Firebird 2.5 Language Reference Update

Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.
8 Oct 2011, document version 1.1 — covers Firebird 2.5 and 2.5.1

Firebird 2.5 Language Reference Update

Everything new in Firebird SQL since InterBase 6

8 Oct 2011, document version 1.1 — covers Firebird 2.5 and 2.5.1
Paul Vinkenoog et a.

Table of Contents

R 011 0T [F o1 o o I PP SPTP 1
T o = A 1 7= (= PRSP 1
VEISIONS COVEIEAeiieiiiiiie ittt e ettt e sttt e ettt e e e skt e e e ekttt e e s b bt e e e st et e e s aabte e e e e anba e e e e e nbbeeesanbreeeeans 2
U 11 g0 £ g T o PSSR 2
ACKNOWIEAGMENLS ...t e s e e e e s e st e e e e e e e s e a b b ee e et aaeeessaasataaeeeeaeesaaanntbanneeeens 2

2. NEW N FITEDINA 2.5 .ottt e sttt e e e ab bt e e e et e e e e e aabb et e e e esbbe e e e enbeeeenn 3
Reserved Words and KEYWOISueuiiiiei it e s s e e e e s e et e e e e e e e s s sntaaneeeaeas 3
Yo=Y USSR 3
DTz r= Y 013 10 IS 010 o= SRR 4
Data Definition Language (DDL)cooo ittt e e e e et e e e e e e e e s s raeeeaaaeeeaaes 4
Data Manipulation Language (DIML)ueeeiiiee oot e e e e e st e e e e e e e e e ennnnees 4
PSOL SEALEMIENTS ...uviiiiieeiieeieiie e e e e e e e ettt e e e e e e e e e ee et e e eeeeeeessbba e eeeeeeeeassaanseeeeeeeesrennnnes 4
SeCUrity and 8CCESS CONIOIc..eeiiiiiiee et e e e e e s e e e e e e e s s e st r e e e eaeeesannrrraneeeens 5
CONEXE VAMTADIES ... et e e et e e s et e e s st e e s sbbn e e e s annaeeas 5
Operators and PrEJICALESuueiiieeei ittt e e e e e e e e e e s e e e e e e e s s s bt e e eeaeeesasnntbbaeeeaaeesesasnrnnees 5
AQOregate FUNCLIONScuiiiiiiiie e e e e s e e e e e e e e et e e e e e e e s s e ntbaeeeeeaeeessannnneees 5
FpLe= g0 I 10 Tod o] PRSP 6

3. Reserved WOords and KEYWOITSueiiiieiiiiiiiiiee et e e e e e e e e e e s e et r e e e e e s e s snnbraneeaaeeenaas 7
Added SINCE INTEIBASE B ..ottt e st e e e e b be e e s snreeeeen 7

NEWIY FESEIVE WOITSceiiiieeee et e e e e s e e e e e e e e s e st s e e e e e e e s s nnaraaeaeaaeeas 7
NEeW NON-TESENVEA KEYWOITSuuiiieeeii ittt iee e e ees e e e e e s e e e e e e s e et e e e e e e e e s s nanannaeeeas 8
Dropped SINCE INLEIBEASE 6ceeieeeiiiiiiieiee e e e e ettt e e e e s e s e e e e s e e st e e e e e e e s s stntaaeeeaeeessannnraees 10
No longer reserved, Still KEYWOIASuvviiiieiiiice e 10
NoO longer reserved, NOt KEYWOIScccceiiiiiiiiiiiiee et e e e e st e e e e e e e e eanes 11
Possibly reserved in fULUME VEISIONScccuvviiiiiiee ettt e e a e e e s et aneeeaeas 13

4. Miscellaneous [anguage ElEMENESuuuiiiiei i e e e e e e e e e s s r e e e e e e e e e snnrnnees 14
== (SINGIE-TINE COMIMENL) ... e e e e e e e e e e e e e e e et e e e e e e e s s sannrbraeeeaaeesannnes 14
Hexadecimal Notation fOr NUMENEAIScuuiiiiiiiiiee e 14
Hexadecimal notation for “binary” SIHNGScooi i 15
Shorthand JaELIME CASESvveeiiiiiiii e e s st e e e st e e e s nnbneeeean 16
CASE CONSLIUCT ...ttt nnes 17

S L0 0 Lo 7 PSR 17
SEAICNEA CASE ...utiiiiiieietertrerereretrrererererererererererereaereserereressseaesssssssssssssssesssassssssssssssssssssssrrrnns 18

5. Data types @and SUDLYPESovveiiieeeiiiiiiieies e e e ettt e e e e e e et e e e e e e e s e et e e e e e e e s e e ntbra e e e aaeeeaaannrraaeees 19
=L e = = T 1Y L= PSSP 19
@] R0 = T 1Y/ L= P ERSRSP 20

Text BLOB support in functions and OPEratorSeeeeeiiicciiieieeee e e e e e e e e ssnrree e e e e e 20
VA OUS ENNANCEIMENTSueiiiiiiiiie ettt e et e e s sb b e e e e st e e e e e anbbe e e e s nnnneeas 20
LT@ I N[0 I = = T Y o= T PP 21
s (0] 7= PRSPPI 21
(0L T oI o= o 1 o= PP PPRPPRR 22
NEW ChEFBCIEN SELSeeiie ittt e et e e e s e e e e e s bbbt e e s sbbe e e e e nnbeeeeeanes 22
Character set NONE handling ChanQedoeviiiiiiiiiiiieiiee et e e e e e e e 24
INEW COHBLIONS ...ttt ettt e ettt e e e b et e e e e a bt et e e s nbb e e e e e nb et e e e enbte e e e s annneee s 24
Unicode collations for all CharaCter SatSoooiuiiiiiiiiiee e 25

6. DL SEBLEIMIENLSiieeeeeieeeee e e e ettt e e e e e ettt et e e e e s e s e b bbb e et et e e e e e aaab b be e et e e e e e e s s snbb bbb e e e eeeeaannnbbeneeeaeeeas 26

CHARAGCTER SET oottt e e et et e et e e et ea et e e et e e et ae et aaasnanesnannns 26
ALTER CHARAGCTER SET ittt ettt ettt s et s e s et s e et s e s e enneans 26

Firebird 2.5 Language Ref. Update

L T NN 1 1 PP 26
CREATE COLLATION ittt ettt e e eaea e s e e e s e st s s s s raeaearasarararararararararsnenenens 26
D] O | N I 0 N PP 29

L0 1YY/ = P 29

D 2 = 2 PR 30
CREATE DA T AB A SE ..ottt ettt e e e ettt eaeaea s s eaesreesssrnrnsnenenenens 30
F A R I I 2 = PP 31

D10 N 1 33
(O N I = 10 10 1A I 33
N I = 10 1 A 1 PP 33

[O =1 I8 1 34
CREATE EXCEPTION L.ttt eaeaeaeaea e e e e et e e e e s e s s eaeasnraraeararararararanannnnns 34
CREATE OR ALTER EXCEPTION ittt ittt sttt et st ea st saeaea s s s s s s snsnenenenenenes 34
RECREATE EX CEPTION ittt e sttt e e s e s sasasa e e e sararasssnsnsnensnenenenenenensnrnnans 35

EXTERNAL FUNCTION L oiiiiiiiiiiiiiiiiiiie ettt et et ettt s s e s e s e e s ea s s tataeararararararararererenensnsnenenenen 35
DECLARE EXTERNAL FUNCTION ittt reretesesenessssnsnsnensnsnsnsassssesrsssesnsnens 35
ALTER EXTERNAL FUNGCTION ittt ettt e e seeaeaesea st st eaeaeaeseaesssasassnsnsnensnns 36

e I PP 36
DECLARE FILTER .uiiiiiiii ittt e e et e e e e s e et s e e e e s s s s s s s easasararararararararenenenenen 36

I D X ittt ettt ettt ettt ettt e e e ettt ea et eaea e e e ta e e e e et e e e e eaen ettt rrererarereaen 37
L@ N I 1 115 37

L L8 = 19 10 P 39
CREATE PROCEDURE ..ottt ettt vt et et e e e e e s e e e e e eataeaeaea s e rareeeaenenernenenens 39
ALTER PROCEDUREcuiiiiiiiiiiiiii ettt ettt e et e et et e e et e s e s s s e e e s s snenenenenennes 43
CREATE OR ALTER PROCEDUREcuititiiiiiiiiie e e i eaeasasasasasaeasasseensnensssnensnens 44
DROP PROCEDUREuitiiitii it e e e et easaea s ea e e e s s st s s s e sasararararararararersnsnenen 45
RECREATE PROCEDURE ..ottt ettt e e e e e e e et eaeaeaeaea s s ess s sssssnensnensn 45

SEQUENCE OF GENERATOR ...iiiiiiiiiiii e e et e et e et e s te e e e e et s e et e e e st e e e e e e e e ea e e easenenaanen 45
CREATE SEQUENCE ..o et ettt e e et e e e e e e e a e e e e s e et e e earanenaann 45
CREATE GENERATOR ...iiiitiiii ittt et e e s ea e et s s e e e e e s e s s e e raearararararararannnens 46
ALTER SEQUENCE ...ttt et e e e et e et et e e e e e a et e e e e et e e e e e earanens 46
SET GENE R A T OR ottt ittt e et e e e e e e e e e e saeaeaearaeaeaearararerensnsssnensnenn 47
DROP SEQUENCE ...ttt e ettt et et et e e e e e et e e et s e et e et s e e eae e ansanenaann 47
[0 O] € N | P 48

L2 = N 48
(O N I 1N = 1 I PP 48
N I I 1A = PP 53
O] AN I R 2 = PP 57

LI LT S 57
CREATE TRIGGER ... ittt ittt e e s eaea e st e e e e s e e e s s s e s eaeararararararararararaennanens 57
ALTER TRIGGER ..ottt et ettt e e et e e e s e e e e e e et e a e eataearaearararararsrerenensnsnenenenen 62
CREATE OR ALTER TRIGGERuiiiiiii e e et ea e e e s s e e e e s e e e e eneneas 64
DROP TRIGGERuititiiiiiiie et ettt e e e e et e s et a e et ra e e s s s s e e enenenenenenerenenennes 64
RECREATE TRIGGER ...uiniiiiiiiii ettt s a et et et e e e e e e e e e eneaeneaeaeaeanans 64

R T 65
CREATE VIEW ittt ettt e e e e e e e e s et a e et e e e et e s e enenenenenenenenetenesnanans 65
ALTER VB ittt e e et et a e st st e e e e e s s et e s s s eaenenrararararararararananens 68
CREATE OR ALTER VI EW ottt ettt e e et e e s e s e s e e s e e s e e e eneaeaea et s rarananans 68
O] A I Y 1 P 68

A 1 I 7 1= 1= 1S 69

D I S 69

COLLATE subclause for text BLOB COIUMNScoiiiviiiiiiieeee et e e eevaaaaaas 69

Firebird 2.5 Language Ref. Update

ORDER BY ittt 70
I N PP P PP PPRPRPPRPRN 70
Relation alias makes real name unavailableooooiiiiiiiiiii e 70
RETURNING .ottt et st e et e e e s et e s et e e s et e e s et ea s et ea et en s et ea et eanaaenennaen 70

O 11T T PP PR UPRUPRPPRPRR 71
EXECUTE BLOCK ..iiitiiiiiieiets et e e et e e e e e et e e e e et e e et e e et e e et e e et e e et ea e s e e et eneaanneens 72
COLLATE in variable and parameter declarationsccooiviiiiiiiiiiee s 74

NOT NULL in variable and parameter declarationsccceeeeiiiiiiiiiiieec e 74
Domains iNStead Of atalYPESevvveiiiiee i e e e e s s r e e e e e e e e nneees 74
TYPE OF COLUMN in parameter and variable declarationscccovveeeveeeiiiicciiiieeee e, 75
EXECUTE PROCEDURE ...ttt ettt et et e et e e et e e et e e e e e e e e e e e e e e e e e e e aesenaenns 75
L St PP UPTPPPRPNS 77
INSERT ... DEFAULT VALUES ...ttt e e e e e e e e e et e an e eenas 7
RETURNING ClAUSE ... 77
UNION alowed in feeding SELECTccuviiiiieeeiiiiiiiieiee e e e e s ssrtree e e e e e e e e s sniare e e e e e e e s snnnneraeeeaeens 78
MERGE ... s 78
Sl I O PPN 79
Aggregate functions: Extended funCtionalityccccooiiiiiiiiiie e 79
COLLATE subclause for text BLOB COIUMNSccoiiiuriiiieeeeeeeceiiiinreeeeeeesessiainrneeeeeeeessennnnnes 82
Common Table EXpressions (“WITH ... AS ... SELECT”) uuuiiiiiieeeiiiiiiiiieeee e e e e essiiinreeeee e e e ennes 82
Derived tables (“SELECT FROM SELECT”) ...iiiccuiieiiieeeeeiiiiirneee e e e e e s seintseeeee e e e s s ssnsssnneeaaaeesanns 84
FIRST @GN0 SKIP ..uiuiuitiuiiiiiit st asaaasasaaasasasssssasasssssssssssssssssssssssssssssnsssssssssssnsssnsssnsnsnsnnns 85
GROUP BY ittt e et e et e e e e et e e 87
HAVING: SHICIEN TUIESuvviiiiiee ittt e e e e et e e e e e e e s st a e e e e e e e s ssannbreeeeaaaeeaaanns 88

N | PP UP PPN 88
ORDER BY ittt 91
I N PP PP TP PPRPRPPRPRN 93
Relation alias makes real name unavailableoooiiiiiiiiiii e 94

O 11T T PP PRUPRUPRPPRPRR 95

L0] 1 1 PP UPRPPRUPRPPRPRN 96
KA I T 1 PPN 97

L0] N I PP UPRPRPRPRR 97
Changed SET SEMANTICScccuiiiiiiiie et e e e e s e e e e e e e s e et e e e e e e e e s seab e b e e eeaeeeeeeansrnnees 98
COLLATE subclause for text BLOB COIUMNSccoiiiuriiiieeeeeeeisiiiiiseeeeeeessssninsneeeeeeeesssnnnnnes 99
ORDER BY ittt 99
I N PP P PP UPRPPRPRPPRPRN 99
Relation alias makes real name unavailableooooiiiiiiiiiii e 99
RETURNING .ottt sttt e et et e e e s et e e et e e et ea et e s et e e et e e et ae e e aneenennenns 100
RO N S e e e e 100
UPDATE OR INSERT ettt ettt et e st s e st e e et s e e e s e st e e e e eaeenen 101
8. Transaction CONIOl SIALEMENTSccoiiiiiiiiee e e e e e e e e s e e ab e e e e e e e e s ananneeees 103
RELEASE SAV EPOIN T .ttt ettt et et et et e e e et s e e e e e et e e e e e e e aeeanannns 103
O I I 2 7 X PP 103
ROLLBACK RETAIN Lottt ettt e e e et s et s et s s e e e e e e e e e s e e e ens 103
ROLLBACK TO SAVEPOINT .ttt st st s st e e s e e e s e s e s e e e enen 104
SNl © | N I L PP TP 104
INtErN@l SAVEPOINLSuviiiiiiiie e e e e e e e e st e e e e e e e s s e bt it b eeeeeaesssasnrbreeeaeeeeaaaans 105
SaAVEPOINES AN PSOL ...oiiiiiiiiiiieiee e e e e e e e e e s e et r e e e e e s s santbrereeeaeeesaennnreees 106

SET TRANSACTION .ttt ettt e et e e et e e et e et ea et ea e ea e ea e en s ea e eareneenseneenrensenreneenrenens 106
IGNORE LIMBO ettt ettt e e et e et s et e e e et e e et e e e et e e et e e et ea et anesenannannns 107
LOCK TIMEOUT ottt et e e s e st e e st e e st e e st s e s e et s e e e s e r e e e e e s e e e ens 107

NO AUTO UNDUO ittt e e et e e e e e e e e e e e e et et e e e e e e e e eeneens 107

Vi

Firebird 2.5 Language Ref. Update

L T S I = (1 1 N 109
BEGIN ... END blocks May be €MLY ..o 109
[T N PP PP PP RPRUPRPR 109
L@@ 1 ol "o RSP 110
DE L A RE ..ttt e e e e e e e e e e e et e e a et e a e e n e anns 110

