading and/or trailing spaces (or optionally other strings) from the input string. Since
Firebird 2.1 this function fully supports text BLOBs of any length and character set.

Result type: VARCHAR(n) or BLOB

Internal functions

196

Syntax:

TRIM ([<adjust>] str)

<adjust> ::= {[where] [what]} FROM

where ::= BOTH | LEADING | TRAILING /* default is BOTH */

what ::= The substring to be removed (repeatedly if necessary)
 from str's head and/or tail. Default is ' ' (space).

Examples:

select trim (' Waste no space ') from rdb$database
 -- returns 'Waste no space'

select trim (leading from ' Waste no space ') from rdb$database
 -- returns 'Waste no space '

select trim (leading '.' from ' Waste no space ') from rdb$database
 -- returns ' Waste no space '

select trim (trailing '!' from 'Help!!!!') from rdb$database
 -- returns 'Help'

select trim ('la' from 'lalala I love you Ella') from rdb$database
 -- returns ' I love you El'

select trim ('la' from 'Lalala I love you Ella') from rdb$database
 -- returns 'Lalala I love you El'

Notes:

• If str is a BLOB, the result is a BLOB. Otherwise, it is a VARCHAR(n) with n the formal length of str.

• The substring to be removed, if specified, may not be bigger than 32767 bytes. However, if this substring is
repeated at str's head or tail, the total number of bytes removed may be far greater. (The restriction on the
size of the substring will be lifted in Firebird 3.)

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

TRUNC()

Available in: DSQL, PSQL

Added in: 2.1

Description: Returns the integer part of a number. With the optional scale argument, the number can be trun-
cated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE

Internal functions

197

Syntax:

TRUNC (<number> [, <scale>])

<number> ::= a numerical expression
<scale> ::= an integer specifying the number of decimal places
 toward which should be truncated, e.g.:
 2 for truncating to a multiple of 0.01
 1 for truncating to a multiple of 0.1
 0 for truncating to a whole number
 -1 for truncating to a multiple of 10
 -2 for truncating to a multiple of 100

Notes:

• If the scale argument is present, the result usually has the same scale as the first argument, e.g.

- TRUNC(789.2225, 2) returns 789.2200 (not 789.22)
- TRUNC(345.4, -2) returns 300.0 (not 300)
- TRUNC(-163.41, 0) returns -163.00 (not -163)

Otherwise, the result scale is 0:

- TRUNC(-163.41) returns -163

Important

If you are used to the behaviour of the external function TRUNCATE, please notice that the internal function
TRUNC always truncates toward zero, i.e. upward for negative numbers.

UPPER()

Available in: DSQL, ESQL, PSQL

Added in: IB

Changed in: 2.0, 2.1

Description: Returns the upper-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
set.

Result type: (VAR)CHAR or BLOB

Syntax:

UPPER (str)

Examples:

select upper(_iso8859_1 'Débâcle')
from rdb$database
 -- returns 'DÉBÂCLE' (before Firebird 2.0: 'DéBâCLE')

Internal functions

198

select upper(_iso8859_1 'Débâcle' collate fr_fr)
from rdb$database
 -- returns 'DEBACLE', following French uppercasing rules

See also: LOWER

UUID_TO_CHAR()

Available in: DSQL, PSQL

Added in: 2.5

Description: Converts a 16-byte UUID to its 36-character, human-readable ASCII representation.

Result type: CHAR(36)

Syntax:

UUID_TO_CHAR (uuid)

uuid ::= a string consisting of 16 single-byte characters

Examples:

select uuid_to_char(x'876C45F4569B320DBCB4735AC3509E5F') from rdb$database
-- returns '876C45F4-569B-320D-BCB4-735AC3509E5F'

select uuid_to_char(gen_uuid()) from rdb$database
-- returns e.g. '680D946B-45FF-DB4E-B103-BB5711529B86'

select uuid_to_char('Firebird swings!') from rdb$database
-- returns '46697265-6269-7264-2073-77696E677321'

See also: CHAR_TO_UUID(), GEN_UUID()

199

Chapter 15

External functions (UDFs)
External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two external function libraries:

• ib_udf – inherited from InterBase;

• fbudf – a new library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can also create their own UDF libraries or acquire them from third parties.

abs

Library: ib_udf

Added in: IB

Better alternative: Internal function ABS()

Description: Returns the absolute value of the argument.

Result type: DOUBLE PRECISION

Syntax:

abs (number)

Declaration:

DECLARE EXTERNAL FUNCTION abs
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_abs' MODULE_NAME 'ib_udf'

acos

Library: ib_udf

Added in: IB

Better alternative: Internal function ACOS()

External functions (UDFs)

200

Description: Returns the arc cosine of the argument.

Result type: DOUBLE PRECISION

Syntax:

acos (number)

Declaration:

DECLARE EXTERNAL FUNCTION acos
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_acos' MODULE_NAME 'ib_udf'

addDay

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with number days added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addday (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addDay
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addDay' MODULE_NAME 'fbudf'

addHour

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with number hours added. Use negative numbers to subtract.

External functions (UDFs)

201

Result type: TIMESTAMP

Syntax:

addhour (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addHour
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addHour' MODULE_NAME 'fbudf'

addMilliSecond

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with number milliseconds added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addmillisecond (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addMilliSecond
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addMilliSecond' MODULE_NAME 'fbudf'

addMinute

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with number minutes added. Use negative numbers to subtract.

Result type: TIMESTAMP

External functions (UDFs)

202

Syntax:

addminute (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addMinute
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addMinute' MODULE_NAME 'fbudf'

addMonth

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with number months added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addmonth (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addMonth
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addMonth' MODULE_NAME 'fbudf'

addSecond

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with number seconds added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addsecond (atimestamp, number)

External functions (UDFs)

203

Declaration:

DECLARE EXTERNAL FUNCTION addSecond
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addSecond' MODULE_NAME 'fbudf'

addWeek

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with number weeks added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addweek (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addWeek
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addWeek' MODULE_NAME 'fbudf'

addYear

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with number years added. Use negative numbers to subtract.

Result type: TIMESTAMP

Syntax:

addyear (atimestamp, number)

Declaration:

DECLARE EXTERNAL FUNCTION addYear
 TIMESTAMP, INT
 RETURNS TIMESTAMP
 ENTRY_POINT 'addYear' MODULE_NAME 'fbudf'

External functions (UDFs)

204

ascii_char

Library: ib_udf

Changed in: 1.0, 2.0

Better alternative: Internal function ASCII_CHAR()

Description: Returns the ASCII character corresponding to the integer value passed in.

Result type: VARCHAR(1)

Syntax (unchanged):

ascii_char (intval)

Declaration:

DECLARE EXTERNAL FUNCTION ascii_char
 INTEGER NULL
 RETURNS CSTRING(1) FREE_IT
 ENTRY_POINT 'IB_UDF_ascii_char' MODULE_NAME 'ib_udf'

The declaration reflects the fact that the UDF as such returns a 1-character C string, not an SQL
CHAR(1) as stated in the InterBase declaration. The engine will pass the result to the caller as a
VARCHAR(1) though.

The NULL after INTEGER is an optional addition that became available in Firebird 2. When declared
with the NULL keyword, the engine will pass a NULL argument unchanged to the function. This causes
a NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULL is passed to the function as 0 and the result is an empty string.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• ascii_char(0) returns an empty string in all versions, not a character with ASCII value 0.

• Before Firebird 2.0, the result type was CHAR(1).

ascii_val

Library: ib_udf

Added in: IB

Better alternative: Internal function ASCII_VAL()

External functions (UDFs)

205

Description: Returns the ASCII code of the character passed in.

Result type: INTEGER

Syntax:

ascii_val (ch)

Declaration:

DECLARE EXTERNAL FUNCTION ascii_val
 CHAR(1)
 RETURNS INTEGER BY VALUE
 ENTRY_POINT 'IB_UDF_ascii_val' MODULE_NAME 'ib_udf'

Caution

Because CHAR fields are padded with spaces, an empty string argument will be seen as a space, and yield a
result of 32. The internal function ASCII_VAL returns 0 in this case.

asin

Library: ib_udf

Added in: IB

Better alternative: Internal function ASIN()

Description: Returns the arc sine of the argument.

Result type: DOUBLE PRECISION

Syntax:

asin (number)

Declaration:

DECLARE EXTERNAL FUNCTION asin
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_asin' MODULE_NAME 'ib_udf'

atan

Library: ib_udf

Added in: IB

External functions (UDFs)

206

Better alternative: Internal function ATAN()

Description: Returns the arc tangent of the argument.

Result type: DOUBLE PRECISION

Syntax:

atan (number)

Declaration:

DECLARE EXTERNAL FUNCTION atan
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_atan' MODULE_NAME 'ib_udf'

atan2

Library: ib_udf

Added in: IB

Better alternative: Internal function ATAN2()

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.

Result type: DOUBLE PRECISION

Syntax:

atan2 (num1, num2)

Declaration:

DECLARE EXTERNAL FUNCTION atan2
 DOUBLE PRECISION, DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_atan2' MODULE_NAME 'ib_udf'

bin_and

Library: ib_udf

Added in: IB

Better alternative: Internal function BIN_AND()

External functions (UDFs)

207

Description: Returns the bitwise AND result of the arguments.

Result type: INTEGER

Syntax:

bin_and (num1, num2)

Declaration:

DECLARE EXTERNAL FUNCTION bin_and
 INTEGER, INTEGER
 RETURNS INTEGER BY VALUE
 ENTRY_POINT 'IB_UDF_bin_and' MODULE_NAME 'ib_udf'

bin_or

Library: ib_udf

Added in: IB

Better alternative: Internal function BIN_OR()

Description: Returns the bitwise OR result of the arguments.