DECLARE ... CURSODR ...cuitiiiiiiiiiie ettt st s s e s st s e e e s e s e s e e e s e e e e e enen 110
DECLARE [VARIABLE] With initialiZationcccooeeiiiiiiiiiiieeceeeeeeeeeeccecccecceeeeeeeeeeeeeeeeeee e 111
DECLARE with DOMAIN instead Of datatyPeveevveeeiiiiiiiiiiiieee et 112
TYPE OF COLUMN in variable declarationoocciiiiiiiiee i 112
COLLATE in variable deClarationccuueiiieeiiiiiieeee e 113
NOT NULL in variable declaralionccooiiiiiiiiiiiee et e e e et ee e e e e e 113
E X CE P T ION ettt et et et e et e e et e et e e et e e et e e e e e e e a et e a et e et e n e e nnas 114
Rethrowing a caught EXCEPLIONviiiiiiee e e s e 114
Providing @ CUStOM ETOI MESSAGEuvvvieieiieeeeiiiiitree et e e e e s seitirer e e e e e e e e s saa e aeeeeaeeessannrraeeeaeens 114
EXECUTE PROCEDURE ...ttt ettt et e et e e e e et e s e e e e e e e et e e e e e eneen 115
EXECUTE ST AT EMEN T ottt e e e s e e e et e st e e e e s e e e s e e eeennen 115
NO dBEA FEIUMNEAeieieiiee et e e e e s e et e e e e e e s e s st rrr e e e e aeeessennneees 116
ONe row Of data FEIUMEAoiiiiiii e e e e e e e e s e enr e e e e eaas 117
Any number of data rOWS FEIUMMEooieiiiiiiiiiiec e e a e e 117
IMProved PEFFOIMENCEociiiieee et e e e e e e e e e e s e et b e e e e e e e e e eannreees 118
WITH { AUTONOMOUS|COMMON} TRANSACTION ...ccoiiiiiiiiiiiee e e e s csirrreee e e e e e e s esinrnnneeeae e e 118
WITH CALLER PRIVILEGES ...t e e e e e e e e et e anenees 118
ON EXTERNAL [DATA SOURCE]ccuttiiiiieeeeiiiiiiieeie e e e e e e s seittae e e e e e e e e ssnaaaaeeeaa e s e s snnnnnraneeaeeas 118
AS USER, PASSWORD QN0 ROLEccvviviiieiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeesssseeseeseseeeerrereseerrereerrereee. 120
Parameterized SLALEMENLScuviiiiie e i e e e e e s e e e e e s s et e e e e e e e e e annreaes 121
Caveats With EXECUTE STATEMENT ...cooiviiiiiiiceeeeeeeeeeeeeeeeeeeeeeeeee ettt 122
) PSPPI 123
o O T ol U o RPN 123
FOR EXECUTE STATEMENT ... DO uiiiiiiiiiiiie ittt et e e e et e e e e e e e e e ens 123
FOR SELECT ... INTO ... DO oriiiiiiiiiiii ettt ettt e e e e e e e st s e e e e e e s e anans 123
AS CURSOR ClAUSE ..eveiiiee i ittt e et e e e e e e s e et e e e e e e s s s e nttbaeeeaeeeesennnrnees 125
IN AUTONOMOUS TRANSACTION ..iiuiiiiiiiii ettt et s e s s e e s e s s e s e s e s e s e e enneans 125
LB AV E e nenns 126
L@ I o £ o | R 127
PLAN allOWEd iN tHQQEr COUE ...uvviiiiiie et e e e e et r e e e e e s s et aeeeeae s 127
SubquEries as PSQL EXPIESSIONSuuureieeeeiiiiiiiiieeeeeeesssiittraeeeeeessseststsreeseeessssasnssreeeeaaesssaanssrenees 128
UDFs callable as vVOid fUNCLIONScuuiiiiiiee et e e e e ae e e e e e e e e e aans 128
WHERE CURRENT OF valid again fOr VIEW CUISOISuvvieiieeeiiiiiiieeee e e e e esiivne e e e e e esinnnaneee e 128

10. Security and aCCESS COMLIOLuuuuiiieeeei ittt et e e e e e s e et e e e e e s e e et b eeeeaeesssasatbreeeeaeessaantbrsreeeaeeesanns 129
ALTER ROLE ..ottt et e e et e et e et e et e e et e et e e et e e et e e et e e et e e et e e e e aneanannns 129
GRANT GN0 REVOKE ...uuututiuiuuiutersrsrussrerererssaseseressssse.......................————..................................... 129

GRANTED BY ittt e et e et e e e e e e 129
REVOKE ALL ON ALL ittt ettt e et e s e s r e s n e e e e ens 130
REVOKE ADMIN OPTION ..iuiiiiiiiiit ettt ettt s st s st s s e s s e s st s e s e s e e e e enaeans 131
THE RDBSADMIN TOIE .eeeiiiiiieeiiieiee ettt ettt e ettt e e st e e e ettt e e e sttt e e e s anbe e e e e ansbee e e e snnteeeeaneneeeean 131
1N NOMMEI BEADASESeeeieeei i e e e e e e e s e et e e e e e e e s e ennreees 132
[N the SECUNLY atalaSEcciiei it e e e e e e e e e e e e e e 132
AUTO ADMIN MAPPING .ottt ettt sttt s e e s e e e r e e e e e e e e e enrenns 133
1N NOMMEl BEADASESeeeie e e s e e e e e e e et e e e e e e s e e anreees 133
[N the SECUNLY ataaSEcoiiii i e e e e et e e e e e e e 134
SQL user management COMMBINGSccuuvviiieeieeiiiciiiriee e e e e s et e e e e e e s e et e e e e e e s e s sarraaeeeeaeeeaans 134
CREATE USER .. it e et et e et e e et e e e e e e e e e e e e aannns 134

Vii

Firebird 2.5 Language Ref. Update

ALTER USER .ottt sttt e et e e e e e et e e et e e et e e et e e et e e et ea et eeesnannns 135
DROP USER ...ttt et et et e et e e et 135

R 0001 (= A= = o= PSP 136
CURRENT_CONNECTT ON ...ttt ettt et et e et e e eee e e et eae et et eeeese et et eeeeseeeeeeereeseeeeeeeeeeeeeereesaneeeenens 136
(08 1 = T PR TR 136
CURRENT _TI VE .ottt ettt eee et et ee et e et e e et e aeeaee st e e teeaeeeeeeaeseeeseeeeesaeesreeeesaeeseeesensaeesnneseeas 137
CURRENT _TIMESTANP ..ottt ettt ee ettt e ettt e et e et e et e et e eae e e s et e etesaeesaeeseeseeeseeeeeeeaes 137
CURRENT_TRANSACTT ON ... vttt eeteee et ee e e e e e e et eee s et e eteseessateeaeseeeseeeseesaesseeesteeseeseeeseeeaeeens 138
CURRENT _USER ...ttt ieteeetseee et e e te s e st eete et eeaeeeeesaeeseeeetesaeeaeeesaesaeeseeeeesaeesreeeesaeeseeesensaeesneesrens 139
[I I N PPN 139
CDSOODE ...eeutveeeuseeeasseeeanseeeasseaeasseaaasseaaasseeaassee e seee e seeeanseeeanseeeanseeeanbeeeanbeeeanteeeanteeennneeennneeennneeans 139
I S = T PSP 140
N PR 140
1 RSP SR 141
[R 142
20 V1Y@ 11 SRS TRSR 142
SQLEOODE ..ottt eeeee et et e et et e et et e e et et et e et et et et e et et et e ee et et et et et et et et et e et e ea et e e e e et et e et e e ee e 143
10 Y N 1 =TT PR 143
LI T I T N PPN 144
12. Operators and PrediCALEScciiiiiiiiie e e e e e e e e s e e e e e e s s e e e e e e e s se bt b e e e e eeeeseaanarrreeeeas 145
NULL literals allowed as OPEIrANASccoiiiiiiiiiiie et e e e e e e e e e e e s s e saabaneeeeas 145
[Lo o0 = = g (o) SRR PRSRR 145
TeXt BLOB CONCALENALIONuveviiieeeiiiiiiiiieeee e e e e e ettt e e e e e e e s e ettt ee e e e e e e e ssantrneeeeeaeeessennrreneeaaens 145
ResuUlt type VARCHAR OF BLOBeciiieeiiiiiiiiiiiiee e e e s cciitteee e e e e e e e s siaaaaeeeeaesessennnsaaneeaaeeseannneens 145
OVEFIOW CHECKINGvviieiie e e e e e e e e e neees 146

o I R SUR 146
NULL HteralS @llOWE ... e e e e e e e s e ar e e eas 146
UNION S SUDSEIECLuviiiieiiei it e e e e e e e e e e e s e e n b re e e e e e e e e s s satnbsaeaeaaeesaananes 146
ANY J SOME ..o 146
NULL HteralS @llOWEcoeiiiiiiiie e e e e e e e s et rareeeeas 146
UNION S SUDSEIECL ...ovvieiiiie ittt e e e et e e e e e e e s e et re e e e e e e e e s seatnnbaeeeaaeesaananes 147

LN ettt ettt ettt ettt ettt ettt ent e aR et e e Rt e e e R et e e Rt et en Rt e e en £t e e en R e e e anEe e e aR R e e e aReeeeaRteeeaneeeenreeeneeennnes 147
NULL HteralS @llOWEcoeiiiiiiiei et e e e e e e e s et reeeeas 147
UNION S SUDSEIECL ...uvviiiiiiei ittt e e e et e e e e e e e s e et ee e e e e e e e s e s satnbbaeeeaaeesaannnes 147

IS [NOT] DISTINCT FROM ..ouiitiiitiiitiiie ittt et e et s e e e e et e et e et e et e et e ea s e e e e e neaasea e e e enneannns 147
NEXT VALUE FOR .ottt ettt et e et e e e et e et e et e e et e e et e e et a e et e e e e aneenannns 148
S N S O PP PP RPRUPRPR 148
Building regular EXPraSSIONSuueiiiieeiiiiiiiiieeeeeeeesset e e e e e e e s s et ra e e e e e e e s s sabrraeeeaeeeseannnnens 150

S L1 SO 153
G AN (o =0 F= (N L0 ot (0] U ERPRR 154
(1SS 0 NPT TSR 154
IVIAX() '+ttt eeeeeeee e et e et e e et e et e et e e et e e et et e e et e ete et e eaeeete et e eaeeere et e eateeat e et et e ereeeae et e et eeteeeeerneareaeeas 154
Y 11T RSSO 155
14, INErNal TUNCLIONS e s e e e e e e e et e et e e e e e s s saabaaeeeeeeessannntrrneeeaens 156
Y = S SRS 156
@ 1 PSRRI 156
ASCH_CHAR() ettt ettt et et ee et e et et e et e e et e e st e e et e e aeesaeeeeeeaeeseeeeeeeeeesreeseesaeeseeeeesaeesreeseseaee e 157
ASCH _VAL(ettt ettt et e et e e et e et et e et e et e e e s et e eee e e e saeestesaeeseeeeeeeeeesae e e e ereeseneteeaeeereees 157
ASIN(ettt ettt ettt e ettt et e ettt e et et e et e et e e et et e e —e et e e ete et e et e et e et e et eete e te et e ereeaesreens 158
ATAN(ettt ettt e et et e et e et et e et e et e et e eae e et e e te et e ee e et e eaeeereeeteeateereete et e et e eete e tesreeateeteananaeas 158
ATANZ() oottt ettt e et et et e e et e et e e et e e et e e e et e et e eaeeeae e teereeere et e et e et e ete et e e ete et e ereeneeenee e 159
BIN_AND() v eeetteeeeeeeeeeeeets e e eeeeeee e e seeeeeesaeesaeeeeeeaeeseeeseeeaeesseeeseeaeeseeeseeeaeesaeeereeeeseeeereeteeaeeereees 159

viii

Firebird 2.5 Language Ref. Update

BIN_OR() «.veveteteeeeeeeeeeseeeeeeeee s seeeee et et es et eeee e s e s e et e e et et e e e et e e et e e et et e e et e e e ee et e s st e et et s e e enen e, 160
BIN_SHL() +-vrvveeeeeeeeeeeeeeseeeeeeteseseseeeeeeseseseeeee et et et s e e e eees et es e e st et et et e st seee et et s et et et et s et eee et eneneeeeeenes 160
BIN_SHR() vevrveeeeeeeeeeeeseseeeeeseeteseeeeeeeeses s seeeee et s eeeeeeeses e e s et esee e s et et et es s s et ee et et s s e eeeenen e eeeeeneean 160
BIN_XOR() +.eeeeeeeeeeteseeeeeeeeseseeeseeeee et s ee et et et et es e ee et et et s e e et ee et s e e eeees et en e et et ee et es s eee et ee s s eeeeenan 161
BIT_LENGTH() «vvveveeeeeeeeeeeeeeeeeeeeeesesseseeeeseseseseeeeeeteseseeeseeses s s eeee et s s et seeees s e e ee et eneneseeeeeenenen, 161
CAST() ettt e e e et e e et e e et et ettt et et ettt e et ettt ettt ettt r e, 162
CEIL(), CEILING() +.vvveteeeeeeeeeeeseseeeeeeeeseseeeeeee et s e seeeeeeseseseeeeeeses s eeeeeees e e seee et en s seeeeeeseneneeeesees 165
CHAR_LENGTH(), CHARACTER _LENGTH() v.vvveveteeeeeeeseeseeeseseseeeeseseeeeseeseseseeeeesenesseseeseseneneseees 165
CHAR _TO _UUID() vrvveteteeeeeeeeeeeeeee et e seee e et e e e ee s s e eee et en e et eeee et en s eeeeee s s e e et eseneseseeeeneean 166
COALESCE() .rvveeeeeteeeeeeeeeeeeeee e et ee et s e et e e ee e e e eee et et s e e e e es et et e et et ee e e st eeeeen e eee et et s s seneeneneen 167
COS() ettt et e et ee ettt e et ettt ettt ettt ettt ettt ettt n e, 167
COSH() vvvereeeeeeeee et et ee ettt e et e et e et ettt e e et et et e e et et et et e et ee et et e et et et et eeen e en e 168
COT() vttt e et e ettt et et et e e et e e ettt e e et et et e et et et e s et et et et s e et et ee e et ee et et enen e 168
DATEADD() . eeeeeeeeee et e e ee et e et et e e et e e et et ee e et et e e et et et et e e et e e et et ee e et et et ettt en e en e, 169
DATEDIFF() . eeeeeeeeee et e e ettt ee et et e e e et et et e e et et e e et et et et e e et e e et et en e et ee et en e et ee e ennsee e en e, 169
DECODE() v.vvveteeeeeeeee et e eee et et et e et ee et et e e et et et ee e et eeee et e e et e e et e s e et et ee e et et et et en s e et ee s enan 170
EXP() vt eeeeeee et e e e e et et e et et e et et e et ettt ettt et ettt et et e ettt et ettt et en et 171
EXTRACT() «vveeteeeeeeeeeeees e eeeeee et et e et et et es s e et eees e ee e e et et et e eeee et et s e et ee et es s e e eee et eeeseseeeeseneneneeeees 172

IMILLISECOND «.evevveeeeeeeee et e e ee e s e et s et et e e e et et s e e et et en e e sees et s e et et eneneneeeees 172

WEEK ettt ettt ee et ee e e e e et et e et e e et ee e e e et e s et e e et e e et e e e et ee et e ettt en e en e 173
FLOOR() e veeeeeteeeeeeeeeeees et s seeeee et s seeeee et et s e e eeesesee e s e e e e et es e se e e e e et et e e et es et enen e st eseeen e eeeeeesenennen. 173
GENL_ID() «vveeeeeeeeeeeeeeeee et e eeeeeeeeee et ee e e et et s e et et et et e e e e eee et e e e et eeeeen e e et et et e s et e et et n e et eneneeaeees 174
GEN_UUID() oottt et e e et et et et et e s e e et e e e et et en s e et e et e e seeeeeenen s eeeeeeneeen 174
HASH() vttt ee et e et e e e e et et et e e et et et e e e et ee et s e et et e e ee e e et et et et e e ettt n et er s eeees 175
TIEQ) +vveeeeeee et ee s e ee et e e et et eeee e s e e et et et et et et ettt e et e e et et e e e et et et et et et et et e et et e e et enen e en e 175
LEFT() «vveeeeeeeeeeeeeee e e e et et e s e e e e e et e e e e e et et s e e e et e e et e e e e e et et ee e e et et et e e et etenen e et et eeen e en e, 175
LINQ) evovee et eeeee et e ettt ee e s et et st et e et e et e e et et e et et et n e e et et e e ettt ettt eten e et en e, 176
LOG() veeeeeeeeeeeet e e e et et e e e et eeee e e e et et et s e et e e ettt e et e e et et e e et ettt e e ettt e ettt en ettt eren e 176
LOGILO() vrveeeeeeeeeeeeeeeeeeeeeeee e e e eeee e ee et et et et s e e et et et e e e e e et et et e et et et ettt e et et et en e et e et et en et eneneeea, 177
LOWER() vevveeeeeeeeee et s e eeeeeee et e et eeeees s e e et ee et s e e e e ee et s e e e et es et e e e et et et s e st e e s et e e seee et enr e eeee e e 178
LPAD() .ottt ee et e et ee et et e et e et e et et ettt et et et et e et et et e ettt n et e et et en e et et erereeeeeenes 178
IMAXVALUE() ©.vveveeeeeeeeeeee et eeeeeeeeee s eesees et e eeeees et et seeeeees et s e eeeeeees s e e ee et et s s et eeesenneseeeesenenen. 179
IMINVALUE(+.veveeeeeeeeee et eee e eeeeees e e ee et ee et teteneses e et et et s s et et et s s s sees et s e et eeeeen e eeeseeseeeneneseeeees 180
IMOD() vttt et e e e s s ee et e e e e et et et et e et et et et e et e et ettt e et e e et et et ettt er et enennen 180
NULLIF() cvveveeeeeeeeeeeeesee e eeeee et s et eeeeee s e eeeees et s et eeee et s s e se et esee s e et et et s s s et es et en e seeeesen s e eeeeeen e 181
OCTET_LENGTH() vovetveeeeeeeeeeeeeeeeeeeeees e eeee et et s e seeses s s sees et e s seeeeeen s s seeeeses e e ee et ereseeeseeeenenenen. 181
OVERLAY () vrvetetete e eee et e e ee et s e et et et e et e et et et et e e et et et e s e e et es et s e e e e eeen e s et et et s e e eeeeenennen. 182
PL0) vttt ettt ettt ettt ettt ettt e et ettt et ettt et e ettt et e et et n et enen s 183
POSITION() v veteeeeeeeeeeeet e s e e et et s e et et et ee e e eees et et e e e e e e s es e s e e e e esee s et eeee et s s e e es et eneseeeeeeseneneneees 184
POWER() .t vveeeeeeeeeeseseseeeeees et e eeeeeeeses s eeeeees et et se e e et es et et e e e eeee et et s e e seee et s s et et et er e et eeee et enneseeeeses 184
RAND() v.vvteeeeeeeeeeee et ee e e et et et e e et et ee et e et e e et et e e et e e et e e et e et et et e e et et et e e et et n ettt ee e enan 185
RDBSGET _CONTEXT() «.veveeteeeeeeeeeeseseeeseeseseseseeeeses et seseeeeseseseseseeeeseseseseseeseses s seseeseseseseeeseesenennen. 185
RDBSSET_CONTEXT() cvevvvevereeeseeeeeeseseseseeeeseseseeeeeseeseseseseeeseeseseeseeees et eneeeeeeeeeeseseseeeeeeseneseseeesenan 187
REPLACE() ..vveveteteeeeeeeeeeee e e eeeeetee s s e e s ee st et es et s s e et et et et s e et et et et ee s e st et et ee e s st eeee e e st eeesenneeeeeees 188
REVERSE() .. vvveveeeteeeeeeeeteseeeeeeees et eseseeees et s eeetee et es s et et et et s ee et et et e s st eeetee e se e e et ee s e st eeesenneneeeees 189
RIGHT() vttt ee et e e e et e e e et et et e e et et et e e e et et et e e et et ee et st eeeeee et ee e e et et ee s e eeeeeeren e, 189
ROUND() vttt et e ettt e e s et et e e e e e ee et s e e et es et et e et et et s e s et e e et e s et et en e e eeeeen e 190
RPAD() .ttt et et et e ettt et ee et et e et ee et et e e et et et e et et et et e e e et ettt ettt en ettt e et en e, 191
SIGN() ettt ee et et e et et e et et ettt ettt e et et e ettt e ettt ettt eren e 192
SIN() «vee ettt ettt ettt ettt ettt ettt e et ettt et et ettt e ettt n et eneneeen, 192
SINH() ettt ettt e et et ee e et et et e e et e e e e et et et es e et et et et et e et en ettt en et eren e 193
SORT() vvveeeeeeeeeee et s e et eeee et e ee et eeee s e et ee et et e e e et et et e e e e et et et s e et ettt e ettt e ettt ern e, 193

Firebird 2.5 Language Ref. Update

SUBSTRING() .vveeveeueeet et et seeeeeeeeeeeeeeeeeeeee et et e e eeeeeeeeeesee et et et eeeeeeeseeeseeeeseeeeeseeseeeesseseeeeeaeeneas 193
T AN () ceeieietttiet ettt ettt ettt e e e ettt e e eee e ettt et aeeeeeeeeettta—aeeeeeteettta——aeeeetetetttaaeaeeerrrtraaaaaaaaaaees 194
TANH() vttt ettt e e e et e e et e e et et et e e et e e e e eeeeee et e et et et e e e eeeeee et e eee et et et et e et e et e e e eeeeeeeeans 195
TRIM() et ee oottt et e e e e e e et et et et et e e e e e e e e e eeeee e et et et et e e e eeeeeeeeeeeeeee et e s et e seeeeeereeenaeneneaeas 195
TRUNGC() vt eve et et et e e eee e e eee et e e et e e et et e et e e ee e e s ee e et et et et et e e e eeeeeeeeeereeeeeee et et eseeeeeeeeseeeeeeeeeeaeens 196
UPPER() . vtevteeeeeeeeeeeeeeeeee et et et et e eeeeeeeeeeeeeeeeeeee e et et et e eeeeeeeeeeeeeeeeeteeet et et eeeeeaeeeeeee et eeeen et eeeaes 197
UUID_TO _CHAR() .veevteeeeeeeeee et ee et et et e e e e e e e e e et e e e et e e et et et e eeeeeeeeeeeeeee et et et e eeeseeeeeseeereeeeeeeeeeens 198
15. EXternal fUNCLIONS (UDFS)ccoiiiiiiiies ettt e e e e e e e e e s e et e e e e e e e e e e neneeees 199
=Y o 1S 199
=Y o o 1= 199
=0 [1= P 200
=X Lo "o 11 TN 200
=Yoo 1Y I I TS Y= T oo 1 o o 201
=Yoo 1Y I TV < 201
=X [0 1Yo o | A o 1 202
=X [0 =Y o2 oY [202
oY [0 AT Y] TN 203
=X [0 I == | TN 203
=Y o I T o3 ¢ - 1 204
=Y o I £~ | 204
=Y I T 205
o= R 205
o= 0 22T 206
oY1 0 T - Y [N 206
oY1 0 T o 1 PN 207
oY1 0 T | N 207
(o= I T Vo S 208
(o301 208
(o3 0 17 o TR 209
(o0 A 209
[0 [11 S 210
[0 0T 0 11 P 210
L0 T Y 211
(o= = [ol I =13 = Uy 1 N 211
I T o YU g o 212
I A T g Tox=) A =N 212
0 TR 212
o o N 212
o o i 0 N 213
0 11 213
N = Lo PPN 214
I T 0 T 215
160 o T 216
Eal 2 LU T 216
Eal 2174 217
I ettt ettt ettt e e e ee ettt eeeeeeeeeettta—eeeeeeteetettateeeeeeeettttttaeeeeeteeatt—aaeeaeetetatrraaaaeeerarrr s 218
(= 1 o T 219
T 0 PN 219
(oYU o Yo IS 7 o YU g Yo T 219
[= Lo PPN 220
L T 0 T 221
LYo [0 1 222

Firebird 2.5 Language Ref. Update

£ o 1 PP 223

LS T SRR 223

LS T 1 USSP 224

£ 1 P 224

L3 - La o O URPPTR 225

L= o | L P 225

LY ST 4T 124 o1 o 1 o TS 226

LS S =Y o PP 226
LY] ¢ 1= 0 PP 226
LY] o 13 0 T o P 227

L= L TSR 228

L= L o TSRS 229
ErUNCAL €, 1 BAL I UNCAL © ieniieiiiii ittt et e et e e e et et e e e e e e e b e b s et s eaaseaeseneaenseans 229

F N 0= 010 D A N\ o (== SRR 231
Character set NONE data acCepted “aS IS ...iieiiiiiiiiiieiie ettt et r e e e e e e 231
Understanding the WITH LOCK ClaUSEccuuviiiiiie ettt e e e e ee s 232
SyntaX and DENAVIOULcoiiiiiiiiiiiiec e e e e e e e e e s e et eeeeaeeeaaa 232

How the engine deals With WITH LOCKccuuiiiiiiee i ee e eeciirre e e e e e e s snrnnnee e e e e e 233

The optional “OF <col um- Nanes>" SUD-ClAUSEccooiiiiiiiiiiie e 234

Caveats USING WITH LOCK ..oiiiiiiiiiiiiiieiee e e e e e s ecitee e e e e e e e ettt e e e e e e e s s snatraeaeeaae s s e s sannenaneeaaeens 234

Examples using explicit IOCKINGcccuviiiiiie e 234

A NOtE ON CSTRING PAIAIMELELS ...uvtuiieieeiieeeiiiier e e e et e ettt s e s e e e s e et e s e e e e eeeaeta s s e e e e eeeeaennaaaeaeees 235
Passing NULL t0 UDFS N FIirebird 2ooooiiiiiiiice et 236
“Upgrading” i b_udf functionsin an existing databaseccovviiiiiiiiiiee i 236
Maximum number of indices in different Firebird VErSIONSocoviiiveeiiiiiiiee e 237

The RDBSVALID BLR fI€ld ..o 238
Appendix B: Reserved words and keywords — fUll TiStScoooiiiiiiieiie e 239
RESEIVEA WOITSeeeeeiiiiiie ettt et e et e e e et e e e e e b et e e s enbe e e e sanbb e e e e annneeeeennnees 239
(=Y AT o o < RPN 242
AppendiX C: DOCUMENE HISLOMYuvieiiiiieeiiiiiiieie e e et e e e s s e e e e e e e e s s et ae e e e e e e s s e antrraaeeeaeeeas 250
APPENdiX D: LICENSE NOLICEccieiiiiies ettt e e e e e e e e e e e s e st re e e e e e e e s eanbaraaeeeaeeenans 256

Xi

List of Tables

5.1. Character SEtS NEW N FITEDINGueiiiiiiiiiie e e e e e s e e e 23
5.2. Collations NEW iN FITEDITTooiiiiieie et e e e e s e e e e 24
6.1. SPeCifiC COlAtioN BIITIOULEScoieiiie e e e e e e e 27
6.2. Maximum indexable (VAR)CHAR [ENGENoiiii e e s 38
6.3. Max. indices per table, FIrehird 2.0 ... 39
7.1. NULLS placement in ordered COIUMINSooiiiiiiiieiiiiiie ettt e e s es 92
12.1. Comparison of [NOT] DISTINCT 10 “=" @0 “<>"uiiiiiiiiei e a e 148
14,1, POSSIDIE CASTS ittt e e e e st e e e e e e e e e e e e e e e e e 163
14.2. Types and ranges Of EXTRACT FESUITSuvviiiiiiiieeeiitiee ettt e e e e e e 172
14.3. Context variables in the SYSTEM NAMESPACEuuvviiiiiiiieeiiiiee et e s 186
A.1l. How TPB settings affect eXpliCit [OCKINGcvviiiiiiieee e 233
A.2. Max. indices per table in FIrebird 1.0 — 2.0oooiiiiiiiiiiieee e 237

Xii

Chapter 1

Introduction

Subject matter

What's this book about?

This guide documents the changes made in the Firebird SQL language between InterBase 6 and Firebird 2.5.1.
It coversthe following areas:

* Reserved words

» Datatypes and subtypes

» DDL statements (Data Definition Language)

» DML statements (Data Manipul ation Language)

» Transaction control statements

» PSQL statements (Procedural SQL, used in stored procedures and triggers)
» Security and access control statements

» Context variables

» Operators and predicates

» Aggregate functions

* Internal functions

» UDFs (User Defined Functions, also known as external functions)

To have acomplete Firebird 2.5 SQL reference, you need:

» ThelInterBase 6.0 beta SQL Reference (LangRef . pdf and/or SQLRef . ht m)
» This document

Non-SQL topics are not discussed in this document. These include:

* ODSversions

* Buglistings

 Instalation and configuration

» Upgrade, migration and compatibility
» Server architectures

* API functions

» Connection protocols

» Toolsand utilities

Consult the Release Notes for information on these subjects. Y ou can find the Release Notes and other docu-
mentation via the Firebird Documentation Index at http://www.firebirdsgl.org/en/documentation/.

http://www.firebirdsql.org/en/documentation/

Introduction

Versions covered

This document covers al Firebird versions up to and including 2.5.1.

Authorship

Most of this document was written by the main author. The remainder (2-3%) was lifted from various Firebird
Release Notes editions, which in turn contain material from preceding sources like the Whatsnew documents.
Authors and editors of the included materia are:

» J Beedey

* Helen Borrie

e Arno Brinkman

* Frank Ingermann

e Vlad Khorsun

» Alex Peshkov

* Nickolay Samofatov

e Adriano dos Santos Fernandes
* Dmitry Yemanov

Acknowledgments

Vlad Khorsun, Adriano dos Santos Fernandesand Dmitry Y emanov have been very hel pful and patient whenever
| had questions about the details of various new Firebird features. The email conversations | had with them have
made this a better work of reference. Thank you, guys!

Chapter 2

New In Firebird 2.5

For users upgrading from Firebird 2.1, this chapter liststhe SQL additions and changesin Firebird 2.5and 2.5.1,
with links to the corresponding sections. If you come from an earlier version or are new to Firebird, you may
want to skip this chapter.

Reserved words and keywords

Changed since Firebird 2.1:

Newly reserved words: SIMILAR, SQLSTATE (2.5.1).

New non-reserved keywords: AUTONOMOUS, BIN_NOT, CALLER, CHAR_TO_UUID, COMMON, DATA,
FIRSTNAME, GRANTED, LASTNAME, MAPPING, MIDDLENAME, OS_NAME, SOURCE, TWO_PHASE and
UUID_TO_CHAR.

No longer reserved, but till keywords: ACTIVE, AFTER, ASC, ASCENDING, AUTO, BEFORE, COLLATION,
COMMITTED, COMPUTED, CONDITIONAL, CONTAINING, CSTRING, DATABASE, DESC, DESCENDING,
DESCRIPTOR, DO, DOMAIN, ENTRY_POINT, EXCEPTION, EXIT, FILE, GEN_ID, GENERATOR, IF, INAC-
TIVE, INPUT_TYPE, ISOLATION, KEY, LENGTH, LEVEL, MANUAL, MODULE_NAME, NAMES, OPTION,
OUTPUT_TYPE, OVERFLOW, PAGE, PAGE_SIZE, PAGES, PASSWORD, PRIVILEGES, PROTECTED, READ,
RESERV, RESERVING, RETAIN, SCHEMA, SEGMENT, SHADOW, SHARED, SINGULAR, SIZE, SNAPSHOT,
SORT, STABILITY, STARTING, STARTS, STATEMENT, STATISTICS, SUB_TYPE, SUSPEND, TRANSAC-
TION, UNCOMMITTED, WAIT, WORK and WRITE.

No longer reserved and not keywords. AUTODDL, BASE NAME, BASED, BLOBEDIT, BUFFER,
CHECK_POINT_LENGTH, COMPILETIME, CONTINUE, DB_KEY, DEBUG, DESCRIBE, DISPLAY, ECHO,
EDIT, EVENT, EXTERN, FOUND, GOTO, GROUP_COMMIT_, HELP, IMMEDIATE, INDICATOR, INIT, IN-
PUT, ISQL, LC_MESSAGES, LC _TYPE, LEV, LOG_BUFFER_SIZE, MAX_SEGMENT, MAXIMUM, MESSAGE,
MINIMUM, NOAUTO, NUM_LOG_BUFFERS, OUTPUT, PAGELENGTH, PREPARE, PUBLIC, QUIT, RETURN,
RUNTIME, SHELL, SHOW, SQLERROR, SQOLWARNING, STATIC, TERMINATOR, TRANSLATE, TRANSLA-
TION, VERSION, WAIT_TIME and WHENEVER.

Miscellany

Changed since Firebird 2.1:

Hexadecimal notation for numerals
Hexadecimal notation for “binary” strings

New in Firebird 2.5

Data types and subtypes

Changed since Firebird 2.1:

e SQL_NULL datatype
» (GB18030 character set, WIN_1258 dlias
* UNICODE_CI_AI collation for UTF8, GB18030 collation for GB18030

Data Definition Language (DDL)

Changed since Firebird 2.1:

* ALTER CHARACTER SET (set default collation for charset)

* NUMERIC-SORT attribute for Unicode collations

» Default collation for the database

» Classic Server: Altered procedure immediately visible to other clients
* ALTER COLUMN also for generated (computed) columns

e ALTERCOLUMN ... TYPE no longer failsif columnisused in trigger or SP
» Views can select from stored procedures

* Views can infer column names from derived tables or GROUP BY

* Column list for UNION-based views no longer mandatory

* ALTERVIEW

* CREATEORALTERVIEW

Data Manipulation Language (DML)

Changed since Firebird 2.1:

» UPDATE statement: changed SET semantics

PSQL statements

Changed since Firebird 2.1:

e TYPE OF COLUMN in variable and parameter declarations
e EXECUTE STATEMENT:

- Improved performance

- WITH { AUTONOMOUS|COMMON} TRANSACTION

- WITH CALLER PRIVILEGES

- ON EXTERNAL [DATA SOURCE]

New in Firebird 2.5

- ASUSER, PASSWORD and ROLE
- Parameterized statements
* INAUTONOMOUS TRANSACTION
* Subqueries as PSQL expressions

Security and access control

Changed since Firebird 2.1:

ALTER ROLE

GRANTED BY clause

REVOKE ALL ON ALL

The RDB$ADMIN role

AUTO ADMIN MAPPING

SQL user management commands:
- CREATEUSER

- ALTERUSER

- DROPUSER

Context variables

Changed since Firebird 2.1:

* SQLCODE deprecated (2.5.1)
» SQLSTATE context variable (2.5.1)

Operators and predicates

Changed since Firebird 2.1:

* SIMLARTO: Regular expressions

Aggregate functions

Changed since Firebird 2.1:

* LIST() separator may be any string expression

New in Firebird 2.5

Internal functions

Changed since Firebird 2.1:

e CAST() asTYPE OF COLUMN

* DATEADD: New unit WEEK. Sub-DAY units allowed with DATES.
* DATEDIFF: New unit WEEK. Sub-DAY units allowed with DATES.
« CHAR_TO UUID()

e LOG() behaviour improved

* LOG10() behaviour improved

* LPAD() now returns VARCHAR of exact end length

* RPAD() now returns VARCHAR of exact end length

e UUID_TO_CHAR()

Chapter 3

Reserved words and keywords

Reserved words are part of the Firebird SQL language. They cannot be used as identifiers (e.g. as table or
procedure names), except when enclosed in double quotes in Dialect 3. However, you should avoid this unless
you have a compelling reason.

Keywords are also part of the language. They have a special meaning when used in the proper context, but they
are not reserved for Firebird's own and exclusive use. You can use them as identifiers without double-gquoting.