Result type: INTEGER

Syntax:

bin_or (num1, num2)

Declaration:

DECLARE EXTERNAL FUNCTION bin_or
 INTEGER, INTEGER
 RETURNS INTEGER BY VALUE
 ENTRY_POINT 'IB_UDF_bin_or' MODULE_NAME 'ib_udf'

bin_xor

Library: ib_udf

Added in: IB

Better alternative: Internal function BIN_XOR()

Description: Returns the bitwise XOR result of the arguments.

Result type: INTEGER

External functions (UDFs)

208

Syntax:

bin_xor (num1, num2)

Declaration:

DECLARE EXTERNAL FUNCTION bin_xor
 INTEGER, INTEGER
 RETURNS INTEGER BY VALUE
 ENTRY_POINT 'IB_UDF_bin_xor' MODULE_NAME 'ib_udf'

ceiling

Library: ib_udf

Added in: IB

Better alternative: Internal function CEIL() / CEILING()

Description: Returns the smallest whole number that is greater than or equal to the argument.

Result type: DOUBLE PRECISION

Syntax:

ceiling (number)

Declaration:

DECLARE EXTERNAL FUNCTION ceiling
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_ceiling' MODULE_NAME 'ib_udf'

cos

Library: ib_udf

Added in: IB

Better alternative: Internal function COS()

Description: Returns an angle's cosine. The argument must be given in radians.

Result type: DOUBLE PRECISION

Syntax:

cos (angle)

External functions (UDFs)

209

Declaration:

DECLARE EXTERNAL FUNCTION cos
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_cos' MODULE_NAME 'ib_udf'

cosh

Library: ib_udf

Added in: IB

Better alternative: Internal function COSH()

Description: Returns the hyperbolic cosine of the argument.

Result type: DOUBLE PRECISION

Syntax:

cosh (number)

Declaration:

DECLARE EXTERNAL FUNCTION cosh
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_cosh' MODULE_NAME 'ib_udf'

cot

Library: ib_udf

Added in: IB

Better alternative: Internal function COT()

Description: Returns an angle's cotangent. The argument must be given in radians.

Result type: DOUBLE PRECISION

Syntax:

cot (angle)

Declaration:

DECLARE EXTERNAL FUNCTION cot
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_cot' MODULE_NAME 'ib_udf'

External functions (UDFs)

210

dow

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the day of the week from a timestamp argument. The returned name may be localized.

Result type: VARCHAR(15)

Syntax:

dow (atimestamp)

Declaration:

DECLARE EXTERNAL FUNCTION dow
 TIMESTAMP,
 VARCHAR(15) RETURNS PARAMETER 2
 ENTRY_POINT 'DOW' MODULE_NAME 'fbudf'

See also: sdow

dpower

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function POWER()

Description: Returns x to the y'th power.

Result type: DOUBLE PRECISION

Syntax:

dpower (x, y)

Declaration:

DECLARE EXTERNAL FUNCTION dPower
 DOUBLE PRECISION BY DESCRIPTOR, DOUBLE PRECISION BY DESCRIPTOR,
 DOUBLE PRECISION BY DESCRIPTOR
 RETURNS PARAMETER 3
 ENTRY_POINT 'power' MODULE_NAME 'fbudf'

External functions (UDFs)

211

floor

Library: ib_udf

Added in: IB

Better alternative: Internal function FLOOR()

Description: Returns the largest whole number that is smaller than or equal to the argument.

Result type: DOUBLE PRECISION

Syntax:

floor (number)

Declaration:

DECLARE EXTERNAL FUNCTION floor
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_floor' MODULE_NAME 'ib_udf'

getExactTimestamp

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: CURRENT_TIMESTAMP or 'NOW'

Description: Returns the system time with milliseconds precision. This function was added because in pre-2.0
versions, CURRENT_TIMESTAMP always had .0000 in the fractional part of the second. In Firebird 2.0 and up
it is better to use CURRENT_TIMESTAMP, which now also defaults to milliseconds precision. To measure time
intervals in PSQL modules, use 'NOW'.

Result type: TIMESTAMP

Syntax:

getexacttimestamp()

Declaration:

DECLARE EXTERNAL FUNCTION getExactTimestamp
 TIMESTAMP RETURNS PARAMETER 1
 ENTRY_POINT 'getExactTimestamp' MODULE_NAME 'fbudf'

External functions (UDFs)

212

i64round

See round.

i64truncate

See truncate.

ln

Library: ib_udf

Added in: IB

Better alternative: Internal function LN()

Description: Returns the natural logarithm of the argument.

Result type: DOUBLE PRECISION

Syntax:

ln (number)

Declaration:

DECLARE EXTERNAL FUNCTION ln
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_ln' MODULE_NAME 'ib_udf'

log

Library: ib_udf

Added in: IB

Changed in: 1.5

Better alternative: Internal function LOG()

Description: In Firebird 1.5 and up, log(x,y) returns the the base-x logarithm of y. In Firebird 1.0.x and
InterBase, it erroneously returns the base-y logarithm of x.

External functions (UDFs)

213

Result type: DOUBLE PRECISION

Syntax (unchanged):

log (x, y)

Declaration (unchanged):

DECLARE EXTERNAL FUNCTION log
 DOUBLE PRECISION, DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_log' MODULE_NAME 'ib_udf'

Warning

If any of your pre-1.5 databases use log, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get
wrong results.

log10

Library: ib_udf

Added in: IB

Better alternative: Internal function LOG10()

Description: Returns the 10-based logarithm of the argument.

Result type: DOUBLE PRECISION

Syntax:

log10 (number)

Declaration:

DECLARE EXTERNAL FUNCTION log10
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_log10' MODULE_NAME 'ib_udf'

lower

Library: ib_udf

Added in: IB

Changed in: 2.0

Better alternative: Internal function LOWER()

External functions (UDFs)

214

Description: Returns the lower-case version of the input string. Please notice that only ASCII characters are
handled correctly. If possible, use the superior internal function LOWER instead.

Result type: VARCHAR(n)

Syntax:

"LOWER" (str)

Declaration:

DECLARE EXTERNAL FUNCTION "LOWER"
 CSTRING(255) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_lower' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. "LOWER" has been surrounded by dou-
ble-quotes because LOWER, being a reserved word, cannot be used as an identifier except when quot-
ed. When you call the function, you also have to add the quotes and use the exact capitalization,
otherwise the internal function will take precedence. (Most other internal function names are not re-
served words; in those cases, the external function prevails if it is declared.)

The NULL after CSTRING(255) is an optional addition that became available in Firebird 2. When
declared with the NULL keyword, the engine will pass a NULL argument unchanged to the function.
This leads to a NULL result, which is correct. Without the NULL keyword (your only option in pre-2.0
versions), NULL is passed to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• Before Firebird 2.0, the result type was CHAR(n).

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

lpad

Library: ib_udf

Added in: 1.5

Changed in: 1.5.2, 2.0

Better alternative: Internal function LPAD()

Description: Returns the input string left-padded with padchars until endlength is reached.

Result type: VARCHAR(n)

Syntax:

lpad (str, endlength, padchar)

External functions (UDFs)

215

Declaration:

DECLARE EXTERNAL FUNCTION lpad
 CSTRING(255) NULL, INTEGER, CSTRING(1) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULLs after the CSTRING arguments
are an optional addition that became available in Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a NULL
result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULLs
are passed to the function as empty strings and the result is a string with endlengh padchars (if str
is NULL) or a copy of str itself (if padchar is NULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• When calling this function, make sure endlength does not exceed the declared result length.

• If endlength is less than str's length, str is truncated to endlength. If endlength is negative, the
result is NULL.

• A NULL endlength is treated as if it were 0.

• If padchar is empty, or if padchar is NULL and the function has been declared without the NULL keyword
after the last argument, str is returned unchanged (or truncated to endlength).

• Before Firebird 2.0, the result type was CHAR(n).

• A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

ltrim

Library: ib_udf

Changed in: 1.5, 1.5.2, 2.0

Better alternative: Internal function TRIM()

Description: Returns the input string with any leading space characters removed. In new code, you are advised
to use the internal function TRIM instead, as it is both more powerful and more versatile.

Result type: VARCHAR(n)

Syntax (unchanged):

ltrim (str)

External functions (UDFs)

216

Declaration:

DECLARE EXTERNAL FUNCTION ltrim
 CSTRING(255) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_ltrim' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• Before Firebird 2.0, the result type was CHAR(n).

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

• In Firebird 1.0.x, this function returned NULL if the input string was either empty or NULL.

mod

Library: ib_udf

Added in: IB

Better alternative: Internal function MOD()

Description: Returns the remainder of an integer division.

Result type: DOUBLE PRECISION

Syntax:

mod (a, b)

Declaration:

DECLARE EXTERNAL FUNCTION mod
 INTEGER, INTEGER
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_mod' MODULE_NAME 'ib_udf'

*nullif

Library: fbudf

External functions (UDFs)

217

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function NULLIF()

Description: The four *nullif functions – for integers, bigints, doubles and strings, respectively – each return
the first argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Result type: Varies, see declarations.

Syntax:

inullif (int1, int2)
i64nullif (bigint1, bigint2)
dnullif (double1, double2)
snullif (string1, string2)

As from Firebird 1.5, use of the internal function NULLIF is preferred.

Warnings

• These functions return NULL when the second argument is NULL, even if the first argument is a proper value.
This is a wrong result. The NULLIF internal function doesn't have this bug.