The following sections present the changes since InterBase 6. Full listings of Firebird 2.5 reserved words and
keywords can be found in the Appendix.

Added since InterBase 6

Newly reserved words

The following reserved words have been added to Firebird:

BIGINT
BIT_LENGTH
BOTH

CASE

CLOSE
CONNECT
CROSS
CURRENT_CONNECTION
CURRENT_ROLE
CURRENT_TRANSACTION
CURRENT_USER
DISCONNECT
FETCH

GLOBAL
INSENSITIVE
LEADING
LOWER

OPEN
RECREATE
RECURSIVE
ROW_COUNT
ROWS
SAVEPOINT
SENSITIVE
SIMILAR

Reserved words and keywords

SQLSTATE (2.5.1)
START
TRAILING

TRIM

New non-reserved keywords

Thefollowing words have been added to Firebird as non-reserved keywords. More than half of them are names
of internal functions added between 2.0 and 2.1.

ABS
ACCENT
ACOS
ALWAYS
ASCII_CHAR
ASCII_VAL
ASIN

ATAN
ATAN2
AUTONOMOUS
BACKUP
BIN_AND
BIN_OR
BIN_NOT
BIN_SHL
BIN_SHR
BIN_XOR
BLOCK
BREAK
CALLER
CEIL
CEILING
CHAR_TO_UUID
COALESCE
COLLATION
COMMENT
COMMON
Cos

COSH

coT

DATA
DATEADD
DATEDIFF
DECODE
DELETING
DIFFERENCE
EXP

FIRST
FIRSTNAME
FLOOR
GEN_UUID

Reserved words and keywords

GENERATED
GRANTED
HASH

IF
INSERTING
LAST
LASTNAME
LEAVE
LIST

LN

LOCK

LOG

LOG10
LPAD
MAPPING
MATCHED
MATCHING
MAXVALUE
MIDDLENAME
MILLISECOND
MINVALUE
MOD

NEXT
NULLIF
NULLS

0S NAME
OVERLAY
PAD

PI

PLACING
POWER
PRESERVE
RAND
REPLACE
RESTART
RETURNING
REVERSE
ROUND
RPAD
SCALAR_ARRAY
SEQUENCE
SIGN

SIN

SINH

SKIP
SOURCE
SPACE
SQRT
SUBSTRING
TAN

TANH
TEMPORARY

Reserved words and keywords

TRUNC
TWO_PHASE
WEEK
UPDATING
UUID_TO_CHAR

Dropped since InterBase 6

No longer reserved, still keywords

The following words are no longer reserved in Firebird 2.5, but are till recognized as keywords:

ACTION
ACTIVE
AFTER

ASC
ASCENDING
AUTO
BEFORE
CASCADE
COLLATION
COMMITTED
COMPUTED
CONDITIONAL
CONTAINING
CSTRING
DATABASE
DESC
DESCENDING
DESCRIPTOR
DO

DOMAIN
ENTRY_POINT
EXCEPTION
EXIT

FILE

FREE_IT
GEN_ID
GENERATOR
IF

INACTIVE
INPUT_TYPE
ISOLATION
KEY

LENGTH
LEVEL
MANUAL
MODULE_NAME

10

Reserved words and keywords

NAMES
OPTION
OUTPUT_TYPE
OVERFLOW
PAGE
PAGE_SIZE
PAGES
PASSWORD
PRIVILEGES
PROTECTED
READ

RESERV
RESERVING
RESTRICT
RETAIN

ROLE
SCHEMA
SEGMENT
SHADOW
SHARED
SINGULAR
SIZE
SNAPSHOT
SORT
STABILITY
STARTING
STARTS
STATEMENT
STATISTICS
SUB_TYPE
SUSPEND
TRANSACTION
TYPE
UNCOMMITTED
WAIT
WEEKDAY
WORK

WRITE
YEARDAY

No longer reserved, not keywords

The following words are no longer reserved in Firebird 2.5, and not keywords either:

AUTODDL
BASE_NAME
BASED
BASENAME
BLOBEDIT
BUFFER
CACHE

11

Reserved words and keywords

CHECK_POINT_LEN
CHECK_POINT_LENGTH
COMPILETIME
CONTINUE
DB_KEY

DEBUG
DESCRIBE
DISPLAY

ECHO

EDIT

EVENT

EXTERN

FOUND

GOTO
GROUP_COMMIT_
GROUP_COMMIT_WAIT
HELP
IMMEDIATE
INDICATOR

INIT

INPUT

1SQL
LC_MESSAGES
LC_TYPE

LEV
LOG_BUF_SIZE
LOG_BUFFER_SIZE
LOGFILE
MAX_SEGMENT
MAXIMUM
MESSAGE
MINIMUM
NOAUTO
NUM_LOG_BUFFERS
NUM_LOG_BUFS
OUTPUT
PAGELENGTH
PREPARE

PUBLIC

QUIT
RAW_PARTITIONS
RETURN
RUNTIME

SHELL

SHOW
SQLERROR
SQLWARNING
STATIC
TERMINATOR
TRANSLATE
TRANSLATION
VERSION

12

Reserved words and keywords

WAIT_TIME
WHENEVER

Some of these words still have a special meaning in ESQL and/or 1SQL.

Possibly reserved in future versions

Thefollowing words are not reserved in Firebird 2.5, but are better avoided asidentifiers because they will likely
be reserved — or added as keywords — in future versions:

BOOLEAN
FALSE
TRUE
UNKNOWN

13

Chapter 4

Miscellaneous
language elements

-- (single-line comment)

Availablein: DSQL, PSQL
Addedin: 1.0

Changedin: 1.5

Description: A line starting with “- - ” (two dashes) is a comment and will be ignored. This aso makes it easy
to quickly comment out aline of SQL.

In Firebird 1.5 and up, the “- - ” can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:

- atable to store our valued custoners in:
create table Custoners (

nane varchar (32),

added_by varchar (24),

custno varchar(8),

pur chases i nt eger -- nunber of purchases

)

Notice that the second comment is only allowed in Firebird 1.5 and up.

Hexadecimal notation for numerals
Availablein: DSQL, PSQL
Added in: 2.5

Description: In Firebird 2.5 and up, integer values can be entered in hexadecimal notation. Numbers with 1-8
hex digitswill be interpreted as INTEGERS,; humbers with 9-16 hex digits as BIGINTS.

14

Miscellaneous language elements

Syntax:

0{ x| X} <hexdi gi t s>

<hexdi gi t s> = 1-16 of <hexdigit>
<hexdi gi t > ;= one of 0..9, A.F, a..f

Examples:
sel ect Ox6FAAOD3 from rdb$dat abase -- returns 117088467
sel ect 0x4F9 from rdb$dat abase -- returns 1273
sel ect Ox6E44F9A8 from r db$dat abase -- returns 1850014120
sel ect 0x9E44F9A8 from r db$dat abase -- returns -1639646808 (an I NTEGER)
sel ect Ox09E44F9A8 from r db$dat abase -- returns 2655320488 (a BI G NT)
sel ect 0x28ED678A4C987 from r db$dat abase -- returns 720001751632263
sel ect OxFFFFFFFFFFFFFFFF from rdb$dat abase -- returns -1
Value ranges:

Hex numbers in the range 0 .. 7FFF FFFF are positive INTEGERsS with values between O .. 2147483647
decimal. Y ou can force them to BIGINT by prepending enough zeroes to bring the total number of hex digits
to nine or above, but that only changes their type, not their value.

Hex numbers between 8000 0000 .. FFFF FFFF require some attention:

- When written with eight hex digits, as in 0x9E44F9A8, they are interpreted as 32-bit INTEGER values.
Since their leftmost bit (sign bit) is set, they map to the negative range -2147483648 .. -1 decimal.

- With one or more zeroes prepended, asin 0x09E44F9A8, they are interpreted as 64-bit BIGINTs in the
range 0000 0000 8000 0000 .. 0000 0000 FFFF FFFF. The sign bit isn't set now, so they map to the
positive range 2147483648 .. 4294967295 decimal.

Thus, in thisrange — and in this range only — prepending a mathematically insignificant O resultsin atotally
different value. Thisis something to be aware of.

Hex numbers between 1 0000 0000 .. 7FFF FFFF FFFF FFFF are all positive BIGINTS.

Hex numbers between 8000 0000 0000 0000 .. FFFF FFFF FFFF FFFF are all negative BIGINTS.

Hexadecimal notation for “binary” strings

Availablein: DSQL, PSQL

Added in: 2.5

Description: In Firebird 2.5 and up, string literals can be entered in hexadecimal notation. Each pair of hex digits
defines a byte in the string. Strings entered this way will have character set OCTETS by default, but you can
force the engine to interpret them otherwise with the introducer syntax.

15

Miscellaneous language elements

Syntax:
{x] X}' <hexstring>'

<hexstring>
<hexdi gi t >

= an even nunber of <hexdigit>
= one of 0..9, A .F, a..f

Examples:

sel ect x' 4E657276656E from rdb$dat abase
-- returns 4E657276656E, a 6-byte 'binary' string

sel ect _ascii x'4E657276656E from rdb$dat abase
-- returns 'Nerven' (same string, nowinterpreted as ASCI| text)

sel ect _is08859_ 1 x'53E46765' from rdb$dat abase
-- returns 'Sage' (4 chars, 4 bytes)

select _utf8 x'53C3A46765' from rdb$dat abase
-- returns 'Sage' (4 chars, 5 bytes)

Notes:

* Itisuptotheclient interface how binary strings are displayed to the user. Isgl, for one, uses uppercase letters
A-F. FlameRobin uses lowercase |etters. Other client programs may have other idess, e.g. like this, with
spaces between the bytes: '4E 65 72 76 65 6E'.

» The hexadecimal notation allows you to insert any byte value (including 00) at any placein the string. How-
ever, if you want to coerce it to anything other than OCTETS, it is your responsibilty that the byte sequence
isvalid for the target character set.

Shorthand datetime casts

Availablein: DSQL, ESQL, PSQL
Addedin: IB

Description: When converting a string literal to a DATE, TIME or TIMESTAMP, Firebird alows the use of a
shorthand “C-style” cast. This feature already existed in InterBase 6, but was never properly documented.

Syntax:
datatype 'date/tinestring'
Examples:

updat e People set AgeCat = 'Ad
where BirthDate < date '1-Jan-1943'

insert into Appointments

(Enpl oyee_ld, dient_ld, App_date, App_tine)
val ues

(973, 8804, date 'today' + 2, time '16:00'")

new. | astmod = tinmestanp ' now ;

16

Miscellaneous language elements

Note: Please be advised that these shorthand expressions are evaluated immediately at parse time and stay the
same as long as the statement remains prepared. Thus, even if a query is executed multiple times, the value for
e.g. “timestamp 'now™ won't change, no matter how much time passes. If you need the value to progress (i.e.
be evaluated upon every call), use afull cast.

See also: CAST

CASE construct

Availablein: DSQL, PSQL
Added in: 1.5

Description: A CASE construct returns exactly one value from anumber of possibilities. There aretwo syntactic
variants:

» Thesimple CASE, comparable to aPascal case or aCswi t ch.

» Thesearched CASE, whichworkslikeaseriesof “if ... else if ... else if” clauses.

Simple CASE
Syntax:

CASE <t est - expr>
WHEN <expr> THEN resul t
[WHEN <expr> THEN result ...]
[ELSE defaul tresult]

END

When thisvariantisused, <t est - expr > iscompared to <expr > 1, <expr > 2 etc., until amatch isfound, upon
which the corresponding result is returned. If there is no match and there is an ELSE clause, def aul tresul t
isreturned. If there is no match and no ELSE clause, NULL is returned.

The match isdetermined with the“=" operator, soif <t est - expr >iSNULL, it won't match any of the<expr >s,
not even those that are NULL.

The results don't have to be literal values: they may also be field or variable names, compound expressions,
or NULL literals.

A shorthand form of the simple CASE construct is the DECODE() function, available since Firebird 2.1.
Example:

sel ect nane,
age,
case upper (sex)
when 'M then ' Mle'
when 'F' then ' Fenal e'
el se ' Unknown'
end,
religion
from peopl e

17

Miscellaneous language elements

Searched CASE

Syntax:

CASE
VWHEN <bool _expr> THEN resul t
[WHEN <bool _expr> THEN result ...]
[ELSE defaul tresult]

END

Here, the<bool _expr >sareteststhat giveaternary boolean result: TRUE, FALSE, or NULL. Thefirst expression
evaluating to TRUE determinestheresult. If no expressionis TRUE and thereisan EL SE clause, def aul t r esul t
isreturned. If no expression is TRUE and there is no ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.

Example:

CanVot e = case
when Age >= 18 then ' Yes'
when Age < 18 then ' No'
el se ' Unsure'
end;

18

Chapter 5

Data types and subtypes

BIGINT data type

Addedin: 1.5
Description: BIGINT is the SQL99-compliant 64-bit signed integer type. It isavailable in Dialect 3 only.
BIGINT numbers range from -2 .. 25%-1, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.

Since Firebird 2.5, BIGINT numbers may be entered in hexadecimal form, with 9-16 hex digits. Shorter hex
numerals are interpreted as INTEGERS.

Examples:

create table Wol eLottaRecords (
id bigint not null primry key,
description varchar(32)

)

insert into MyBigints val ues (

-236453287458723,

328832607832,

22,

-56786237632476,

O0x6F55A09D42, -- 478177959234
0X7FFFFFFFFFFFFFFF, -- 9223372036854775807
Oxffffffffffffffff, =5 ol

0x80000000, -- -2147483648, an | NTEGER
0x080000000, -- 2147483648, a BIGNT
OXFFFFFFFF, -- -1, an INTEGER
OXOFFFFFFFF -- 4294967295, a BIGNT

)

The hexadecimal INTEGERSs in the second example will be automatically cast to BIGINT before
insertion into the table. However, this happens after the numerical value has been established, so
0x80000000 (8 digits) and 0x080000000 (9 digits) will be stored as different values. For more
information on this difference, see Hexadecimal notation for numerals, in particular the paragraph
Value ranges.

19

Data types and subtypes

BLOB data type

Text BLOB support in functions and operators
Changedin: 2.1,2.1.5,25.1

Description: Text BLOBs of any length and character set (including multi-byte sets) are now supported by prac-
tically every internal text function and operator. In afew cases there are limitations or bugs.

Level of support:

» Full support for:

- = (assignment);

- =, <>, <, <=, >, >= and synonyms (comparison);

- || (concatenation;

- BETWEEN, IS[NOT] DISTINCT FROM, IN, ANY |[SOME and ALL.

« Support for STARTING [WITH], LIKE and CONTAINING:

- Inversions 2.1-2.1.4 and 2.5, an error israised if the second operand is 32 KB or longer, or if the first
operand isaBLOB with character set NONE and the second operand isaBLOB of any length and character
Set.

- Inversions 2.5.1 and up (aswell as 2.1.5 and up in the 2.1 branch), each operand can be a BLOB of any
length and character set.

e SELECT DISTINCT, ORDER BY and GROUPBY work on the BLOB |D, not the contents. This makesthem as
good as useless, except that SELECT DISTINCT weeds out multiple NULLS, if present. GROUP BY behaves
oddly in that it groups together equal rows if they are adjacent, but not if they are apart.

» Anyissueswith BLOBsininternal functionsand aggregate functionsare discussed in their respective sections.

Various enhancements

Changedin: 2.0

Description: In Firebird 2.0, several enhancements have been implemented for text BLOBS:
» DML COLLATE clauses are now supported.

» Equality comparisons can be performed on the full BLOB contents.

» Character set conversions are possible when assigning aBLOB to aBLOB or astring to aBLOB.
When defining binary BLOBS, the mnemonic bi nary can now be used instead of the integer O.

Examples:

sel ect NameBl ob from MyTabl e
where NaneBl ob collate pt_br = 'Joéo'

20

Data types and subtypes

create table MyPictures (
idint not null primry key,
title varchar(40),
description varchar(200),
picture bl ob sub_type binary
)

SQL_NULL data type

Added in: 2.5

Description: The SQL_NULL datatype is of little or no interest to end users. It can hold no data, only a state:
NULL or NOT NULL. Itisalso hot possibleto declare columns, variablesor PSQL parameters of type SQL_NULL.
At present, itsonly purpose isto support the“? ISNULL" syntax in SQL statements with positional parameters.
Application developers can make use of this when constructing queries that contain one or more optional filter
terms.

Syntax: If astatement containing the following predicate is prepared:
? <op> NULL

Firebird will describe the parameter (*?) as being of type SQL_NULL. <op> can be any comparison operator,
but the only one that makes sensein practiceis 1S’ (and possibly, in some rare cases, “NOT I1S”).

Rationale

Initself, having a query with a“WHERE ? ISNULL” clause doesn't make alot of sense. Y ou could use such a
parameter as an on/off switch, but that hardly warrantsinventing awhole new datataype. After all, such switches
can aso be constructed with aCHAR, SMALLINT or other parameter type. Thereason for adding the SQL_NULL
typeisthat developers of applications, connectivity toolsets, drivers etc. want to be able to support queries with
optional filterslike these:

sel ect make, nodel, weight, price, in_stock from autonobiles
where (rmake = :make or :nake is null)
and (rmodel = :nodel or :nodel is null)
and (price <= :naxprice or :maxprice is null)

Theideaisthat the end user can optionally enter choices for the parameters: make, : nodel and: maxpri ce.
Wherever a choice is entered, the corresponding filter should be applied. Wherever a parameter is left unset
(NULL), there should be no filtering on that attribute. If all are unset, the entire table AUTOMOBILES should
be shown.

Unfortunately, named parameterslike : make and : nodel only exist on the application level. Before the query
is passed to Firebird for preparation, it must be converted to this form:

sel ect make, nodel, weight, price, in_stock from autonobiles
where (make = ? or ? is null)
and (nmodel = ? or ? is null)
and (price <= ? or ? is null)

21

Data types and subtypes

Instead of three named parameters, each occurring twice, we now have six positional parameters. There is no
way that Firebird can tell whether some of them actually refer to the same application-level variable. (The fact
that, in this example, they happen to be within the same pair of parentheses doesn't mean anything.) Thisin
turn means that Firebird also cannot determine the data type of the “? is null” parameters. This last problem
could be solved by casting:

sel ect make, nodel, weight, price, in_stock from autonobiles
where (nmake = ? or cast(? as type of columm autonobiles.nmake) is null)
and (nmodel = ? or cast(? as type of colum autonobiles.nmodel) is null)
and (price <= ? or cast(? as type of columm autonobiles.price) is null)

...but thisis rather cumbersome. And there is another issue: wherever afilter term is not NULL, its value will
be passed twice to the server: once in the parameter that is compared against the table column, and once in the
parameter that istested for NULL. Thisis abit of awaste. But the only alternative is to set up no less then eight
separate queries (2 to the power of the number of optional filters), which is even more of a headache. Hence the
decision to implement a dedicated SQL_NULL datatype.

Use in practice

Notice: The following discussion assumes familiarity with the Firebird API and the passing of parameters via
XSQLVAR structures. Readers without this knowl edge won't have to deal with the SQL_NULL datatype anyway
and can skip this section.

Asusual, the application passes the parameterized query in ?-form to the server. It is not possible to merge pairs
of “identical” parametersinto one. So, for e.g. two optional filters, four positional parameters are needed:

sel ect size, colour, price fromshirts
where (size = ? or ? is null)
and (col our ? or 2 is null)

After the call to i sc_dsql _descri be_bi nd(), the sql t ype of the 2nd and 4th parameter will be set to
SQL_NULL. As said, Firebird has no knowledge of their special relation with the 1st and 3d parameter — thisis
entirely the responsibility of the programmer. Once the values for size and colour have been set (or left unset)
by the user and the query is about to be executed, each pair of XSQLVARs must be filled as follows:

User hasfilled in a value
» First parameter (value compare): set * sql dat a to the supplied valueand * sql i nd to O (for NOT NULL);
» Second parameter (NULL test): set sql dat a to null (null pointer, not SQL NULL) and *sqgl i nd to O
(for NOT NULL).

User has left the field blank
» Both parameters: set sql dat a to null (null pointer, not SQL NULL) and *sql i nd to -1 (indicating
NULL).

In other words: The value compare parameter is aways set as usua. The SQL_NULL parameter is set the same,
except that sql dat a remains null at all times.

New character sets

Addedin: 1.0, 15, 2.0,2.1,25

22

Data types and subtypes

The following table lists the character sets added in Firebird.

Table5.1. Character setsnew in Firebird

Name Max bytes/ch. Languages Added in
CP943C 2 Japanese 21
DOS737 1 Greek 15
DOS775 1 Baltic 15
DOS858 1 = DOS850 plus€ sign 15
DOS862 1 Hebrew 15
DOS864 1 Arabic 15
DOS866 1 Russian 15
DOS869 1 Modern Greek 15
GB18030 4 Chinese 25
GBK 2 Chinese 21
1SO8859_2 1 Latin-2, Central European 1.0
1SO8859 3 1 Latin-3, Southern European 15
1SO8859 4 1 Latin-4, Northern European 15
1S08859 5 1 Cyrillic 15
1SO8859 6 1 Arabic 15
1SO8859_7 1 Greek 15
1SO8859 8 1 Hebrew 15
1SO8859_9 1 Latin-5, Turkish 15
1SO8859 13 1 Latin-7, Baltic Rim 15
KOI8R 1 Russian 20
KOI8U 1 Ukrainian 20
T1S620 1 Thai 21
uTFg) 4 All 2.0
WIN1255 1 Hebrew 15
WIN1256 1 Arabic 15
WIN1257 1 Baltic 15
WIN1258 1 Vietnamese 20
WIN_1258 (alias for WIN1258) 1 Viethamese 25

OlIn Firebird 1.5, UTF8isan alias for UNICODE_FSS. This character set has some inherent problems. In Firebird 2, UTF8 is a character set
inits own right, without the drawbacks of UNICODE_FSS.

23

Data types and subtypes

Character set NONE handling changed

Changedin: 1.5.1

Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or
variables with another character set, resulting in fewer trandliteration errors. For more details, see the Note at
the end of the book.

New collations

Addedin: 1.0,15,151,20,21,25

The following table lists the collations added in Firebird. The “Details’ column is based on what has been
reported inthe Rel ease Notes and other documents. Theinformationin thiscolumnis probably incomplete; some
collationswith an empty Detailsfield may still be caseinsensitive (ci), accent insensitive (ai) or dictionary-sorted
(dic).

Please note that the default — binary — collations for new character sets are not listed here, as doing so would

add no meaningful information.

Table5.2. Collationsnew in Firebird

Character set Collation Language Details Added in
CP943C CP943C_UNICODE Japanese 21
GB18030 GB18030_UNICODE Chinese 25
GBK GBK_UNICODE Chinese 21
1SO8859 1 ES ES CI_Al Spanish ci, ai 2.0

FR_FR_CI_Al French ci,a 21
PT BR Brazilian Portuguese ci,a 2.0
1SO8859 2 CS Cz Czech 10
ISO_HUN Hungarian 15
1SO_PLK Polish 2.0
1SO8859_13 LT_LT Lithuanian 15.1
UTF8 UCS BASIC All 20
UNICODE All dic 2.0
UNICODE_CI All Ci 2.1
UNICODE_CI_Al All ci,a 25

24

Data types and subtypes

Character set Coallation Language Details Added in
WIN1250 BS BA Bosnian 2.0
PXW_HUN Hungarian Ci 10
WIN_CZ Czech Ci 20
WIN_CZ_CI_Al Czech ci, ai 2.0
WIN1251 WIN1251 UA Ukrainian and Russian 15
WIN1252 WIN_PTBR Brazilian Portuguese ci, ai 2.0
WIN1257 WIN1257 _EE Estonian dic 2.0
WIN1257 LT Lithuanian dic 20
WIN1257 LV Latvian dic 2.0
KOI8R KOI8R_RU Russian dic 20
KOI8uU KOI8U_UA Ukrainian dic 2.0
T1S620 T1S620_UNICODE Thai 21

A note on the UTF8 collations

The UNICODE callation sorts using UCA (Unicode Collation Algorithm): a, A, 4, b, B...

The UCS_BASIC collation sorts in Unicode code-point order: A, B, a, b, a.. Thisis exactly the same as UTF8
with no collation specified. UCS BASIC was added to comply with the SQL standard.

UNICODE_ClI istruly case-insensitive. In asearch for e.g. 'Appl€, it will also find 'appl€e, '"APPLE' and 'aPPL€.

UNICODE_CI_AI isaccent-insensitive as well. According to this collation, 'APPEL' equals 'Appél'.

Unicode collations for all character sets

Added in: 2.1

Firebird now comes with UNICODE collations for all the standard character sets. However, except for the ones

listed in the new collations table in the previous section, these collations are not automatically available in your
databases. Instead, they must be added with the CREATE COLLATION statement, like this:

create collation 1S08859_1 UNI CCDE for |S08859_1

Thenew Unicodecollationsall havethe name of their character set with_UNICODE added. (The built-in Unicode

collationsfor UTF8 arethe exceptiontotherule.) They aredefined, along with the other collations, inthe manifest

filef bi nt1. conf inFirebird'si nt| subdirectory.

Collations may also be registered under a user-chosen name, e.g.:

create collation LAT_UNI for 1S08859_1 from external

See CREATE COLLATION for the full syntax.

(' 1S08859_1 UNI CODE')

25

Chapter 6

DDL statements

The statements in this chapter are grouped by the type of database object they operate on. For instance, ALTER
DATABASE, CREATE DATABASE and DROP DATABASE are al found under DATABASE; DECLARE EXTER-
NAL FUNCTION and ALTER EXTERNAL FUNCTION are under EXTERNAL FUNCTION; etc.

CHARACTER SET

ALTER CHARACTER SET
Availablein: DSQL
Addedin: 2.5

Description: With ALTER CHARACTER SET, the default collation of a character set can be changed. This will
affect all future usage of the character set, except where overridden by an explicit COLLATE clause. Thecollation
of existing domains, columns and PSQL variables will not be changed.

Syntax:

ALTER CHARACTER SET charset SET DEFAULT COLLATI ON collation
Example:

alter character set utf8 set default collation unicode_ci_ai
Notes:

* If you use SET DEFAULT COLLATION on the default character set of the database, you have effectively set
(or overridden) the default collation for the database.

» |f you use SET DEFAULT COLLATION on the connection character set, string constants will be interpreted
according to the new default collation (unless character set and/or collation are overridden). In most situations,
this will make no difference, but comparisons may have another outcome if the collation changes.

COLLATION

CREATE COLLATION

Availablein: DSQL

26

DDL statements

Added in: 2.1

Changedin: 2.5

Description: Adds a collation to the database. The collation must already be present on your system (typically
in alibrary file) and must be properly registered in a. conf filein thei ntl subdirectory of your Firebird
installation. Y ou may also base the collation on one that is already present in the database.

Syntax:

CREATE COLLATI ON col | nare
FOR char set
[FROM basecol | |
[NO PAD | PAD SPACEH]
[CASE [I N] SENSI TI VE]
[ACCENT [I N] SENSI Tl VE]
[' <specific-attributes>']

col | nane
char set
basecol |
ext nane

<specific-attributes> ::= <attribute> [;
attrnane=attrval ue

<attribute> =

FROM EXTERNAL (' extnane')]

the nane to use for the new collation

a character set present in the database

a collation already present in the database
the collation nanme used in the

.conf file
<attribute> ...]

» |f no FROM clauseispresent, Firebird will scanthe. conf file(s) inyouri nt | subdirectory for a
collation with the name specified after CREATE COLLATION. That is, omitting the FROM clause
isthe same as specifying “FROM EXTERNAL (‘col | nane’)”.

» The single-quoted ext nane is case-sensitive and must be exactly equal to the collation name in
the. conf file. Thecol | nane, char set andbasecol | parameters are case-insensitive, unless

surrounded by double-quotes.

Foecific attributes: Thetable below liststhe available specific attributes. Not all specific attributes apply to every
collation, even if specifying them doesn't cause an error. Please note that specific attributes are case sensitive.
In the table below, “1 bpc” indicates that an attribute is valid for collations of character sets using 1 byte per
character (so-called narrow character sets). “UNI” stands for “UNICODE collations’.

Table 6.1. Specific collation attributes

Comment

Disables compressions (aka contractions). Compres-
sions cause certain character sequencesto be sorted as
atomic units, e.g. Spanish ¢ +h asasinglecharacter ch.

Disables expansions. Expansions cause certain char-
acters(e.g. ligatures or umlauted vowels) to be treated
as character sequences and sorted accordingly.

Name Values Valid for
DISABLE-COMPRES- |0, 1 1 bpc
SIONS
DISABLE-EXPAN- 0,1 1 bpc
SIONS
|ICU-VERSION def aul t UNI

or Mm

Specifies the ICU library version to use. Valid
values are the ones defined in the applicable
<intl _nodul e> element inintl/fbintl.conf.
Format: either the string literal “def aul t ” or ama
jor+minor version number like“3.0” (both unquoted).

27

DDL statements

Name Values Valid for Comment

LOCALE XX_YY UNI Specifies the collation locale. Requires complete ver-
sion of ICU libraries. Format: a locale string like
“du_NL" (unquoted).

MULTI-LEVEL 0,1 1 bpc Uses more than one ordering level.

NUMERIC-SORT 0,1 UNI Treats contiguous groups of decimal digits in the
string as atomic units and sorts them numerically.
(Thisis also known as natural sorting.)

SPECIALS-FIRST 0,1 1 bpc Ordersspecial characters(spaces, symbolsetc.) before

alphanumeric characters.

Note: The NUMERIC-SORT specific attribute was added in Firebird 2.5.

Examples:

Simplest form, using the name as found in the . conf file (case-insensitive):

create collation iso8859 1 unicode for is08859_1

Using a custom name. Notice how the “external” name must now exactly match the name in the

.conf files

create collation |at_uni

for is08859_1

fromexternal ('I1S08859_1 UNI CODE')

Based on a collation already present in the database:

create collation es_es_nopad_ci

for is08859_1
fromes_es

no pad

case insensitive

With a special attribute (case-sensitivel):

create collation es_es_ci_conpr

for is08859_1
fromes_es
case insensitive

' DI SABLE- COMPRESSI ONS=0'

Tip

If you want to add anew character set with itsdefault collation in your database, declare and run the stored pro-
cedure sp_regi ster_character_set (name, max_bytes_per_character), foundinmsc/intl.
sqgl under your Firebird installation directory. Please note: in order for thisto work, the character set must be
present on your system and registered ina. conf fileinthei nt| subdirectory.

28

DDL statements

DROP COLLATION
Availablein: DSQL
Added in: 2.1

Description: Removes a collation from the database. Only user-added collations can be removed in thisway.

Syntax:

DROP COLLATI ON nare

Tip

If you want to remove an entire character set with all its collations from your database, declare and run the
stored proceduresp_unr egi st er _char act er _set (nane) ,foundinmi sc/int ! . sql underyour Firebird
installation directory.

COMMENT

Availablein: DSQL
Addedin: 2.0

Description: Allows you to enter comments for metadata objects. The comments will be stored in the various
RDB$DESCRIPTION text BLOB fieldsin the system tables, from where client applications can pick them up.

Syntax:

COVMENT ON <object> IS {'sometext’ | NULL}

<obj ect > :: = DATABASE
| <basic-type> objectnane
| COLUWN rel ationnane. fiel dnane
| PARAMETER procnane. par ammane

<basi c-type> ::= CHARACTER SET | COLLATION | DOVAIN | EXCEPTI ON
| EXTERNAL FUNCTION | FILTER | GENERATOR | | NDEX
| PROCEDURE | ROLE | SEQUENCE | TABLE | TRIGGER | VIEW

Note

If you enter an empty comment (' '), it will end up as NULL in the database.

Examples:
coment on database is 'Here''s where we keep all our custoner records.'

conment on table Metals is 'Also for alloys'

29

DDL statements

coment on colum Metals.IsAlloy is 'O = pure netal, 1 = alloy'

coment on index ix_sales is 'Set inactive during bulk inserts!’

DATABASE

CREATE DATABASE
Availablein: DSQL, ESQL

Syntax (partial):
CREATE { DATABASE | SCHEMA}
I[iDAGE_SI ZE [=] size]
t biEFAULT CHARACTER SET charset [COLLATI ON collation]]
td FFERENCE FI LE 'filepath']

size ::= 4096 | 8192 | 16384

* If the user supplies asize smaller than 4096, it will be silently converted to 4096. Other numbers
not equal to any of the supported sizes will be silently converted to the next lower supported size.

16 Kb page size supported, 1 and 2 Kb deprecated
Changedin: 1.0, 2.1

Description: Firebird 1.0 has raised the maximum database page size from 8192 to 16384 bytes. In Firebird 2.1
and up, page sizes 1024 and 2048 are deprecated as inefficient. Firebird will no longer create databases with
these page sizes, but it will connect to existing small-page databases without any problem.

Default collation for the database
Added in: 2.5

Description: In Firebird 2.5 and up, you can specify a collation with the default character set, as shown in the
Syntax block above. If present, this collation will become the default collation for the default character set (and
hence for the entire database, except where another character set is used).

Example:
create database "colltest.fdb" default character set is08859 1 collation du_nl

Please notice: The keyword to use here is COLLATION, not the usual COLLATE.

30

DDL statements

DIFFERENCE FILE parameter
Added in: 2.0

Description: The DIFFERENCE FILE parameter was added in Firebird 2.0, but not documented at the time. For
afull description, see ALTER DATABASE :: ADD DIFFERENCE FILE.

ALTER DATABASE

Availablein: DSQL, ESQL

Description: Alters a database's file organisation or togglesits “ saf e-to-copy” state.
Syntax:

ALTER { DATABASE | SCHEMA}
[<add_sec_cl ause> [<add_sec_cl ause> ...]]
[ADD DI FFERENCE FILE 'filepath’ | DROP DI FFERENCE FI LE]
[{BEG N | END} BACKUP]|

<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]
<sec_file> = FILE '"filepath'
[STARTI NG [AT [PAGE]] pagenuni
[LENGTH [=] num [PAGE[9]]

The DIFFERENCE FILE and BACKUP clauses, added in Firebird 2.0, are not available in ESQL.

BEGIN BACKUP

Availablein: DSQL

Added in: 2.0

Description: Freezes the main database file so that it can be backed up safely by filesystem means, even while
users are connected and perform operations on the data. Any mutations to the database will be written to a

separate file, the delta file. Contrary to what the syntax suggests, this statement does not initiate the backup
itself; it merely creates the conditions.

Example:

al ter database begi n backup

END BACKUP
Availablein: DSQL

Added in: 2.0

31

DDL statements

Description: Merges the delta file back into the main database file and restores the normal state of operation,
thus closing the time window during which safe backups could be made via the filesystem. (Safe backups with
gbak are still possible.)