• i64nullif and dnullif will return wrong and/or bizarre results if it is not 100% clear to the engine that
each argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTION inullif
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS INT BY DESCRIPTOR
 ENTRY_POINT 'iNullIf' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64nullif
 NUMERIC(18,4) BY DESCRIPTOR, NUMERIC(18,4) BY DESCRIPTOR
 RETURNS NUMERIC(18,4) BY DESCRIPTOR
 ENTRY_POINT 'iNullIf' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION dnullif
 DOUBLE PRECISION BY DESCRIPTOR, DOUBLE PRECISION BY DESCRIPTOR
 RETURNS DOUBLE PRECISION BY DESCRIPTOR
 ENTRY_POINT 'dNullIf' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION snullif
 VARCHAR(100) BY DESCRIPTOR, VARCHAR(100) BY DESCRIPTOR,
 VARCHAR(100) BY DESCRIPTOR RETURNS PARAMETER 3
 ENTRY_POINT 'sNullIf' MODULE_NAME 'fbudf'

*nvl

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

External functions (UDFs)

218

Better alternative: Internal function COALESCE()

Description: The four nvl functions – for integers, bigints, doubles and strings, respectively – are NULL replac-
ers. They each return the first argument's value if it is not NULL. If the first argument is NULL, the value of the
second argument is returned.

Result type: Varies, see declarations.

Syntax:

invl (int1, int2)
i64nvl (bigint1, bigint2)
dnvl (double1, double2)
snvl (string1, string2)

As from Firebird 1.5, use of the internal function COALESCE is preferred.

Warning

i64nvl and dnvl will return wrong and/or bizarre results if it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTION invl
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS INT BY DESCRIPTOR
 ENTRY_POINT 'idNvl' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64nvl
 NUMERIC(18,0) BY DESCRIPTOR, NUMERIC(18,0) BY DESCRIPTOR
 RETURNS NUMERIC(18,0) BY DESCRIPTOR
 ENTRY_POINT 'idNvl' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION dnvl
 DOUBLE PRECISION BY DESCRIPTOR, DOUBLE PRECISION BY DESCRIPTOR
 RETURNS DOUBLE PRECISION BY DESCRIPTOR
 ENTRY_POINT 'idNvl' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION snvl
 VARCHAR(100) BY DESCRIPTOR, VARCHAR(100) BY DESCRIPTOR,
 VARCHAR(100) BY DESCRIPTOR RETURNS PARAMETER 3
 ENTRY_POINT 'sNvl' MODULE_NAME 'fbudf'

pi

Library: ib_udf

Added in: IB

Better alternative: Internal function PI()

Description: Returns an approximation of the value of #.

External functions (UDFs)

219

Result type: DOUBLE PRECISION

Syntax:

pi ()

Declaration:

DECLARE EXTERNAL FUNCTION pi
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_pi' MODULE_NAME 'ib_udf'

rand

Library: ib_udf

Changed in: 2.0

Better alternative: Internal function RAND()

Description: Returns a pseudo-random number. Before Firebird 2.0, this function would first seed the random
number generator with the current time in seconds. Multiple rand() calls within the same second would there-
fore return the same value. If you want that old behaviour in Firebird 2 and up, use srand().

Result type: DOUBLE PRECISION

Syntax:

rand ()

Declaration:

DECLARE EXTERNAL FUNCTION rand
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_rand' MODULE_NAME 'ib_udf'

right

See sright.

round, i64round
Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Changed in: 1.5, 2.1.3

External functions (UDFs)

220

Better alternative: Internal function ROUND()

Description: These functions return the whole number that is nearest to their (scaled numeric/decimal) argument.
They do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18,4)

Syntax:

round (number)
i64round (bignumber)

Caution

Halves are always rounded upward, i.e. away from zero for positive numbers and toward zero for negative
numbers. For instance, 3.5 is rounded to 4, but -3.5 is rounded to -3. The internal function ROUND, available
since Firebird 2.1, rounds all halves away from zero.

Declarations:

In Firebird 1.0.x, the entry point for both functions is round:

DECLARE EXTERNAL FUNCTION Round
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'round' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64Round
 NUMERIC(18,4) BY DESCRIPTOR, NUMERIC(18,4) BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'round' MODULE_NAME 'fbudf'

In Firebird 1.5, the entry point has been renamed to fbround:

DECLARE EXTERNAL FUNCTION Round
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'fbround' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64Round
 NUMERIC(18,4) BY DESCRIPTOR, NUMERIC(18,4) BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'fbround' MODULE_NAME 'fbudf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *round and
*truncate declarations and declare them anew, using the updated entry point names. From Firebird
2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

rpad

Library: ib_udf

Added in: 1.5

External functions (UDFs)

221

Changed in: 1.5.2, 2.0

Better alternative: Internal function RPAD()

Description: Returns the input string right-padded with padchars until endlength is reached.

Result type: VARCHAR(n)

Syntax:

rpad (str, endlength, padchar)

Declaration:

DECLARE EXTERNAL FUNCTION rpad
 CSTRING(255) NULL, INTEGER, CSTRING(1) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_rpad' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULLs after the CSTRING arguments
are an optional addition that became available in Firebird 2. If an argument is declared with the NULL
keyword, the engine will pass a NULL argument value unchanged to the function. This leads to a NULL
result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULLs
are passed to the function as empty strings and the result is a string with endlengh padchars (if str
is NULL) or a copy of str itself (if padchar is NULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• When calling this function, make sure endlength does not exceed the declared result length.

• If endlength is less than str's length, str is truncated to endlength. If endlength is negative, the
result is NULL.

• A NULL endlength is treated as if it were 0.

• If padchar is empty, or if padchar is NULL and the function has been declared without the NULL keyword
after the last argument, str is returned unchanged (or truncated to endlength).

• Before Firebird 2.0, the result type was CHAR(n).

• A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

rtrim

Library: ib_udf

External functions (UDFs)

222

Changed in: 1.5, 1.5.2, 2.0

Better alternative: Internal function TRIM()

Description: Returns the input string with any trailing space characters removed. In new code, you are advised
to use the internal function TRIM instead, as it is both more powerful and more versatile.

Result type: VARCHAR(n)

Syntax (unchanged):

rtrim (str)

Declaration:

DECLARE EXTERNAL FUNCTION rtrim
 CSTRING(255) NULL
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_rtrim' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• Before Firebird 2.0, the result type was CHAR(n).

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

• In Firebird 1.0.x, this function returned NULL if the input string was either empty or NULL.

sdow

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Result type: VARCHAR(5)

Syntax:

sdow (atimestamp)

External functions (UDFs)

223

Declaration:

DECLARE EXTERNAL FUNCTION sdow
 TIMESTAMP,
 VARCHAR(5) RETURNS PARAMETER 2
 ENTRY_POINT 'SDOW' MODULE_NAME 'fbudf'

See also: dow

sign

Library: ib_udf

Added in: IB

Better alternative: Internal function SIGN()

Description: Returns the sign of the argument: -1, 0 or 1.

Result type: INTEGER

Syntax:

sign (number)

Declaration:

DECLARE EXTERNAL FUNCTION sign
 DOUBLE PRECISION
 RETURNS INTEGER BY VALUE
 ENTRY_POINT 'IB_UDF_sign' MODULE_NAME 'ib_udf'

sin

Library: ib_udf

Added in: IB

Better alternative: Internal function SIN()

Description: Returns an angle's sine. The argument must be given in radians.

Result type: DOUBLE PRECISION

Syntax:

sin (angle)

External functions (UDFs)

224

Declaration:

DECLARE EXTERNAL FUNCTION sin
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_sin' MODULE_NAME 'ib_udf'

sinh

Library: ib_udf

Added in: IB

Better alternative: Internal function SINH()

Description: Returns the hyperbolic sine of the argument.

Result type: DOUBLE PRECISION

Syntax:

sinh (number)

Declaration:

DECLARE EXTERNAL FUNCTION sinh
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_sinh' MODULE_NAME 'ib_udf'

sqrt

Library: ib_udf

Added in: IB

Better alternative: Internal function SQRT()

Description: Returns the square root of the argument.

Result type: DOUBLE PRECISION

Syntax:

sqrt (number)

Declaration:

DECLARE EXTERNAL FUNCTION sqrt
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_sqrt' MODULE_NAME 'ib_udf'

External functions (UDFs)

225

srand

Library: ib_udf

Added in: 2.0

Description: Seeds the random number generator with the current time in seconds and then returns the first
number. Multiple srand() calls within the same second will return the same value. This is exactly how rand()
behaved before Firebird 2.0.

Result type: DOUBLE PRECISION

Syntax:

srand ()

Declaration:

DECLARE EXTERNAL FUNCTION srand
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_srand' MODULE_NAME 'ib_udf'

sright

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function RIGHT()

Description: Returns the rightmost numchars characters of the input string. Only works with 1-byte character
sets.

Result type: VARCHAR(100)

Syntax:

sright (str, numchars)

Declaration:

DECLARE EXTERNAL FUNCTION sright
 VARCHAR(100) BY DESCRIPTOR, SMALLINT,
 VARCHAR(100) BY DESCRIPTOR RETURNS PARAMETER 3
 ENTRY_POINT 'right' MODULE_NAME 'fbudf'

External functions (UDFs)

226

string2blob

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function CAST()

Description: Returns the input string as a BLOB.

Result type: BLOB

Syntax:

string2blob (str)

Declaration:

DECLARE EXTERNAL FUNCTION string2blob
 VARCHAR(300) BY DESCRIPTOR,
 BLOB RETURNS PARAMETER 2
 ENTRY_POINT 'string2blob' MODULE_NAME 'fbudf'

strlen

Library: ib_udf

Added in: IB

Better alternatives: Internal functions BIT_LENGTH(), CHAR[ACTER]_LENGTH and OCTET_LENGTH()

Description: Returns the length of the argument string.