Example:

al ter database end backup

Tip

Instead of BEGIN and END BACKUP, consider using Firebird's nbackup tool: it can freeze and unfreeze the
main database file as well as make full and incremental backups. A manual for nbackup is available via the
Firebird Documentation Index.

ADD DIFFERENCE FILE
Availablein: DSQL
Added in: 2.0

Description: Presets path and name of the deltafile to which mutations are written when the database goes into
“copy-safe” mode after an ALTER DATABASE BEGIN BACKUP command.

Example:
alter database add difference file 'C \Firebird\ Dat abases\Fruitbase. delta'
Notes:

» This statement doesn't really add any file. It just overrides the default path and name for the delta file that
will be created if and when the database enters copy-safe mode.

» If you provide arelative path or a bare filename here, it will be appended to the current directory as seen
from the server. On Windows, thisis often the system directory.

* If you want to change an existing setting, DROP the old one first and then ADD the new one.

* When not overridden, the delta file gets the same path and filename as the database itself, but with the ex-
tension. del t a

DROP DIFFERENCE FILE
Availablein: DSQL
Added in: 2.0

Description: Removes the delta file path and name that were previously set with ALTER DATABASE ADD
DIFFERENCE FILE. This statement doesn't really drop afile. It only erases the preset path and/or filename that
would otherwise have been used the next time the database went into copy-safe mode, and reverts to the default
behaviour.

Example:

alter database drop difference file

32

http://www.firebirdsql.org/en/documentation/

DDL statements

DOMAIN

CREATE DOMAIN

Availablein: DSQL, ESQL

Context variables as defaults
Changedin: IB

Description: Any context variable that is assignment-compatibl e to the new domain's datatype can be used as a
default. Thiswas already the case in InterBase 6, but the Language Reference only mentioned USER.

Example:
create domain DDate as
dat e

default current_date
not nul |

ALTER DOMAIN

Availablein: DSQL, ESQL

Warning

If adomain'sdefinitionischanged, existing PSQL code using that domain may becomeinvalid. For information
on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

Rename domain
Addedin: 1B

Description: Renaming of adomain is possible with the TO clause. This feature was introduced in InterBase 6,
but left out of the Language Reference.

Example:

alter domain posint to plusint

e The TO clause can be combined with other clauses and need not come first in that case.

SET DEFAULT to any context variable
Changedin: IB

33

DDL statements

Description: Any context variable that is assignment-compatible to the domain's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter domain DDate
set default current_date

EXCEPTION

CREATE EXCEPTION

Availablein: DSQL, ESQL

Message length increased
Changedin: 2.0

Description: In Firebird 2.0 and higher, the maximum length of the exception message has been raised from
78 to 1021.

Example:

create excepti on Ex_TooManyManagers
'Too many nmanagers: An attenpt was nmade to create nore nanagers than the
maxi mum defined in the Linmits table. If you really need to create nore
managers than you have now, raise the limt first. However, please consult
your departnment''s manager before doing so. Otherw se, your decision nmay
be overturned |later and the additional manager(s) renoved.'

Note

The maximum exception message length depends on a certain system table field. Therefore, pre-2.0 databases
need to be backed up and restored under Firebird 2.x before they can store exception messages of up to 1021
bytes.

CREATE OR ALTER EXCEPTION
Availablein: DSQL
Added in: 2.0

Description: If the exception does not yet exist, it is created just as if CREATE EXCEPTION were used. If it
already exists, it is altered. Existing dependencies are preserved.

Syntax: Exactly the same as for CREATE EXCEPTION.

34

DDL statements

RECREATE EXCEPTION
Availablein: DSQL

Added in: 2.0

Description: Creates or recreates an exception. If an exception with the same name already exists, RECREATE
EXCEPTION will try to drop it and create a new exception. Thiswilll fail if there are existing dependencies on

the exception.

Syntax: Exactly the same as CREATE EXCEPTION.

Note

If you use RECREATE EXCEPTION on an exception that has dependent objects, you may not get an error
message until you try to commit your transaction.

EXTERNAL FUNCTION

DECLARE EXTERNAL FUNCTION

Availablein: DSQL, ESQL

Description: This statement makes an external function (UDF) available in the database.

Syntax:

DECLARE EXTERNAL FUNCTI ON | ocal nane

[<arg_type_decl > [, <arg_type_decl> ...]]
RETURNS {<return_type_decl > | PARAMETER 1-based_pos} [FREE_IT]

ENTRY_PQO NT ' function_name' MODULE_NAME '1ibrary_nane'

<arg_type_decl > = sqgltype [BY DESCRI PTOR] | CSTRI NE I ength)
<return_type_decl> ::= sqltype [BY {DESCRI PTOR| VALUE}] | CSTRI NE I engt h)

Restrictions

* TheBY DESCRIPTOR passing method is not supported in ESQL.

You may choose | ocal nane fredly; thisis the name by which the function will be known to your database.
You may also vary thel engt h argument of CSTRING parameters (more about CSTRINGS in the note near the

end of the book).

BY DESCRIPTOR parameter passing
Availablein: DSQL
Addedin: 1.0

35

DDL statements

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLSin a meaningful way. Notice that this only works if the person who wrote the function
has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work —on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n
Availablein: DSQL, ESQL
Addedin: IB 6

Description: Inorder toreturn aBLOB, an extrainput parameter must be declared and a“RETURNSPARAMETER
n” clause added —n being the position of said parameter. This clause dates back to I nterBase 6 beta, but somehow
didn't make it into the Language Reference (it is documented in the Devel oper's Guide though).

ALTER EXTERNAL FUNCTION

Availablein: DSQL

Added in: 2.0

Description: Altersan external function's module name and/or entry point. Existing dependencies are preserved.
Syntax:

ALTER EXTERNAL FUNCTI ON funcnane
<modi fi cation> [<nodification>]

<nodi fication> ::= ENTRY_PO NT ' new entry-point'
| MODULE_NAME ' new nodul e- name'

Example:

alter external function Phi nodul e_name ' NewUdf Li b’

FILTER

DECLARE FILTER
Availablein: DSQL, ESQL
Changedin: 2.0
Description: Makes a BLOB filter available to the database.
Syntax:
DECLARE FILTER filternane

| NPUT_TYPE <sub_type> OUTPUT_TYPE <sub_type>
ENTRY_PQO NT ' function_nane' MODULE_NAME 'library_nane'

36

DDL statements

<sub_type>
<menoni ¢c>

nunber | <menonic>

binary | text | blr | acl | ranges | sunmmary | fornat
| transaction_description | external _file_description
| user_defined

* InFirebird 2 and up, no two BLOB filters in a database may have the same combination of input
and output type. Declaring afilter with an already existing input-output type combination will fail.
Restoring pre-2.0 databases that contain such “duplicate” filters will also fail.

» The possibility to indicate the BLOB types with their mnemonics instead of numbers was added
in Firebird 2. The bi nar y mnemonic for subtype 0 was also added in Firebird 2. The predefined
MNemonics are case-insensitive.

Example:
declare filter Funnel

i nput _type blr output_type text
entry_point 'blr2asc' nodul e_name 'nyfilterlib

User-defined mnemonics: If you want to define mnemonics for your own BLOB subtypes, you can add them
to the RDB$TY PES system table as shown below. Once committed, the mnemonics can be used in subsegquent
filter declarations.

insert into rdb$types (rdb$field_name, rdb$type, rdb$type_nane)
val ues (' RDB$FI ELD SUB TYPE', -33, '"MD")

The value for r db$f i el d_name must always be 'RDBSFIELD_SUB_TYPE'. If you define your mnemonicsin
all-uppercase, you can use them case-insensitively and unquoted in your filter declarations.

INDEX

CREATE INDEX
Availablein: DSQL, ESQL
Description: Creates an index on atable for faster searching, sorting and/or grouping.
Syntax:
CREATE [UNI QUE] [ASC] ENDING | [DESC ENDI NG] | NDEX i ndexnane
ON tabl enane

{ (<col> [, <col>...]) | COWPUTED BY (expression) }

<col> ::= a colum not of type ARRAY, BLOB or COWUTED BY

UNIQUE indices now allow NULLS
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints

37

DDL statements

now allow NULLS. As far as NULLs are concerned, the rules for unique indices are exactly the same as those
for unique keys.

Indexing on expressions
Added in: 2.0

Description: Instead of one or more columns, you can now also specify a single COMPUTED BY expression in
an index definition. Expression indices will be used in appropriate queries, provided that the expression in the
WHERE, ORDER BY or GROUPBY clause exactly matchesthe expression in the index definition. Multi-segment
expression indices are not supported, but the expression itself may involve multiple columns.

Examples:

create index ix_upnane on persons conputed by (upper(nane));
comm t;

-- the following queries will use ix_upnane:

sel ect * from persons order by upper(namne);

sel ect * from persons where upper(nane) starting with ' VAN ;
del ete from persons where upper(nanme) = ' BROMNW ;

del ete from persons where upper(nanme) = ' BROAWW and age > 65;

create descendi ng i ndex ix_events_yt

on MyEvents

computed by (extract(year from StartDate) || Town);
comm t;

-- the following query will use ix_events_yt:

select * from MyEvents
order by extract(year from StartDate) || Town desc;

Maximum index key length increased
Changedin: 2.0

Description: The maximum length of index keys, which used to be fixed at 252 bytes, is now equal to 1/4 of
the page size, i.e. varying from 256 to 4096. The maximum indexable string length in bytes is 9 less than the
key length. The table below shows the indexable string lengths in characters for the various page sizes and
character sets.

Table 6.2. Maximum indexable (VAR)CHAR length

Page size Maximum indexable string length per charset type

1 byte/char 2 bytes/char 3 bytes/char 4 bytes/char
1024 247 123 82 61
2048 503 251 167 125
4096 1015 507 338 253
8192 2039 1019 679 509
16384 4087 2043 1362 1021

38

DDL statements

Maximum number of indices per table increased
Changedin: 1.0.3, 1.5, 2.0

Description: The maximum number of 65 indices per table has been removed in Firebird 1.0.3, reintroduced at
the higher level of 257 in Firebird 1.5, and removed once again in Firebird 2.0.

Although there is no longer a“hard” ceiling, the number of indices creatable in practice is till limited by the
database page size and the number of columns per index, as shown in the table below.

Table 6.3. Max. indices per table, Firebird 2.0

Pagesize Number of indices depending on column count

1 col 2 cols 3cols
1024 50 35 27
2048 101 72 56
4096 203 145 113
8192 408 291 227
16384 818 584 454

Please be aware that under normal circumstances, even 50 indices is way too many and will drastically reduce
mutation speeds. The maximum was removed to accommodate data-warehousing applications and the like,
which perform lots of bulk operations with the indices temporarily inactivated.

For afull table aso including Firebird versions 1.0-1.5, see the Notes at the end of the book.

PROCEDURE

A stored procedure (SP) is a code module that can be called by the client, by another stored procedure, an
executable block or atrigger. Stored procedures, executable blocks and triggers are written in Procedural SQL
(PSQL). Most SQL statements are also available in PSQL, sometimes with restrictions or extensions. Notable
exceptions are DDL and transaction control statements.

Stored procedures can accept and return multiple parameters.

CREATE PROCEDURE
Availablein: DSQL, ESQL

Description: Creates a stored procedure.

39

DDL statements

Syntax:

CREATE PROCEDURE procnane
[(<inparanme [, <inparam> ...])]
[RETURNS (<outparanms [, <outparams ...])]
AS
[<decl ar ati ons>]
BEG N
[<PSQL st at ement s>]
END

<param decl > [{= | DEFAULT} val ue]

<par am decl >

<par am decl > paramane <type> [NOT NULL] [COLLATE coll ation]

<t ype> : sql _datatype | [TYPE OF] domain | TYPE OF COLUW rel.co
<declarations> ::= See PSQL::DECLARE for the exact syntax

<i npar anp
<out par anp

/* If sqgl_datatype is a string type, it may include a character set */

TYPE OF COLUMN in parameter and variable declarations

Added in: 2.5

Description: Analogousto the“TYPE OF domai n” syntax supported sinceversion 2.1, it isnow also possibleto
declare variables and parameters as having the type of an existing table or view column. Only the typeitself is
used; in the case of string types, thisincludes the character set and the collation. Constraints and default values

are never copied from the source column.
Example:

/* Assumi ng DDL autocommit and connection charset UTF8 */

create domai n dphrase as
var char (200) character set utf8 collate unicode_ci _ai

create table phrases (phrase dphrase);

set term#
create procedure equal phrases (a type of col um phrases. phrase,
b type of colum phrases. phrase)

returns (res varchar(30))

as

begi n
if (a=Db) thenres = "'Yes'; elseres = 'No';
suspend;

end#

set term ; #

sel ect res from equal phrases(' Appel ', 'appel');

-- result is 'Yes'

40

DDL statements

Warnings

» For text types, character set and collation are included by TYPE OF COLUMN — just as when [TYPE OF]
<donmi n> is used. However, due to a bug, the collation is not always taken into consideration when com-
parisons (e.g. equality tests) are made. In cases where the collation is of importance, test your code thor-
oughly before deploying! Thisbug is fixed for Firebird 3.

 |If the column's type is changed at a later time, PSQL code using that column may become invalid. For
information on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this
document.

Domains supported in parameter and variable declarations

Changedin: 2.1

Description: Firebird 2.1 and up support the use of domainsinstead of SQL datatypes when declaring input/out-
put parameters and local variables. With the “TYPE OF" modifier, only the domain's type is used — not its NOT
NULL setting, CHECK constraint and/or default value. If the domain is of atext type, its character set and col-
lation are always preserved.

Example:

create domain bool 3
smal | i nt
check (value is null or value in (0,1));

create domai n bi gposnum
bi gi nt
check (value >= 0);

/* Determines if Ais a multiple of B: */

set term#

create procedure ismultiple (a bigposnum b bigposnum
returns (res bool 3)

as
declare ratio type of bigposnum -- ratio is a bigint
decl are renmi nder type of bigposnum -- so is renminder
begi n

if (ais null or bis null) then res = null
else if (b =0) then

begi n
if (a=0) thenres = 1; else res = 0;
end
el se
begi n
ratio = a / b; -- integer division!

remai nder = a - b*rati o;
if (remainder = 0) then res = 1; else res = 0;
end
end#
set term ; #

Warning

If adomain'sdefinition ischanged, existing PSQL code using that domain may becomeinvalid. For information
on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

41

DDL statements

COLLATE in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example:

create procedure Spani shToDutch
(es_1 varchar (20) character set is08859 1 collate es_es,
es_2 my_char_domain col |l ate es_es)
returns
(nl _1 varchar (20) character set is08859 1 collate du_nl,
nl _2 my_char_domain collate du_nl)
as
decl are s_tenp varchar(100) character set utf8 collate unicode;
begi n

end

NOT NULL in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in declarations of input/output parameters and
local variables.

Example:
create procedure RegisterOder
(order_no int not null, description varchar(200) not null)
returns
(ticket_no int not null)
as
declare tenmp int not null;
begi n
end

Default argument values
Changedin: 2.0

Description: It is now possible to provide default values for stored procedure arguments, allowing the caller to
omit one or more items (possibly even al) from the end of the argument list.

42

DDL statements

Syntax:
CREATE PROCEDURE procnane (<inparam> [, <inparam> ...])
<inparan» ::= paramane datatype [{= | DEFAULT} val ue]

Important: If you provide a default value for a parameter, you must do the same for any and all
parameters following it.

BEGIN ... END blocks may be empty
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, alowing you to write stub code without
having to resort to dummy statements.

Example:

create procedure grab_ints (a integer, b integer)
as

begi n

end

ALTER PROCEDURE

Availablein: DSQL, ESQL

Default argument values
Addedin: 2.0

Description: Y ou can now provide default values for stored procedure arguments, alowing the caller to omit
one or more items from the end of the argument list. See CREATE PROCEDURE for syntax and details.

Example:

al ter procedure TestProc
(aint, b int default 1007, s varchar(12) = "'-")

Classic Server: Altered procedure immediately visible to other clients
Changedin: 2.5
Description: Traditionally, when a client used ALTER PROCEDURE on a Classic server, other clients would

keep seeing (and possibly executing) the old version for the duration of their connection. This has been fixed in
2.5. Now, dl clients see the new version as soon as the changes have been committed.

43

DDL statements

COLLATE in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables. See CREATE PROCEDURE for syntax and details.

Domains supported in parameter and variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up support the use of domainsinstead of SQL datatypes when declaring input/out-
put parameters and local variables. See CREATE PROCEDURE for syntax and details.

NOT NULL in variable and parameter declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in declarations of input/output parameters and
local variables. See CREATE PROCEDURE for syntax and details.

Restriction on altering used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

TYPE OF COLUMN in parameter and variable declarations
Added in: 2.5

Description: Analogous to the “TYPE OF domai n” syntax supported since version 2.1, it is now also possible
to declare variables and parameters as having the type of an existing table or view column. See CREATE PRO-
CEDURE for syntax and details.

CREATE OR ALTER PROCEDURE
Availablein: DSQL
Addedin: 1.5

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
already exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

44

DDL statements

Syntax: Exactly the same as for CREATE PROCEDURE.

DROP PROCEDURE

Availablein: DSQL, ESQL

Restriction on dropping used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

RECREATE PROCEDURE
Availablein: DSQL
Addedin: 1.0

Description: Creates or recreates a stored procedure. If a procedure with the same name already exists, RECRE-
ATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if the ex-
isting SPisin use.