Result type: INTEGER

Syntax:

strlen (str)

Declaration:

DECLARE EXTERNAL FUNCTION strlen
 CSTRING(32767)
 RETURNS INTEGER BY VALUE
 ENTRY_POINT 'IB_UDF_strlen' MODULE_NAME 'ib_udf'

substr

Library: ib_udf

External functions (UDFs)

227

Changed in: 1.0, 1.5.2, 2.0

Description: Returns a string's substring from startpos to endpos, inclusively. Positions are 1-based. If end-
pos is past the end of the string, substr returns all the characters from startpos to the end of the string. This
function only works correctly with single-byte characters.

Result type: VARCHAR(n)

Syntax (unchanged):

substr (str, startpos, endpos)

Declaration:

DECLARE EXTERNAL FUNCTION substr
 CSTRING(255) NULL, SMALLINT, SMALLINT
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_substr' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• Before Firebird 2.0, the result type was CHAR(n).

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

• In InterBase, substr returned NULL if endpos lay past the end of the string.

Tip

Although the function arguments are slightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility and multi-byte character set support.

substrlen

Library: ib_udf

Added in: 1.0

Changed in: 1.5.2, 2.0

Better alternative: Internal function SUBSTRING()

External functions (UDFs)

228

Description: Returns the substring starting at startpos and having length characters (or less, if the end of
the string is reached first). Positions are 1-based. If either startpos or length is smaller than 1, an empty
string is returned. This function only works correctly with single-byte characters.

Result type: VARCHAR(n)

Syntax:

substrlen (str, startpos, length)

Declaration:

DECLARE EXTERNAL FUNCTION substrlen
 CSTRING(255) NULL, SMALLINT, SMALLINT
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_substrlen' MODULE_NAME 'ib_udf'

The above declaration is from the file ib_udf2.sql. The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

• Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

• Before Firebird 2.0, the result type was CHAR(n).

• In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

Tip

Firebird 1.0 has also implemented the internal SQL function SUBSTRING, effectively rendering substrlen
obsolete in the same version in which it was introduced. SUBSTRING also supports multi-byte character sets.
In new code, use SUBSTRING.

tan

Library: ib_udf

Added in: IB

Better alternative: Internal function TAN()

Description: Returns an angle's tangent. The argument must be given in radians.

Result type: DOUBLE PRECISION

External functions (UDFs)

229

Syntax:

tan (angle)

Declaration:

DECLARE EXTERNAL FUNCTION tan
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_tan' MODULE_NAME 'ib_udf'

tanh

Library: ib_udf

Added in: IB

Better alternative: Internal function TANH()

Description: Returns the hyperbolic tangent of the argument.

Result type: DOUBLE PRECISION

Syntax:

tanh (number)

Declaration:

DECLARE EXTERNAL FUNCTION tanh
 DOUBLE PRECISION
 RETURNS DOUBLE PRECISION BY VALUE
 ENTRY_POINT 'IB_UDF_tanh' MODULE_NAME 'ib_udf'

truncate, i64truncate
Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Changed in: 1.5, 2.1.3

Better alternative: Internal function TRUNC()

Description: These functions return the whole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18)

External functions (UDFs)

230

Syntax:

truncate (number)
i64truncate (bignumber)

Caution

Both functions round to the nearest whole number that is lower than or equal to the argument. This means that
negative numbers are also “truncated” downward. For instance, truncate(-2.37) returns -3. The internal
function TRUNC, available since Firebird 2.1, always truncates toward zero.

Declarations:

In Firebird 1.0.x, the entry point for both functions is truncate:

DECLARE EXTERNAL FUNCTION Truncate
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'truncate' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64Truncate
 NUMERIC(18) BY DESCRIPTOR, NUMERIC(18) BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'truncate' MODULE_NAME 'fbudf'

In Firebird 1.5, the entry point has been renamed to fbtruncate:

DECLARE EXTERNAL FUNCTION Truncate
 INT BY DESCRIPTOR, INT BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'fbtruncate' MODULE_NAME 'fbudf'

DECLARE EXTERNAL FUNCTION i64Truncate
 NUMERIC(18) BY DESCRIPTOR, NUMERIC(18) BY DESCRIPTOR
 RETURNS PARAMETER 2
 ENTRY_POINT 'fbtruncate' MODULE_NAME 'fbudf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *round and
*truncate declarations and declare them anew, using the updated entry point names. From Firebird
2.0 onward you can also perform this update with ALTER EXTERNAL FUNCTION.

231

Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer transliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets – such as SJIS (Japanese) and WIN1251 (Russian) – even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “as is” and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese data
columns using either parameterized queries or literal strings without introducer syntax would fail with translit-
eration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
are still stored “as is” but what is stored is an exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no transliteration
error. When the connection character set is NONE, no attempt is made in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw a transliteration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sqlsubtype field in the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still required when handling heteroge-
neous character sets from a client context that is anything other than NONE. Both methods are shown below,
using character set ISO8859_1 as an example target. Notice the “_” prefix in the introducer syntax.

Introducer syntax:
_ISO8859_1 mystring

Casting:
CAST (mystring AS VARCHAR(n) CHARACTER SET ISO8859_1)

Notes

232

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides a limited explicit pessimistic locking capability for cautious use in conditions where the
affected row set is:
a. extremely small (ideally, a singleton), and
b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. This is an expert feature, intended for use by those who thor-
oughly understand its consequences. Knowledge of the various levels of transaction isolation is essential. WITH
LOCK is available in DSQL and PSQL, and only for top-level, single-table SELECTs. As stated in the reference
part of this guide, WITH LOCK is not available:

• in a subquery specification;
• for joined sets;
• with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
• with a view;
• with the output of a selectable stored procedure;
• with an external table.

Syntax and behaviour

SELECT ... FROM single_table
 [WHERE ...]
 [FOR UPDATE [OF ...]]
 [WITH LOCK]

If the WITH LOCK clause succeeds, it will secure a lock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, as it is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

As the engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardless of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

Notes

233

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and are ig-
nored.

isc_tpb_concurrency

+ isc_tpb_nowait

If a record is modified by any transaction that was committed since the trans-
action attempting to get explicit lock started, or an active transaction has per-
formed a modification of this record, an update conflict exception is raised im-
mediately.

isc_tpb_concurrency

+ isc_tpb_wait

If the record is modified by any transaction that has committed since the transac-
tion attempting to get explicit lock started, an update conflict exception is raised
immediately.

If an active transaction is holding ownership on this record (via explicit locking
or by a normal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This means that, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read_committed

+ isc_tpb_nowait

If there is an active transaction holding ownership on this record (via explicit
locking or normal update), an update conflict exception is raised immediately.

isc_tpb_read_committed

+ isc_tpb_wait

If there is an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the ex-
plicit lock waits for the outcome of blocking transation and when it finishes, at-
tempts to get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement tries to access a record that is locked by another transaction, it either raises an update
conflict exception or waits for the locking transaction to finish, depending on TPB mode. Engine behaviour here
is the same as if this record had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, via joins, subqueries, etc. It also guarantees that rows not meeting the search conditions will not be locked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, parallel transactions commit their changes during the course of the locking
statement's execution.

Notes

234

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches”). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

The optional “OF <column-names>” sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<column-names>” subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. This would
enable you to process the currently-locked row before the next is fetched and locked, or to handle errors without
rolling back your transaction.

Caveats using WITH LOCK

• Rolling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

• While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

• Most applications do not need explicit locks at all. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to a relational database in a clustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

• Explicit locking is an advanced feature; do not misuse it! While solutions for these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking

i. Simple:

SELECT * FROM DOCUMENT WHERE ID=? WITH LOCK

ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT WHERE PARENT_ID=?
 FOR UPDATE WITH LOCK

Notes

235

A note on CSTRING parameters
External functions involving strings often use the type CSTRING(n) in their declarations. This type represents a
zero-terminated string of maximum length n. Most of the functions handling CSTRINGs are programmed in such
a way that they can accept and return zero-terminated strings of any length. So why the n? Because the Firebird
engine has to set up space to process the input an output parameters, and convert them to and from SQL data
types. Most strings used in databases are only dozens to hundreds of bytes long; it would be a waste to reserve
32 KB of memory each time such a string is processed. Therefore, the standard declarations of most CSTRING
functions – as found in the file ib_udf.sql – specify a length of 255 bytes. (In Firebird 1.5.1 and below, this
default length is 80 bytes.) As an example, here's the SQL declaration of lpad:

DECLARE EXTERNAL FUNCTION lpad
 CSTRING(255), INTEGER, CSTRING(1)
 RETURNS CSTRING(255) FREE_IT
 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf'

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or cause it to return a string longer than the declared output length. But the standard declarations are
just reasonable defaults; they're not cast in concrete, and you can change them if you want to. If you have to left-
pad strings of up to 500 bytes long, then it's perfectly OK to change both 255's in the declaration to 500 or more.

A special case is when you usually operate on short strings (say less then 100 bytes) but occasionally have to call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that all the calls will be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that majority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTION lpad
 CSTRING(100), INTEGER, CSTRING(1)
 RETURNS CSTRING(100) FREE_IT
 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf';

DECLARE EXTERNAL FUNCTION lpadbig
 CSTRING(32000), INTEGER, CSTRING(1)
 RETURNS CSTRING(32000) FREE_IT
 ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf';

Now you can call lpad() for all the small strings and lpadbig() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

Notes

236

Passing NULL to UDFs in Firebird 2
If a pre-2.0 Firebird engine must pass an SQL NULL argument to a user-defined function, it always converts it
to a zero-equivalent, e.g. a numerical 0 or an empty string. The only exception to this rule are UDFs that make
use of the “BY DESCRIPTOR” mechanism introduced in Firebird 1. The fbudf library uses descriptors, but the
vast majority of UDFs, including those in Firebird's standard ib_udf library, still use the old style of parameter
passing, inherited from InterBase.

As a consequence, most UDFs can't tell the difference between NULL and zero input.

Firebird 2 comes with a somewhat improved calling mechanism for these old-style UDFs. The engine will now
pass NULL input as a null pointer to the function, if the function has been declared to the database with a NULL
keyword after the argument(s) in question, e.g. like this:

declare external function ltrim
 cstring(255) null
 returns cstring(255) free_it
 entry_point 'IB_UDF_ltrim' module_name 'ib_udf';

This requirement ensures that existing databases and their applications can continue to function like before.
Leave out the NULL keyword and the function will behave like it did under Firebird 1.5 and earlier.

Please note that you can't just add NULL keywords to your declarations and then expect every function to handle
NULL input correctly. Each function has to be (re)written in such a way that NULLs are dealt with correctly.
Always look at the declarations provided by the function implementor. For the functions in the ib_udf library,
consult ib_udf2.sql in the Firebird UDF directory. Notice the 2 in the file name; the old-style declarations
are in ib_udf.sql.

These are the ib_udf functions that have been updated to recognise NULL input and handle it properly:

• ascii_char
• lower
• lpad and rpad
• ltrim and rtrim
• substr and substrlen

Most ib_udf functions remain as they were; in any case, passing NULL to an old-style UDF is never possible
if the argument isn't of a referenced type.

On a side note: don't use lower, .trim and substr* in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

“Upgrading” ib_udf functions in an existing database

If you are using an existing database with one or more of the functions listed above under Firebird 2, and you
want to benefit from the improved NULL handling, run the script ib_udf_upgrade.sql against your database.
It is located in the Firebird misc\upgrade\ib_udf directory.

Notes

237

Maximum number of indices
in different Firebird versions

Between Firebird 1.0 and 2.0 there have been quite a few changes to the maximum number of indices per
database table. The table below sums them all up.

Table A.2. Max. indices per table in Firebird 1.0 – 2.0

Firebird version(s)

1.0, 1.0.2 1.0.3 1.5.x 2.0.x

Page
size

1 col 2 cols 3 cols 1 col 2 cols 3 cols 1 col 2 cols 3 cols 1 col 2 cols 3 cols

1024 62 50 41 62 50 41 62 50 41 50 35 27

2048 65 65 65 126 101 84 126 101 84 101 72 56

4096 65 65 65 254 203 169 254 203 169 203 145 113

8192 65 65 65 510 408 340 257 257 257 408 291 227

16384 65 65 65 1022 818 681 257 257 257 818 584 454

Notes

238

The RDB$VALID_BLR field
The field RDB$VALID_BLR was added to the system tables RDB$PROCEDURES and RDB$TRIGGERS in Firebird
2.1. Its purpose is to signal possible invalidation of a PSQL module when a domain or a table column upon
which the module depends is altered. If such invalidations occur, RDB$VALID_BLR is set to 0 for any procedure
or trigger whose code is no longer valid.

The following query will find the modules that depend on a specific domain and report the state of their RDB
$VALID_BLR fields:

select * from (
 select 'Procedure', rdb$procedure_name, rdb$valid_blr from rdb$procedures
 union
 select 'Trigger', rdb$trigger_name, rdb$valid_blr from rdb$triggers
) (type, name, valid)
where exists
 (select * from rdb$dependencies
 where rdb$dependent_name = name and rdb$depended_on_name = 'MYDOMAIN')

/* Replace MYDOMAIN with the actual domain name. Use all-caps if the domain
 was created case-insensitively. Otherwise, use the exact capitalisation. */

The following query will find the modules that depend on a specific table column and report the state of their
RDB$VALID_BLR fields:

select * from (
 select 'Procedure', rdb$procedure_name, rdb$valid_blr from rdb$procedures
 union
 select 'Trigger', rdb$trigger_name, rdb$valid_blr from rdb$triggers
) (type, name, valid)
where exists
 (select * from rdb$dependencies
 where rdb$dependent_name = name
 and rdb$depended_on_name = 'MYTABLE' and rdb$field_name = 'MYCOLUMN')

/* Replace MYTABLE and MYCOLUMN with the actual table and column names.
 Use all-caps if the table/column was created case-insensitively.
 Otherwise, use the exact capitalisation. */

Unfortunately, not all PSQL invalidations will be reflected in the RDB$VALID_BLR field. After changing a
domain or table column, it is therefore advisable to have a good look at all the procedures and triggers reported
by the above queries, even those having a 1 in the “VALID” column.

Please notice that for PSQL modules inherited from earlier Firebird versions (including a number of system
triggers, even if the database was created under Firebird 2.1 or higher), RDB$VALID_BLR is NULL. This does
not imply that their BLR is invalid.

The isql commands SHOW PROCEDURES and SHOW TRIGGERS flag modules whose RDB$VALID_BLR field
is zero with an asterisk. SHOW PROCEDURE PROCNAME and SHOW TRIGGER TRIGNAME, which display indi-
vidual PSQL modules, do not signal invalid BLR.

239

Appendix B:
Reserved words and
keywords – full lists

Reserved words
Full list of reserved words in Firebird 2.5:

ADD
ADMIN
ALL
ALTER
AND
ANY
AS
AT
AVG
BEGIN
BETWEEN
BIGINT
BIT_LENGTH
BLOB
BOTH
BY
CASE
CAST
CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK
CLOSE
COLLATE
COLUMN
COMMIT
CONNECT
CONSTRAINT
COUNT
CREATE
CROSS
CURRENT
CURRENT_CONNECTION
CURRENT_DATE

Reserved words and keywords – full lists

240

CURRENT_ROLE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSACTION
CURRENT_USER
CURSOR
DATE
DAY
DEC
DECIMAL
DECLARE
DEFAULT
DELETE
DISCONNECT
DISTINCT
DOUBLE
DROP
ELSE
END
ESCAPE
EXECUTE
EXISTS
EXTERNAL
EXTRACT
FETCH
FILTER
FLOAT
FOR
FOREIGN
FROM
FULL
FUNCTION
GDSCODE
GLOBAL
GRANT
GROUP
HAVING
HOUR
IN
INDEX
INNER
INSENSITIVE
INSERT
INT
INTEGER
INTO
IS
JOIN
LEADING
LEFT
LIKE
LONG

Reserved words and keywords – full lists

241

LOWER
MAX
MAXIMUM_SEGMENT
MERGE
MIN
MINUTE
MONTH
NATIONAL
NATURAL
NCHAR
NO
NOT
NULL
NUMERIC
OCTET_LENGTH
OF
ON
ONLY
OPEN
OR
ORDER
OUTER
PARAMETER
PLAN
POSITION
POST_EVENT
PRECISION
PRIMARY
PROCEDURE
RDB$DB_KEY
REAL
RECORD_VERSION
RECREATE
RECURSIVE
REFERENCES
RELEASE
RETURNING_VALUES
RETURNS
REVOKE
RIGHT
ROLLBACK
ROW_COUNT
ROWS
SAVEPOINT
SECOND
SELECT
SENSITIVE
SET
SIMILAR
SMALLINT
SOME
SQLCODE

Reserved words and keywords – full lists

242

SQLSTATE (2.5.1)
START
SUM
TABLE
THEN
TIME
TIMESTAMP
TO
TRAILING
TRIGGER
TRIM
UNION
UNIQUE
UPDATE
UPPER
USER
USING
VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW
WHEN
WHERE
WHILE
WITH
YEAR

Keywords
The following terms have a special meaning in Firebird 2.5 DSQL. Some of them are also reserved words,
others aren't.

!<
^<
^=
^>
,
:=
!=
!>
(
)
<
<=
<>
=
>
>=

Reserved words and keywords – full lists

243

||
~<
~=
~>
ABS
ACCENT
ACOS
ACTION
ACTIVE
ADD
ADMIN
AFTER
ALL
ALTER
ALWAYS
AND
ANY
AS
ASC
ASCENDING
ASCII_CHAR
ASCII_VAL
ASIN
AT
ATAN
ATAN2
AUTO
AUTONOMOUS
AVG
BACKUP
BEFORE
BEGIN
BETWEEN
BIGINT
BIN_AND
BIN_NOT
BIN_OR
BIN_SHL
BIN_SHR
BIN_XOR
BIT_LENGTH
BLOB
BLOCK
BOTH
BREAK
BY
CALLER
CASCADE
CASE
CAST
CEIL
CEILING

Reserved words and keywords – full lists

244

CHAR
CHAR_LENGTH
CHAR_TO_UUID
CHARACTER
CHARACTER_LENGTH
CHECK
CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMENT
COMMIT
COMMITTED
COMMON
COMPUTED
CONDITIONAL
CONNECT
CONSTRAINT
CONTAINING
COS
COSH
COT
COUNT
CREATE
CROSS
CSTRING
CURRENT
CURRENT_CONNECTION
CURRENT_DATE
CURRENT_ROLE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSACTION
CURRENT_USER
CURSOR
DATA
DATABASE
DATE
DATEADD
DATEDIFF
DAY
DEC
DECIMAL
DECLARE
DECODE
DEFAULT
DELETE
DELETING
DESC
DESCENDING
DESCRIPTOR

Reserved words and keywords – full lists

245

DIFFERENCE
DISCONNECT
DISTINCT
DO
DOMAIN
DOUBLE
DROP
ELSE
END
ENTRY_POINT
ESCAPE
EXCEPTION
EXECUTE
EXISTS
EXIT
EXP
EXTERNAL
EXTRACT
FETCH
FILE
FILTER
FIRST
FIRSTNAME
FLOAT
FLOOR
FOR
FOREIGN
FREE_IT
FROM
FULL
FUNCTION
GDSCODE
GEN_ID
GEN_UUID
GENERATED
GENERATOR
GLOBAL
GRANT
GRANTED
GROUP
HASH
HAVING
HOUR
IF
IGNORE
IIF
IN
INACTIVE
INDEX
INNER
INPUT_TYPE
INSENSITIVE