Syntax: Exactly the same as CREATE PROCEDURE.

Restriction on recreating used procedures
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

SEQUENCE or GENERATOR

CREATE SEQUENCE
Availablein: DSQL

Added in: 2.0

45

DDL statements

Description: Creates a hew sequence or generator. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have always called a generator. CREATE SEQUENCE is fully equivalent to CREATE GENERATOR
and is the recommended syntax from Firebird 2.0 onward.

Syntax:

CREATE SEQUENCE sequence- nane
Example:

create sequence seqtest

Because internally sequences and generators are the same thing, you can freely mix the generator and sequence
syntaxes, even when operating on the same object. Thisis not recommended however.

Sequences (or generators) are always stored as 64-bit integer val ues, regardl ess of the database dialect. However:

» If theclient dialect isset to 1, the server passes generator values as truncated 32-bit values to the client.

» If generator valuesarefed into a32-bit field or variable, all goeswell until the actual value exceeds the 32-bit
range. At that point, adialect 3 database will raise an error whereas adialect 1 database will silently truncate
the value (which could also lead to an error, e.g. if the receiving field has a unique key defined on it).

See also: ALTER SEQUENCE, NEXT VALUE FOR, DROP SEQUENCE

CREATE GENERATOR
Availablein: DSQL, ESQL

Better alternative: CREATE SEQUENCE

CREATE SEQUENCE preferred
Changed in: 2.0

Description: From Firebird 2.0 onward, the SQL-compliant CREATE SEQUENCE syntax is preferred.

Maximum number of generators significantly raised
Changedin: 1.0

Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K
pages) — 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

ALTER SEQUENCE
Availablein: DSQL

Added in: 2.0

46

DDL statements

Description: (Re)initializes a sequence or generator to the given value. SEQUENCE is the SQL-compliant term
for what InterBase and Firebird have aways caled agenerator. “ALTER SEQUENCE ... RESTART WITH" isfully
equivalent to “SET GENERATOR ... TO” and is the recommended syntax from Firebird 2.0 onward.

Syntax:
ALTER SEQUENCE sequence-nane RESTART W TH <newal >
<newal > ::= A signed 64-bit integer val ue.
Example:

alter sequence seqtest restart with 0

Warning

Careless use of ALTER SEQUENCE isamighty fineway of screwing up your database! Under normal circum-
stances you should only use it right after CREATE SEQUENCE, to set the initial value.

See also: CREATE SEQUENCE

SET GENERATOR
Availablein: DSQL, ESQL
Better alternative: ALTER SEQUENCE

Description: (Re)initializes a generator or sequence to the given value. From Firebird 2 onward, the SQL-com-
pliant ALTER SEQUENCE syntax is preferred.

Syntax:
SET CENERATOR generat or-nane TO <new val ue>

<newvalue> ::= A 64-bit integer.

Warning

Once a generator or sequence is up and running, you should not tamper with its value (other than retrieving
next values with GEN_ID or NEXT VALUE FOR) unless you know exactly what you are doing.

DROP SEQUENCE
Availablein: DSQL
Added in: 2.0

Description: Removes asequence or generator from the database. Its (very small) storage space will befreed for
re-use after abackup-restore cycle. SEQUENCE isthe SQL-compliant term for what InterBase and Firebird have
always called agenerator. DROP SEQUENCE isfully equivalent to DROP GENERATOR and is the recommended
syntax from Firebird 2.0 onward.

47

DDL statements

Syntax:

DROP SEQUENCE sequence- nanme
Example:

drop sequence seqt est

See also: CREATE SEQUENCE

DROP GENERATOR
Availablein: DSQL

Addedin: 1.0

Better alternative: DROP SEQUENCE

Description: Removes a generator or sequence from the database. Its (very small) storage space will be freed
for re-use after a backup-restore cycle.

Syntax:
DROP GENERATCR gener at or - nane

From Firebird 2.0 onward, the SQL-compliant DROP SEQUENCE syntax is preferred.

TABLE

CREATE TABLE

Availablein: DSQL, ESQL

Global Temporary Tables (GTTSs)
Addedin: 2.1

Description: Globa temporary tables have persistent metadata, but their contents are transaction-bound (the
default) or connection-bound. Every transaction or connection has its own private instance of a GTT, isolated
from all the others. Instances are only created if and whenthe GTT isreferenced, and destroyed upon transaction
end or disconnection. To modify or remove a GTT's metadata, ALTER TABLE and DROP TABLE can be used.

Syntax:

CREATE GLOBAL TEMPORARY TABLE nane
(colum_def [, columm_def | table_constraint ...])
[ON COWM T {DELETE | PRESERVE} RO\5]

48

DDL statements

ON COMMIT DELETE ROWS creates a transaction-level GTT (the default), ON COMMIT PRE-
SERVE ROWS a connection-level GTT.

An EXTERNAL [FILE] clauseis not allowed on a global temporary table.

Restrictions: GTTs can be “dressed up” with al the features and paraphernalia of ordinary tables (keys, refer-
ences, indices, triggers...) but there are afew restrictions:

e GTTsand regular tables cannot reference one another.

» A connection-bound (“PRESERVE ROWS’) GTT cannot reference a transaction-bound (“DELETE ROWS")
GTT.

» Domain constraints cannot reference any GTT.

» Thedestruction of aGTT instance at the end of its life cycle does not cause any before/after delete triggers
to fire.

Example:

create global tenporary table MyConnGIT (

)

idint not null primry key,
txt varchar (32),
ts tinmestanp default current_timestanp

on conmmit preserve rows;

comm t;

create global tenporary table MyTXGIT (

)

idint not null primry key,

parent _id int not null references MyConnGIT(id),
txt varchar (32),

ts tinestanp default current _tinestanp

comm t;

Tip

In an existing database, it's not always easy to tell aregular table from aGTT, or atransaction-level GTT from
aconnection-level GTT. Use this query to find out atable's type:

sel ect t.rdb$type nane
fromrdb$rel ations r
join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$fiel d_nane = ' RDBSRELATI ON_TYPE'
and r.rdb$rel ati on_nanme = ' TABLENAME'

Or, for an overview of al your relations:

sel ect r.rdb$rel ati on_nane, t.rdb$type_nane
fromrdb$rel ations r
join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$field _nane = ' RDBSRELATI ON_TYPE'
and coal esce (r.rdb$systemflag, 0) =0

49

DDL statements

GENERATED ALWAYS AS
Added in: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAYSAS for computed fields.

Syntax:
col nane [coltype] CGENERATED ALWAYS AS (expression)
Example:
create table Persons (
idint primry key,
firstname varchar(24) not null,
m ddl ename var char (24),
| ast name varchar (24) not null,
ful |l name varchar(74) generated al ways as

(firstnane || coalesce(' ' || mddlenane, ') || ' ' || |astnane),
street varchar(32),

)

Note: GENERATED ALWAYSAS s not currently supported in index definitions.

CHECK accepts NULL outcome
Changedin: 2.0

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLS pass and only consider the check failed if the
outcomeisf al se.

Example:
Checks like these:
check (val ue > 10000)
check (Town like 'Amrst%)
check (upper(value) in ("A, "B, "X))
check (M ni num <= Maxi nmum)

all fail in pre-2.0 Firebird versionsif the value to be checked isNULL. In 2.0 and above they succeed.

Warning

This change may cause existing databases to behave differently when migrated to Firebird 2.0+. Carefully
examine your CREATE/ALTER TABLE statements and add “and XXX is not null” predicates to your
CHECKSsif they should continue to reject NULL input.

50

DDL statements

Context variables as column defaults
Changedin: IB

Description: Any context variablethat isassignment-compatibl e to the column datatype can be used as adefault.
Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

create table MyData (
idint not null primry key,
record_created tinmestanp default current _timestanp,

FOREIGN KEY without target column references PK
Changed in: 1B

Description: If you create a foreign key without specifying atarget column, it will reference the primary key
of the target table. Thiswas already the casein InterBase 6, but the B Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:

create table eik (
a int not null primary key,
b int not null unique

)

create table beuk (
b int references eik

)i

-- beuk.b references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access
Changedin: 2.0

Description: In Firebird 2.0 and above, creating a foreign key constraint no longer requires exclusive access
to the database.

UNIQUE constraints now allow NULLS
Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE congtraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

51

DDL statements

For UNIQUE keys that span multiple columns, the logic is alittle complicated:
» Multiple rows having all the UK columns NULL are allowed.
» Multiple rows having a different subset of UK colums NULL are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

Oneway of summarizing thisisasfollows: In principle, all NULLs are considered distinct. But if two rows have
exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just asif they constituted the entire unique key.

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide auser-defined name for the automatically created index that enforces the constraint, and

» optionally define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraints are named after the constraint (thisisnew behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDBSFOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

Syntax:

[CONSTRAI NT const rai nt - nane]
<constraint-type> <constraint-definition>
[USI NG [ASCI ENDI NG | DESC ENDI NG] | NDEX index_name]

Examples:
The first example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:

create table custoners (
custno int not null constraint pk_cust primary key using index iXx_custno,

52

DDL statements

This, however:

create table custoners (
custno int not null primary key using index ix_custno,

..will giveyou aPK constraint called INTEG_7 or something similar, and an index IX_CUSTNO.
Some more examples:

create table people (
idint not null,
ni ckname varchar(12) not null,
country char (4),

constraint pk_people primary key (id),
constrai nt uk_ni ckname uni que (nicknanme) using index ix_nick

)

alter table people
add constraint fk_people_country
foreign key (country) references countries(code)
usi ng desc index ix_people_country

I mportant

If you define a descending constraint-enforcing index on a primary or unique key, be sure to make any foreign
keysreferencing it descending as well.

ALTER TABLE

Availablein: DSQL, ESQL

ADD column: Context variables as defaults
Changedin: IB

Description: Any context variable that is assignment-compatibl e to the new column's datatype can be used as a
default. Thiswas aready the case in InterBase 6, but the Language Reference only mentioned USER.

Example:

alter table MWData
add MyDay date default current_date

ALTER COLUMN also for generated (computed) columns
Availablein: DSQL
Added in: 2.5

53

DDL statements

Description: Firebird 2.5 supportsthe altering of generated (computed) columns, something that was previously
impossible. Only the data type and the generation expression can be changed; you cannot change a base column
into a generated column or vice versa.

Syntax:
ALTER TABLE tabl ename ALTER [COLUMN] gencol nane

[TYPE dat at ype]
{ GENERATED ALWAYS AS | COWMPUTED BY} (expression)

Example:

create table nuns (a int, b generated always as (3*a));
comm t;

alter table nunms alter b generated al ways as (4*a + 7);
commt;

Notice that you can use GENERATED ALWAY S AS when altering columns defined with COMPUTED BY and
vice versa

ALTER COLUMN ... TYPE no longer fails if column is used in trigger or SP
Changedin: 2.5
Description: Previoudly, if atable column was referenced in a stored procedure or trigger, the column's type

could not be changed, even if the change would not break the PSQL code. Now such changes are permitted —
even if they do break the code.

Warning

This means that, in the current situation, you can commit changes that break SP's or triggers without getting
as much as awarning! For information on how to track down invalidated PSQL modules after a column type
change, please read the note The RDB$VALID_BLR field, near the end of this document.

ALTER COLUMN: DROP DEFAULT
Availablein: DSQL
Added in: 2.0
Description: Firebird 2 adds the possihility to drop a column-level default. Once the default is dropped, there
will either be no default in place or — if the column'’s type is a DOMAIN with a default — the domain default
will resurface.
Syntax:
ALTER TABLE tabl enane ALTER [COLUMN] col nane DROP DEFAULT

Example:

alter table Trees alter Grth drop default

54

DDL statements

Anerrorisraised if you use DROP DEFAULT on acolumn that doesn't have a default or whose effective default
is domain-based.

ALTER COLUMN: SET DEFAULT
Availablein: DSQL
Added in: 2.0

Description: Firebird 2 adds the possibility to set/alter defaults on existing columns. If the column aready had
adefault, the new default will replace it. Column-level defaults always override domain-level defaults.

Syntax:
ALTER TABLE tabl enane ALTER [COLUMN] col name SET DEFAULT <defaul t >
<default> ::= literal-value | context-variable | NULL

Example:

alter table Custoners alter EnteredBy set default current_user

Tip

If you want to switch off a domain-based default on a column, set the column default to NULL.

ALTER COLUMN: POSITION now 1-based
Changedin: 1.0

Description: When changing a column's position, the engine now interprets the new position as 1-based. This
isin accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as 0-based.

Syntax:
ALTER TABLE tabl enanme ALTER [COLUWMN] col nanme POSI TI ON <newpos>
<newpos> ::= an integer between 1 and the nunber of col umms
Example:

alter table Stock alter Quantity position 3

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain O-
based.

CHECK accepts NULL outcome
Changedin: 2.0

55

DDL statements

Description: If a CHECK constraint resolves to NULL, Firebird versions before 2.0 reject the input. Following
the SQL standard to the letter, Firebird 2.0 and above let NULLS pass and only consider the check failed if the
outcomeisf al se. For more information see under CREATE TABLE.

FOREIGN KEY without target column references PK
Changed in: IB

Description: If you create a foreign key without specifying atarget column, it will reference the primary key
of the target table. Thiswas already the casein InterBase 6, but the B Language Reference wrongly states that
in such cases, the engine scans the target table for a column with the same name as the referencing column.

Example:
create table eik (

a int not null prinmary key,
b int not null unique

);

create table beuk (
b int
I

alter table beuk
add constraint fk_beuk
foreign key (b) references eik

-- beuk.b now references eik.a, not eik.b !

FOREIGN KEY creation no longer requires exclusive access
Changedin: 2.0

Description: In Firebird 2.0 and above, adding a foreign key constraint no longer requires exclusive access to
the database.

GENERATED ALWAYS AS
Added in: 2.1

Description: Instead of COMPUTED [BY], you may also use the SQL-2003-compliant equivalent GENERATED
ALWAY S AS for computed fields.

Syntax:
col name [col type] GENERATED ALWAYS AS (expression)
Example:

alter table Friends
add ful | name varchar (74)
gener ated al ways as
(firstname || coalesce(' ' || mddlenanme, "") || ' " || |astnane)

56

DDL statements

UNIQUE constraints now allow NULLS
Changed in: 1.5

Description: In compliance with the SQL-99 standard, NULLSs — even multiple — are now allowed in columns
with a UNIQUE constraint. For afull discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLS.

USING INDEX subclause
Availablein: DSQL
Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and

» optionaly define the index to be ascending or descending (the default being ascending).

Syntax:

[ADD] [CONSTRAI NT constrai nt - nane]
<constraint-type> <constraint-definition>
[USI NG [ASCI ENDI NG | DESC] ENDI NG] | NDEX i ndex_nane]

For afull discussion and examples, see CREATE TABLE :: USING INDEX subclause.

RECREATE TABLE
Availablein: DSQL
Added in: 1.0

Description: Creates or recreates atable. If atable with the same name already exists, RECREATE TABLE will
try to drop it (destroying all its datain the process!) and create a new table. RECREATE TABLE will fail if the
existing tableisin use.

Syntax: Exactly the same as CREATE TABLE.

TRIGGER

CREATE TRIGGER
Availablein: DSQL, ESQL

Description: Createsatrigger, ablock of PSQL codethat isexecuted automatically upon certain database events
or mutationsto atable or view.

57

DDL statements

Syntax:

CREATE TRI GGER nane
{<relation_trigger_legacy>
| <relation_trigger_sql 2003>
| <database_trigger> }
AS
[<decl ar ati ons>]
BEA N
[<st at ement s>]
END

<relation_trigger_| egacy> FOR {tabl enane | vi ewnane}
[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <nutation_list>

[PCSI TI ON nunber]

<rel ation_trigger_sql 2003> [ACTI VE | | NACTI VE]
{BEFORE | AFTER} <nutation_list>
[PCSI TI ON nunber]

ON {tabl enane | viewnane}

<dat abase_tri gger> 1= [ACTIVE | | NACTI VE]
ON db_event
[PCSI TI ON number]

<nutation_list> ::= mutation [OR nutation [OR nutation]]
nut ati on = | NSERT | UPDATE | DELETE
db_event = CONNECT | DI SCONNECT | TRANSACTI ON START
| TRANSACTI ON COMM T | TRANSACTI ON ROLLBACK
nunber = 0..32767 (default is 0)
<decl ar ati ons> ::= See PSQL::DECLARE for the exact syntax

» “Legacy” and “sgl2003” relation triggers are exactly the same. The only thing that differsisthe
creation syntax.

» Triggers with lower position numbers fire first. Position numbers need not be unique, but if two
or more triggers have the same position, the firing order between them is undefined.

» When defining relation triggers, each mutation type (INSERT, UPDATE or DELETE) may occur
at most once in the mutation list.

SQL-2003-compliant syntax for relation triggers
Added in: 2.1

Description: Since Firebird 2.1, an aternative, SQL-2003-compliant syntax can be used for triggers on tables
and views. Instead of specifying “FOR r el at i onnanme” before the event type and the optional directives sur-
rounding it, you can now put “ON r el at i onnane” after it, as shown in the syntax earlier in this chapter.

Example:
create trigger biu_books

active before insert or update position 3
on books

58

DDL statements

as
begi n
if (new.idis null)
then new.id = next value for gen_bookids;
end

Database triggers

Added in: 2.1

Description: Since Firebird 2.1, triggers can be defined to fire upon the database events CONNECT, DISCON-
NECT, TRANSACTION START, TRANSACTION COMMIT and TRANSACTION ROLLBACK. Only the database
owner and SYSDBA can cresate, alter and drop these triggers.