Reserved words and keywords – full lists

246

INSERT
INSERTING
INT
INTEGER
INTO
IS
ISOLATION
JOIN
KEY
LAST
LASTNAME
LEADING
LEAVE
LEFT
LENGTH
LEVEL
LIKE
LIMBO
LIST
LN
LOCK
LOG
LOG10
LONG
LOWER
LPAD
MANUAL
MAPPING
MATCHED
MATCHING
MAX
MAXIMUM_SEGMENT
MAXVALUE
MERGE
MIDDLENAME
MILLISECOND
MIN
MINUTE
MINVALUE
MOD
MODULE_NAME
MONTH
NAMES
NATIONAL
NATURAL
NCHAR
NEXT
NO
NOT
NULL
NULLIF
NULLS

Reserved words and keywords – full lists

247

NUMERIC
OCTET_LENGTH
OF
ON
ONLY
OPEN
OPTION
OR
ORDER
OS_NAME
OUTER
OUTPUT_TYPE
OVERFLOW
OVERLAY
PAD
PAGE
PAGE_SIZE
PAGES
PARAMETER
PASSWORD
PI
PLACING
PLAN
POSITION
POST_EVENT
POWER
PRECISION
PRESERVE
PRIMARY
PRIVILEGES
PROCEDURE
PROTECTED
RAND
RDB$DB_KEY
READ
REAL
RECORD_VERSION
RECREATE
RECURSIVE
REFERENCES
RELEASE
REPLACE
REQUESTS
RESERV
RESERVING
RESTART
RESTRICT
RETAIN
RETURNING
RETURNING_VALUES
RETURNS
REVERSE

Reserved words and keywords – full lists

248

REVOKE
RIGHT
ROLE
ROLLBACK
ROUND
ROW_COUNT
ROWS
RPAD
SAVEPOINT
SCALAR_ARRAY
SCHEMA
SECOND
SEGMENT
SELECT
SENSITIVE
SEQUENCE
SET
SHADOW
SHARED
SIGN
SIMILAR
SIN
SINGULAR
SINH
SIZE
SKIP
SMALLINT
SNAPSHOT
SOME
SORT
SOURCE
SPACE
SQLCODE
SQLSTATE (2.5.1)
SQRT
STABILITY
START
STARTING
STARTS
STATEMENT
STATISTICS
SUB_TYPE
SUBSTRING
SUM
SUSPEND
TABLE
TAN
TANH
TEMPORARY
THEN
TIME
TIMEOUT

Reserved words and keywords – full lists

249

TIMESTAMP
TO
TRAILING
TRANSACTION
TRIGGER
TRIM
TRUNC
TWO_PHASE
TYPE
UNCOMMITTED
UNDO
UNION
UNIQUE
UPDATE
UPDATING
UPPER
USER
USING
UUID_TO_CHAR
VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW
WAIT
WEEK
WEEKDAY
WHEN
WHERE
WHILE
WITH
WORK
WRITE
YEAR
YEARDAY

250

Appendix C:
Document History

The exact file history is recorded in the manual module in our CVS tree; see http://firebird.cvs.sourceforge.
net/viewvc/firebird/manual/

Revision History
0.0 — PV Creation of the document as a copy of the Firebird 2.1 Language Ref-

erence Update with IDs, titles, version numbers etc. updated to 2.5.

1.0 12 Jun 2011 PV Introduction :: Subject matter: Added “Security and access control
statements” to first list. Changed ulink to Firebird Documentation In-
dex (both text and url).
Introduction :: Authorship: Changed percentage of included material to
2–3%.
Introduction: New section Acknowledgments.
New chapter: New in Firebird 2.5.
Reserved words and keywords: Updated/corrected all the lists in all
the subsections (except Possibly reserved in future versions). Also
changed/added much of the text above and below the lists.
Reserved words and keywords :: Dropped since InterBase 6: Changed
subsection titles to No longer reserved, still keywords and No longer
reserved, not keywords, for better clarity.
Miscellaneous language elements: New section Hexadecimal notation
for numerals.
Miscellaneous language elements: New section Hexadecimal notation
for “binary” strings.
Data types and subtypes :: BIGINT data type: Added information on
hex notation; added second example.
Data types and subtypes :: BLOB data type :: Text BLOB support in
functions and operators: Altered “Changed in”; edited 2nd listitem un-
der “Level of support” (CORE-3233 fixed).
Data types and subtypes :: New character sets: Added 2.5 to “Changed
in”; added new charset GB18030 and new alias WIN_1258.
Data types and subtypes :: New collations: Added 2.5 to “Changed
in”; added new collations GB18030_UNICODE (for GB18030) and
UNICODE_CI_AI (for UTF8). Added line on UNICODE_CI_AI to Note.
Data types and subtypes: New section SQL_NULL data type.
DDL statements: Removed last line from introductory text.
DDL statements: New section CHARACTER SET, with subsection ALTER
CHARACTER SET.
DDL statements :: COLLATION :: CREATE COLLATION: Added
“Changed in”; altered explanation of “UNI” in specific attributes table;
gave table body valign=top; added NUMERIC-SORT to specific at-
tributes table and added note beneath table.
DDL statements :: DATABASE :: CREATE DATABASE: New subsection
Default collation for the database.

http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/
http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/

Document History

251

DDL statements :: DATABASE :: ALTER DATABASE :: END BACKUP:
Updated URL of Firebird Documentation Index in Tip.
DDL statements :: DOMAIN :: ALTER DOMAIN: Replaced contents of
Warning with reference to RDB$VALID_BLR note.
DDL statements :: Privileges: GRANT and REVOKE: Moved to chapter
Security and access control.
DDL statements :: PROCEDURE: Changed introductory text (mentioned
executable blocks).
DDL statements :: PROCEDURE :: CREATE PROCEDURE: Altered Syn-
tax (added TYPE OF COLUMN).
DDL statements :: PROCEDURE :: CREATE PROCEDURE: New subsec-
tion TYPE OF COLUMN in parameter and variable declarations.
DDL statements :: PROCEDURE :: CREATE PROCEDURE :: Domains
supported in parameter and variable declarations: Edited and extend-
ed Description. Replaced contents of Warning with reference to RDB
$VALID_BLR note.
DDL statements :: PROCEDURE :: CREATE PROCEDURE :: NOT NULL
in variable and parameter declarations: Changed layout of Example
(first line too long for PDF).
DDL statements :: PROCEDURE :: ALTER PROCEDURE: New subsec-
tion Classic Server: Altered procedure immediately visible to other
clients.
DDL statements :: PROCEDURE :: ALTER PROCEDURE: New subsec-
tion TYPE OF COLUMN in parameter and variable declarations.
DDL statements :: TABLE :: ALTER TABLE: New subsection ALTER
COLUMN also for generated (computed) columns.
DDL statements :: TABLE :: ALTER TABLE: New subsection ALTER
COLUMN ... TYPE no longer fails if column is used in trigger or SP.
DDL statements :: TRIGGER :: CREATE TRIGGER: New subsection
TYPE OF COLUMN in variable declarations.
DDL statements :: TRIGGER :: ALTER TRIGGER: New subsection TYPE
OF COLUMN in variable declarations.
DDL statements :: VIEW :: CREATE VIEW: Added Syntax.
DDL statements :: VIEW :: CREATE VIEW: New subsection Views can
select from stored procedures.
DDL statements :: VIEW :: CREATE VIEW: New subsection Views can
infer column names from derived tables or GROUP BY.
DDL statements :: VIEW :: CREATE VIEW :: Per-column aliases sup-
ported in view definition: Shortened partial Syntax.
DDL statements :: VIEW :: CREATE VIEW :: Full SELECT syntax sup-
ported: Altered “Changed in”. Altered Note on union views.
DDL statements :: VIEW: New sections ALTER VIEW and CREATE OR
ALTER VIEW.
DML statements :: DELETE: Improved formal syntax (values ->
<values> and added specification of latter).
DML statements :: EXECUTE BLOCK: Added 2.5 to “Changed in”. Al-
tered Syntax (added TYPE OF COLUMN).
DML statements :: EXECUTE BLOCK :: Domains instead of datatypes:
Extended Description. Added Warning about collations.
DML statements :: EXECUTE BLOCK: New subsection TYPE OF COL-
UMN in parameter and variable declarations.

Document History

252

DML statements :: INSERT: Improved formal syntax (value ->
value_expression) and removed erroneous space.
DML statements :: UPDATE: Improved formal syntax (values ->
<values> and added specification of latter).
DML statements :: UPDATE: New section Changed SET semantics.
PSQL statements: Changed introductory paragraph to mention exe-
cutable blocks.
PSQL statements :: DECLARE: Altered Syntax (added TYPE OF COL-
UMN). Made itemizedlist after Syntax compact.
PSQL statements :: DECLARE :: DECLARE with DOMAIN instead of
datatype: Extended Description. Replaced contents of Warning with
reference to RDB$VALID_BLR note.
PSQL statements :: DECLARE: New subsection TYPE OF COLUMN in
variable declaration.
PSQL statements :: EXECUTE STATEMENT: Added “Changed in”. Al-
tered Description. Added Syntax. Added para introducing following
subsections.
PSQL statements :: EXECUTE STATEMENT :: Any number of data rows
returned: Improved Syntax block. Removed spaces inside parentheses
in Example.
PSQL statements :: EXECUTE STATEMENT: New section Improved per-
formance.
PSQL statements :: EXECUTE STATEMENT: New section WITH
{AUTONOMOUS|COMMON} TRANSACTION.
PSQL statements :: EXECUTE STATEMENT: New section WITH CALLER
PRIVILEGES.
PSQL statements :: EXECUTE STATEMENT: New section ON EXTERNAL
[DATA SOURCE].
PSQL statements :: EXECUTE STATEMENT: New section AS USER,
PASSWORD and ROLE.
PSQL statements :: EXECUTE STATEMENT: New section Parameterized
statements.
PSQL statements :: EXECUTE STATEMENT :: Caveats with EXECUTE
STATEMENT: Edited item 3 (performance). Removed items 4 and 6.
Edited final paragraph (less negative).
PSQL statements: New section IN AUTONOMOUS TRANSACTION.
PSQL statements: New section Subqueries as PSQL expressions.
New chapter: Security and access control.
Security and access control: New section ALTER ROLE.
Security and access control :: GRANT and REVOKE: Moved here from
DDL chapter. Changed id.
Security and access control :: GRANT and REVOKE: New section
GRANTED BY.
Security and access control :: GRANT and REVOKE: New section RE-
VOKE ALL ON ALL.
Security and access control :: GRANT and REVOKE :: REVOKE ADMIN
OPTION: Changed id.
Security and access control: New section The RDB$ADMIN role.
Security and access control: New section AUTO ADMIN MAPPING.
Security and access control: New section SQL user management com-
mands.
Operators and predicates: New section SIMILAR TO.

Document History

253

Aggregate functions :: LIST(): Added “Changed in” formalpara. Edited
second Syntax note (about separator). Removed Warning about trunca-
tion bug in 2.1–2.1.3.
Internal functions :: ASCII_VAL(): Edited listitem about bug (mentioned
2.5.x versions).
Internal functions :: ATAN2(): Edited 3rd Syntax note (mentioned error
raised in Fb 3).
Internal functions :: CAST(): Added 2.5 to “Changed in”. Altered
Syntax (added TYPE OF COLUMN). Added formalpara Casting to a
column's type.
Internal functions: New section CHAR_TO_UUID().
Internal functions :: DATEADD(): WEEK unit added and sub-DAY units
allowed with DATEs: Added “Changed in”. Edited Description, Syntax,
2nd listitem after Syntax, and added additional example.
Internal functions :: DATEDIFF(): WEEK unit added and sub-DAY units
allowed with DATEs: Added “Changed in”. Edited Description, Syntax,
and 2nd listitem after Syntax.
Internal functions :: EXTRACT(): Corrected millisecond range in table
(0.0000 -> 0.0).
Internal functions :: EXTRACT() :: MILLISECOND: Removed Bug alert
for 2.1–2.1.1.
Internal functions :: GEN_UUID(): Added Example. Added links to new
UUID functions.
Internal functions :: LOG(): Added “Changed in”. Edited all the lis-
titems under Syntax.
Internal functions :: LOG10(): Added “Changed in”. Edited listitem un-
der Syntax.
Internal functions :: LOWER(): Replaced Important after Syntax with
Note, with different text.
Internal functions :: LPAD(): Added “Changed in”. Altered result type.
Altered 2nd listitem after Syntax. Changed Tip to Note and edited text.
Internal functions :: OVERLAY(): Changed 1st word of Description
(“Replaces” -> “Overwrites”). Shortened 1st listitem after Syntax: re-
moved description of 2.1-specific bug.
Internal functions :: RDB$GET_CONTEXT(): Added ENGINE_VERSION
context var (added in 2.1).
Internal functions :: RIGHT(): Edited 1st listitem after Syntax, about
CORE-3228.
Internal functions :: RPAD(): Added “Changed in”. Altered result type.
Altered 2nd listitem after Syntax. Changed Tip to Note and edited text.
Internal functions :: SUBSTRING(): Added 2.1.5 and 2.5.1 to “Changed
in”. Noted fixing of first bug in 2.1.5 and 2.5.1.
Internal functions: New section UUID_TO_CHAR().
External functions :: addWeek: Added “Better alternative”. Removed
“The DATEADD alternative” formalpara.
External functions :: lower: Dropped last sentence from Description.
Altered first paragraph after Declaration block and removed comment.
External functions :: round, i64round: Removed bug alert (fixed be-
fore 2.5).
External functions :: truncate, i64truncate: Removed bug alert
(fixed before 2.5).

Document History

254

Notes: New section The RDB$VALID_BLR field. This note contains the
(heavily edited and extended!) text previously contained in the Warn-
ings in ALTER DOMAIN, CREATE PROCEDURE :: Domains supported in
parameter and variable declarations and DECLARE :: DECLARE with
DOMAIN instead of datatype.
New appendix: Reserved words and keywords – full lists.
Document history: Link to CVS changed, points directly to manual
module now.
License Notice: Copyright end year 2011.
First publication, based on the Firebird 2.1 Language Reference Up-
date with the above changes for 2.5 added (adding 25–30% to the size).

1.1 8 Oct 2011 PV articleinfo and Introduction :: Versions covered: Added 2.5.1 to
covered versions.
New in Firebird 2.5: Edited first para (mentioned 2.5.1).
New in Firebird 2.5: Started all 10 subsections with “Changed since
Firebird 2.1”, for clarity.
New in Firebird 2.5 :: Reserved words and keywords: Added SQL-
STATE to “Newly reserved words”. Changed “New keywords” to “New
non-reserved keywords”.
New in Firebird 2.5 :: Context variables: New subsection.
Reserved words and keywords :: Added since InterBase 6 :: Newly re-
served words: Added SQLSTATE.
Reserved words and keywords :: Added since InterBase 6 :: New key-
words: Renamed this section to New non-reserved keywords.
Miscellaneous language elements :: Shorthand casts: Renamed Short-
hand datetime casts.
Miscellaneous language elements :: Shorthand datetime casts: Added
Note warning that value stays the same as long as the statement re-
mains prepared.
DDL statements :: PROCEDURE :: CREATE PROCEDURE: Shortened
relname.colname to rel.col in Syntax, to keep line length within
bounds for PDF.
DDL statements :: PROCEDURE :: CREATE PROCEDURE :: TYPE OF
COLUMN in parameter and variable declarations: Moved title “Warn-
ings” from itemizedlist to parent warning, where it belongs.
PSQL statements :: EXECUTE STATEMENT :: ON EXTERNAL
[DATA SOURCE] :: Exception handling: isc_eds_connection,
isc_eds_statement -> eds_connection, eds_statement.
Context variables :: CURRENT_TIME: Edited second Note to warn
against shorthand syntax.
Context variables :: CURRENT_TIMESTAMP: Edited second Note to
warn against shorthand syntax.
Context variables :: GDSCODE: Rewrote Description in light of new, so
far undocumented behaviour since Firebird 2.0 (!). Corrected Example:
after WHEN GDSCODE a symbolic name must follow, not a number.
Added notice after Example to explain same.
Context variables :: 'NOW': Edited the two existing Notes and in-
serted one about the freeze effect of the shorthand syntax. In the last
Note, removed the link elements from around CURRENT_TIME and
CURRENT_TIMESTAMP.
Context variables :: SQLCODE: Added “Changed in” and “Deprecated
in” formalparas. Rewrote Description in light of new, so far undocu-

Document History

255

mented behaviour since Firebird 2.0 (!). Added Notice at the end (also
about the deprecation).
Context variables :: SQLSTATE: New section (variable implemented in
2.5.1).
Internal functions :: CAST(): Added notice that when using the short-
hand syntax, the value stays the same as long as the statement remains
prepared.
Reserved words and keywords – full lists: Added SQLSTATE to both
Reserved words and Keywords.

256

Appendix D:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this License. Copies of the Li-
cense are available at http://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsql.org/man-
ual/pdl.html (HTML).

The Original Documentation is titled Firebird 2.5 Language Reference Update.

The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.

Copyright (C) 2008-2011. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL-licensed material (the “al.”) are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Vlad Khorsun, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes, Dmitry
Yemanov.

Included portions are Copyright (C) 2001-2010 by their respective authors. All Rights Reserved.

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 2.5 Language Reference Update
	Table of Contents
	Introduction
	Subject matter
	Versions covered
	Authorship
	Acknowledgments

	New in Firebird 2.5
	Reserved words and keywords
	Miscellany
	Data types and subtypes
	Data Definition Language (DDL)
	Data Manipulation Language (DML)
	PSQL statements
	Security and access control
	Context variables
	Operators and predicates
	Aggregate functions
	Internal functions

	Reserved words and keywords
	Added since InterBase 6
	Newly reserved words
	New non-reserved keywords

	Dropped since InterBase 6
	No longer reserved, still keywords
	No longer reserved, not keywords

	Possibly reserved in future versions

	Miscellaneous language elements
	-- (single-line comment)
	Hexadecimal notation for numerals
	Hexadecimal notation for “binary” strings
	Shorthand datetime casts
	CASE construct
	Simple CASE
	Searched CASE

	Data types and subtypes
	BIGINT data type
	BLOB data type
	Text BLOB support in functions and operators
	Various enhancements

	SQL_NULL data type
	Rationale
	Use in practice

	New character sets
	Character set NONE handling changed
	New collations
	Unicode collations for all character sets

	DDL statements
	CHARACTER SET
	ALTER CHARACTER SET

	COLLATION
	CREATE COLLATION
	DROP COLLATION

	COMMENT
	DATABASE
	CREATE DATABASE
	16 Kb page size supported, 1 and 2 Kb deprecated
	Default collation for the database
	DIFFERENCE FILE parameter

	ALTER DATABASE
	BEGIN BACKUP
	END BACKUP
	ADD DIFFERENCE FILE
	DROP DIFFERENCE FILE

	DOMAIN
	CREATE DOMAIN
	Context variables as defaults

	ALTER DOMAIN
	Rename domain
	SET DEFAULT to any context variable

	EXCEPTION
	CREATE EXCEPTION
	Message length increased

	CREATE OR ALTER EXCEPTION
	RECREATE EXCEPTION

	EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	ALTER EXTERNAL FUNCTION

	FILTER
	DECLARE FILTER

	INDEX
	CREATE INDEX
	UNIQUE indices now allow NULLs
	Indexing on expressions
	Maximum index key length increased
	Maximum number of indices per table increased

	PROCEDURE
	CREATE PROCEDURE
	TYPE OF COLUMN in parameter and variable declarations
	Domains supported in parameter and variable
 declarations
	COLLATE in variable and parameter declarations
	NOT NULL in variable and parameter declarations
	Default argument values
	BEGIN ... END blocks may be empty

	ALTER PROCEDURE
	Default argument values
	Classic Server: Altered procedure immediately visible
 to other clients
	COLLATE in variable and parameter declarations
	Domains supported in parameter and variable
 declarations
	NOT NULL in variable and parameter declarations
	Restriction on altering used procedures
	TYPE OF COLUMN in parameter and variable declarations

	CREATE OR ALTER PROCEDURE
	DROP PROCEDURE
	Restriction on dropping used procedures

	RECREATE PROCEDURE
	Restriction on recreating used procedures

	SEQUENCE or GENERATOR
	CREATE SEQUENCE
	CREATE GENERATOR
	CREATE SEQUENCE preferred
	Maximum number of generators significantly raised

	ALTER SEQUENCE
	SET GENERATOR
	DROP SEQUENCE
	DROP GENERATOR

	TABLE
	CREATE TABLE
	Global Temporary Tables (GTTs)
	GENERATED ALWAYS AS
	CHECK accepts NULL outcome
	Context variables as column defaults
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive
 access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TABLE
	ADD column: Context variables as defaults
	ALTER COLUMN also for generated (computed) columns
	ALTER COLUMN ... TYPE no longer fails if column is
 used in trigger or SP
	ALTER COLUMN: DROP DEFAULT
	ALTER COLUMN: SET DEFAULT
	ALTER COLUMN: POSITION now 1-based
	CHECK accepts NULL outcome
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive
 access
	GENERATED ALWAYS AS
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	RECREATE TABLE

	TRIGGER
	CREATE TRIGGER
	SQL-2003-compliant syntax for relation triggers
	Database triggers
	TYPE OF COLUMN in variable declarations
	Domains instead of datatypes
	COLLATE in variable declarations
	NOT NULL in variable declarations
	Multi-action triggers
	BEGIN ... END blocks may be empty
	CREATE TRIGGER no longer increments table change
 count
	PLAN allowed in trigger code

	ALTER TRIGGER
	Database triggers
	TYPE OF COLUMN in variable declarations
	Domains instead of datatypes
	COLLATE in variable declarations
	NOT NULL in variable declarations
	Multi-action triggers
	Restriction on altering used triggers
	PLAN allowed in trigger code
	ALTER TRIGGER no longer increments table change count

	CREATE OR ALTER TRIGGER
	DROP TRIGGER
	Restriction on dropping used triggers
	DROP TRIGGER no longer increments table change count

	RECREATE TRIGGER
	Restriction on recreating used triggers

	VIEW
	CREATE VIEW
	Views can select from stored procedures
	Views can infer column names from derived tables or
 GROUP BY
	Per-column aliases supported in view definition
	Full SELECT syntax supported
	PLAN subclause disallowed in 1.5, reallowed in 2.0
	Triggers on updatable views block auto-writethrough
	View with non-participating NOT NULL columns in base
 table can be made insertable

	ALTER VIEW
	CREATE OR ALTER VIEW
	RECREATE VIEW

	DML statements
	DELETE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	RETURNING
	ROWS

	EXECUTE BLOCK
	COLLATE in variable and parameter declarations
	NOT NULL in variable and parameter declarations
	Domains instead of datatypes
	TYPE OF COLUMN in parameter and variable declarations

	EXECUTE PROCEDURE
	INSERT
	INSERT ... DEFAULT VALUES
	RETURNING clause
	UNION allowed in feeding SELECT

	MERGE
	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside
 subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	COLLATE subclause for text BLOB columns
	Common Table Expressions (“WITH ... AS ... SELECT”)
	Recursive CTEs

	Derived tables (“SELECT FROM SELECT”)
	FIRST and SKIP
	GROUP BY
	Grouping by alias, position and expressions

	HAVING: Stricter rules
	JOIN
	Ambiguous field names rejected
	CROSS JOIN
	Named colums JOIN
	Natural JOIN

	ORDER BY
	Order by colum alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	Relation alias makes real name unavailable
	ROWS
	UNION
	UNIONs in subqueries
	UNION DISTINCT

	WITH LOCK

	UPDATE
	Changed SET semantics
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	RETURNING
	ROWS

	UPDATE OR INSERT

	Transaction control statements
	RELEASE SAVEPOINT
	ROLLBACK
	ROLLBACK RETAIN
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	SET TRANSACTION
	IGNORE LIMBO
	LOCK TIMEOUT
	NO AUTO UNDO

	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	CLOSE cursor
	DECLARE
	DECLARE ... CURSOR
	DECLARE [VARIABLE] with initialization
	DECLARE with DOMAIN instead of datatype
	TYPE OF COLUMN in variable declaration
	COLLATE in variable declaration
	NOT NULL in variable declaration

	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Improved performance
	WITH {AUTONOMOUS|COMMON} TRANSACTION
	WITH CALLER PRIVILEGES
	ON EXTERNAL [DATA SOURCE]
	AS USER, PASSWORD and ROLE
	Parameterized statements
	Caveats with EXECUTE STATEMENT

	EXIT
	FETCH cursor
	FOR EXECUTE STATEMENT ... DO
	FOR SELECT ... INTO ... DO
	AS CURSOR clause

	IN AUTONOMOUS TRANSACTION
	LEAVE
	OPEN cursor
	PLAN allowed in trigger code
	Subqueries as PSQL expressions
	UDFs callable as void functions
	WHERE CURRENT OF valid again for view cursors

	Security and access control
	ALTER ROLE
	GRANT and REVOKE
	GRANTED BY
	REVOKE ALL ON ALL
	REVOKE ADMIN OPTION

	The RDB$ADMIN role
	In normal databases
	Granting the RDB$ADMIN role in a normal database
	Using the RDB$ADMIN role in a normal database

	In the security database
	Granting the RDB$ADMIN role in the security database
	Using the RDB$ADMIN role in the security database

	AUTO ADMIN MAPPING
	In normal databases
	In the security database

	SQL user management commands
	CREATE USER
	ALTER USER
	DROP USER

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	SQLSTATE
	UPDATING

	Operators and predicates
	NULL literals allowed as operands
	|| (string concatenator)
	Text BLOB concatenation
	Result type VARCHAR or BLOB
	Overflow checking

	ALL
	NULL literals allowed
	UNION as subselect

	ANY / SOME
	NULL literals allowed
	UNION as subselect

	IN
	NULL literals allowed
	UNION as subselect

	IS [NOT] DISTINCT FROM
	NEXT VALUE FOR
	SIMILAR TO
	Building regular expressions
	Characters
	Wildcards
	Character classes
	Quantifiers
	OR-ing terms
	Subexpressions
	Escaping special characters

	SOME

	Aggregate functions
	LIST()
	MAX()
	MIN()

	Internal functions
	ABS()
	ACOS()
	ASCII_CHAR()
	ASCII_VAL()
	ASIN()
	ATAN()
	ATAN2()
	BIN_AND()
	BIN_OR()
	BIN_SHL()
	BIN_SHR()
	BIN_XOR()
	BIT_LENGTH()
	CAST()
	CEIL(), CEILING()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	CHAR_TO_UUID()
	COALESCE()
	COS()
	COSH()
	COT()
	DATEADD()
	DATEDIFF()
	DECODE()
	EXP()
	EXTRACT()
	MILLISECOND
	WEEK

	FLOOR()
	GEN_ID()
	GEN_UUID()
	HASH()
	IIF()
	LEFT()
	LN()
	LOG()
	LOG10()
	LOWER()
	LPAD()
	MAXVALUE()
	MINVALUE()
	MOD()
	NULLIF()
	OCTET_LENGTH()
	OVERLAY()
	PI()
	POSITION()
	POWER()
	RAND()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	REPLACE()
	REVERSE()
	RIGHT()
	ROUND()
	RPAD()
	SIGN()
	SIN()
	SINH()
	SQRT()
	SUBSTRING()
	TAN()
	TANH()
	TRIM()
	TRUNC()
	UPPER()
	UUID_TO_CHAR()

	External functions (UDFs)
	abs
	acos
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	ascii_val
	asin
	atan
	atan2
	bin_and
	bin_or
	bin_xor
	ceiling
	cos
	cosh
	cot
	dow
	dpower
	floor
	getExactTimestamp
	i64round
	i64truncate
	ln
	log
	log10
	lower
	lpad
	ltrim
	mod
	*nullif
	*nvl
	pi
	rand
	right
	round, i64round
	rpad
	rtrim
	sdow
	sign
	sin
	sinh
	sqrt
	srand
	sright
	string2blob
	strlen
	substr
	substrlen
	tan
	tanh
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters
	Passing NULL to UDFs in Firebird 2
	“Upgrading” ib_udf functions in an existing database

	Maximum number of indices in different Firebird
 versions
	The RDB$VALID_BLR field

	B. Reserved words and keywords – full lists
	Reserved words
	Keywords

	C. Document History
	D. License notice