Syntax:

CREATE TRI GGER nane

[ACTI VE | | NACTI VE]
ON db_event
[PCSI TI ON nunber]
AS

[<decl ar ati ons>]
BEG N

[<stat ement s>]

END
db_event = CONNECT | DI SCONNECT | TRANSACTI ON START
| TRANSACTION COVMM T | TRANSACTI ON ROLLBACK
nunber = 0..32767 (default is 0)
<decl ar ati ons> ::= See PSQL::DECLARE for the exact syntax
Example:
create trigger tr_connect
on connect
as
begi n

insert into dblog (w e, wanneer, wat)
val ues (current _user, current_timestanp, 'verbind');
end

Execution of database triggers and handling of exceptions:

CONNECT and DISCONNECT triggers are executed in a transaction created specifically for this purpose. If
all goeswell, the transaction is committed. Uncaught exceptions roll back the transaction, and:

In the case of a CONNECT trigger, the connection is then broken and the exception returned to the client.
With a DISCONNECT trigger, exceptions are not reported and the connection is broken as foreseen.

TRANSACTION triggers are executed within the transaction whose opening, committing or rolling-back
evokes them. The actions taken after an uncaught exception depend on the type:

In a START trigger, the exception is reported to the client and the transaction is rolled back.

In a COMMIT trigger, the exception is reported, the trigger's actions so far are undone and the commit
is canceled.

In aROLLBACK trigger, the exception is not reported and the transaction is rolled back as foreseen.

59

DDL statements

It followsfrom the above that thereisno direct way of knowing if aDISCONNECT or TRANSACTION ROLL-
BACK trigger caused an exception.

» It aso follows that you can't connect to a database if a CONNECT trigger causes an exception, and that you
can't start a transaction if a TRANSACTION START trigger does so. Both phenomena effectively lock you
out of your database while you need to get in there to fix the problem. See the note below for away around
this Catch-22 situation.

* In the case of a two-phase commit, TRANSACTION COMMIT triggers fire in the prepare, not the commit
phase.

Note

Some Firebird command-line tools have been supplied with new switches to suppress the automatic firing of
database triggers:

gbak -nodbtriggers
i sql -nodbtriggers
nbackup -T

These switches can only be used by the database owner and SY SDBA.

TYPE OF COLUMN in variable declarations
Added in: 2.5

Description: Analogous to the “TYPE OF domai n” syntax supported since version 2.1, it is now also possible
to declare variables as having the type of an existing table or view column. See PSQL::DECLARE for syntax
and details.

Domains instead of datatypes
Changedin: 2.1

Description: Firebird 2.1 and up alow the use of domainsinstead of SQL datatypeswhen declaring local trigger
variables. See PSQL::DECLARE for the exact syntax and details.

COLLATE in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clausesin local variable declarations. See PSQL::DECLARE
for syntax and details.

NOT NULL in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up alow NOT NULL constraints in local variable declarations. See
PSQL::DECLARE for syntax and details.

60

DDL statements

Multi-action triggers
Addedin: 1.5

Description: Relation triggers can be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (I NSERTI NG, UPDATI NG and DELETI NG) have been added so
you can execute code conditionally within the trigger body depending on the type of operation.

Example:

create trigger biu_parts for parts
before insert or update
as
begi n
/* conditional code when inserting: */
if (inserting and new.id is null)
then new.id = gen_id(gen_partrec_id, 1);

/* comon code: */
new. part nane_upper = upper (new. partnane);
end

Note

In multi-action triggers, both context variables OLD and NEW are always available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

* If youtry to read their field values, NULL is returned.
« If you try to assign values to them, a runtime exception is thrown.

BEGIN ... END blocks may be empty

Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position 0

as

begi n

end

CREATE TRIGGER no longer increments table change count
Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

61

DDL statements

PLAN allowed in trigger code
Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER
Availablein: DSQL, ESQL

Description: Altersan existing trigger. Relation triggers cannot be changed into database triggers or vice versa.
The associated table or view of arelation trigger cannot be changed.

Syntax:

ALTER TRI GGER nane
[ACTI VE | | NACTI VE]
[{BEFORE | AFTER} <mutation_list> | ON db_event]
[PCSI TI ON numnber]
[AS
[<decl ar ati ons>]
BEA N
[<stat ement s>]
END]

* See CREATE TRIGGER for the meaning of <nut ati on_| i st > etc.

Database triggers

Added in: 2.1

Description: The ALTER TRIGGER syntax (see above) has been extended to support database triggers. For afull
discussion of thisfeature, see CREATE TRIGGER :: Database triggers.

TYPE OF COLUMN in variable declarations
Added in: 2.5

Description: Analogous to the “TYPE OF domai n” syntax supported since version 2.1, it is now also possible
to declare variables as having the type of an existing table or view column. See PSQL::DECLARE for syntax
and details.

Domains instead of datatypes
Changedin: 2.1

Description: Firebird 2.1 and up allow the use of domainsinstead of SQL datatypeswhen declaring local trigger
variables. See PSQL.::DECLARE for the exact syntax and details.

62

DDL statements

COLLATE in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in local variable declarations. See PSQL::DECLARE
for syntax and details.

NOT NULL in variable declarations
Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in local variable declarations. See
PSQL::DECLARE for syntax and details.

Multi-action triggers
Added in: 1.5

Description: The ALTER TRIGGER syntax (see above) has been extended to support multi-action triggers. For
afull discussion of thisfeature, see CREATE TRIGGER :: Multi-action triggers.

Restriction on altering used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

PLAN allowed in trigger code
Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

ALTER TRIGGER no longer increments table change count
Changedin: 1.0

Description: Each timeyou use CREATE, ALTER or DROP TRIGGER, InterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can still work with the datathough). A backup-restore cycleis needed to reset the counter and perform
metadata operations again.

While this obligatory cleanup after many metadata changesisin itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivatetriggersduring e.g. bulk import operations are forced to backup
and restore much more often then needed.

63

DDL statements

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the
table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, ater or drop triggers for that table.

CREATE OR ALTER TRIGGER
Availablein: DSQL
Added in: 1.5

Description: If the trigger does not yet exist, it is created just asif CREATE TRIGGER were used. If it already
exigts, it is atered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE TRIGGER.

DROP TRIGGER

Availablein: DSQL, ESQL

Restriction on dropping used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating a trigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

DROP TRIGGER no longer increments table change count
Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

RECREATE TRIGGER
Availablein: DSQL
Addedin: 2.0

Description: Creates or recreatesatrigger. If atrigger with the same name already exists, RECREATE TRIGGER
will try to drop it and create a new trigger. RECREATE TRIGGER will fail if the existing trigger isin use.

Syntax: Exactly the same as CREATE TRIGGER.

DDL statements

Restriction on recreating used triggers
Changedin: 2.0, 2.0.1

Description: In Firebird 2.0 only, a restriction is in place which prevents anyone from dropping, altering or
recreating atrigger or stored procedure if it has been used since the database was opened. This restriction has
been removed again in version 2.0.1. Still, performing these operations on a live database is potentially risky
and should only be done with the utmost care.

VIEW

CREATE VIEW
Availablein: DSQL, ESQL
Syntax:
CREATE VI EW vi ewnane [<ful |l _col um_li st >]
ﬁillect_statenent>

[W TH CHECK OPTI ON]

<full _colum_list> ::= (colnane [, colname ...])

Views can select from stored procedures
Changedin: 2.5
Description: In Firebird 2.5 and up, views can select from selectable stored procedures.
Example:
create view | ow_bones as

sel ect id, name, description fromthem bones(' human')
where name in ('leg_bone', 'foot_bone', 'toe_bone')

Views can infer column names from derived tables or GROUP BY
Changedin: 2.5

Description: In Firebird 2.5 and up, views can infer the names of columns from a derived table or involved
in a GROUP BY clause. Previoudly it was necessary to specify explicit aiases for these columns (either per
column or in afull list).

Examples:

create view tickle as
select t from(select t fromtackle)

65

DDL statements

create view vstocks as
sel ect kind, sun(stock) s from stocks
group by ki nd

In the second example, notice that it is still necessary to alias the SUM column. Previous Firebird

versions also required an explicit alias for the KIND column.

Per-column aliases supported in view definition

Changedin: 2.1

Description: Firebird 2.1 and up allow the use of column aliasesin the SELECT statement. Y ou can alias none,
some or al of the columns; each aias used becomes the name of the corresponding view column.

Syntax (partial):

CREATE VI EW vi ewnane [<full _col umm_li st >]

AS
SELECT <col umm_def> [, <columm_def> ...]

<full _colum_list> ::= (colname [, colnane ...])
<col umm_def > ::= {source_col | expr} [[AS] colalias]
Notes:

» |f the full column list is also present, specifying column aliases is futile as they will be overridden by the
names in the column list.

e The full column list used to be mandatory for views whose SELECT statement contains expression-based
columns or identical column names. Now you can omit the full column list, provided that you aias such
columnsin the SELECT clause.

Full SELECT syntax supported

Changedin: 2.0, 2.5

Description: From Firebird 2.0 onward view definitions are considered full-fledged SELECT statements. Con-
sequently, the following elements are (re)allowed in view definitions: FIRST, SKIP, ROWS, ORDER BY, PLAN
and UNION.

Note

In Firebird 2.5 and up, it is no longer necessary to supply aview column list if the view is based on a UNION:

create view vpl anes as
sel ect make, nodel fromjets
uni on
sel ect make, nodel from props
uni on
sel ect make, nodel fromgliders

The column nameswill be taken from the union. Of course you can still override them with aview column list.

66

DDL statements

PLAN subclause disallowed in 1.5, reallowed in 2.0
Changedin: 1.5, 2.0

Description: Firebird versions 1.5.x forbid the use of a PLAN subclause in a view definition. From 2.0 onward
aPLAN isallowed again.

Triggers on updatable views block auto-writethrough
Changedin: 2.0

Description: In versions prior to 2.0, Firebird often did not block the automatic writethrough to the underlying
table if one or more triggers were defined on a naturally updatable view. This could cause mutations to be
performed twice unintentionally, sometimes leading to data corruption and other mishaps. Starting at Firebird
2.0, thismisbehaviour has been corrected: now if you defineatrigger on anaturally updatable view, no mutations
to the view will be automatically passed on to the table; either your trigger takes care of that, or nothing will.
Thisisin accordance with the description in the InterBase 6 Data Definition Guide under Updating views with
triggers.

Warning

Some people have developed code that counts on or takes advantage of the prior behaviour. Such code should
be corrected for Firebird 2.0 and higher, or mutations may not reach the table at all.

View with non-participating NOT NULL columns in base table can be made
insertable

Changedin: 2.0

Description: Any view whose base table contains one or more non-participating NOT NULL columns is read-
only by nature. It can be made updatable by the use of triggers, but even with those, al INSERT attempts into
such views used to fail because the NOT NULL constraint on the base table was checked before the view trigger
got a chance to put things right. In Firebird 2.0 and up this is no longer the case: provided the right trigger is
in place, such views are now insertable.

Example:

The view below would give validation errors for any insert attempts in Firebird 1.5 and earlier. In
Firebird 2.0 and up it isinsertable:

create table base (x int not null, y int not null);
create view vbase as sel ect x from base;

set term#;
create trigger bi_base for vbase before insert
as
begi n
if (new.x is null) then new. x = 33;
insert into base values (new. x, 0);

67

DDL statements

end#
set term ; #

Notes:

» Please notice that the problem described above only occurred for NOT NULL columns that were |eft outside
the view.

» Oddly enough, the problem would be gone if the base table itself had a trigger converting NULL input to
something valid. But then therewas arisk that theinsert would take place twice, due to the auto-writethrough
bug that has also been fixed in Firebird 2.

ALTER VIEW
Availablein: DSQL
Addedin: 2.5

Description: Firebird 2.5 and up support ALTER VIEW, alowing you to change a view's definition without
having to drop it first. Existing dependencies are preserved.

Syntax: Exactly the same as CREATE VIEW.

CREATE OR ALTER VIEW
Availablein: DSQL
Added in: 2.5

Description: CREATEORALTERVIEW will createtheview if it doesn't exist. Otherwise, it will alter theexisting
view, preserving existing dependencies.

Syntax: Exactly the same as CREATE VIEW.

RECREATE VIEW
Availablein: DSQL
Addedin: 1.5

Description: Cresates or recreates a view. If aview with the same name aready exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view isin use.

Syntax: Exactly the same as CREATE VIEW.

68

Chapter 7

DML statements

DELETE

Availablein: DSQL, ESQL, PSQL

Description: Deletes rows from a database table (or from one or more tables underlying a view), depending on
the WHERE and ROWS clauses.

Syntax:

DELETE

[TRANSACTI ON nane]

FROM {tabl enane | viewnane} [[AS] alias]

[WHERE {search-conditions | CURRENT OF cursornane}]

[PLAN pl an_itens]

[ORDER BY sort_itens]

[ROA6 < [TO <n>]]

[RETURNI NG <val ues> [| NTO <vari abl es>]]
<, <n> ::= Any expression evaluating to an integer.
<val ues> ::= value_expression [, value_expression ...]
<vari abl es> = varname [, :varnanme ...]

Restrictions

e The TRANSACTION directiveis only available in ESQL.

¢ Inapure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

e ThePLAN, ORDER BY and ROWS clauses are not available in ESQL.

e The RETURNING clauseisnot availablein ESQL.

e The"INTO <vari abl es>" subclauseisonly availablein PSQL.

« When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

delete from MyTabl e
where NaneBl ob collate pt_br = 'Joé&o'

69

DML statements

ORDER BY
Availablein: DSQL, PSQL
Addedin: 2.0

Description: DELETE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but is aso valid without it.

PLAN
Availablein: DSQL, PSQL
Addedin: 2.0

Description: DELETE now allows aPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
delete fromCities where nanme starting ' Al ex'
delete fromCities where Cities.name starting 'Al ex'
delete fromCties C where nanme starting 'Alex'
delete fromCities C where C. nanme starting 'Al ex'

No longer possible:

delete fromCities C where Cities.nane starting ' Al ex'

RETURNING
Availablein: DSQL, PSQL

Added in: 2.1

70

DML statements

Description: A DELETE statement removing at most one row may optionally include a RETURNING clausein
order to return values from the deleted row. The clause, if present, need not contain all of the relation's columns
and may also contain other columns or expressions.

Examples:

del ete from Schol ars
where firstnane = 'Henry' and | astnanme = 'Higgins'
returning |astnanme, fullname, id

del ete from Dunbbel I s
order by iq desc
rows 1
returning lastname, iq into :lname, :iq;

Notes:

* InDSQL, astatement with aRETURNING clause always returns exactly one row. If no record was actually
deleted, thefieldsin thisrow areall NULL. Thisbehaviour may changein alater version of Firebird. In PSQL,
if no row was deleted, nothing is returned, and the receiving variables keep their existing values.

ROWS
Availablein: DSQL, PSQL
Added in: 2.0
Description: Limits the amount of rows deleted to a specified number or range.
Syntax:
RONS < [TO <n>]
<mp, <n> ::= Any expression evaluating to an integer.

With a single argument m the deletion is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

* |f m>thetota number of rows in the dataset, the entire set is deleted.
e |f m=0, norows are deleted.
e |f m<O, an error israised.

With two arguments mand n, the deletion is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

e |If m> thetota number of rows in the dataset, no rows are deleted.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are del eted.
e Ifm<lorn<1, anerorisraised.

e If n=m1, norows are deleted.

e If n<ml, anerror israised.

71

DML statements

ROWS can aso be used with the SELECT and UPDATE statements.

EXECUTE BLOCK

Availablein: DSQL
Added in: 2.0
Changedin: 2.1, 2.5

Description: Executes ablock of PSQL code asiif it were a stored procedure, optionally with input and output
parametersand variable declarations. Thisallowsthe user to perform * on-the-fly” PSQL withinaDSQL context.

Syntax:

EXECUTE BLOCK [(<i nparams>)]
[RETURNS (<out par anms>)]
AS
[<decl ar ati ons>]
BEG N
[<PSQL st at ement s>]
END

<i npar ans>
<out par ans>
<par am decl >
<type>
<decl ar ati ons>

<paramdecl > = ? [, <inparams>]
<par am decl > [, <outparans>]

paramane <type> [NOT NULL] [COLLATE coll ation]

sql _datatype | [TYPE OF] domain | TYPE OF COLUW rel. col
See PSQL::DECLARE for the exact syntax

Examples:

This example injects the numbers 0 through 127 and their corresponding ASCII characters into the
table ASCIITABLE:

execut e bl ock

as
declare i int = 0;
begi n
while (i < 128) do
begi n
insert into AsciiTable values (:i, ascii_char(:i));
i =i + 1;
end
end

The next example calcul ates the geometric mean of two numbers and returns it to the user:

execute bl ock (x double precision = ?, y double precision = ?)
returns (gnean doubl e precision)
as
begi n
gnean = sqrt(x*y);
suspend;
end

72

DML statements

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all — see the notes below.

Our last exampletakestwo integer values, smal | est and| ar gest . For al the numbersinthe range
smal | est .1 ar gest , the block outputs the number itself, its square, its cube and its fourth power.

execute block (smallest int = ?, largest int = ?)
returns (number int, square bigint, cube bigint, fourth bigint)
as
begi n
number = small est;
whil e (nunber <= |argest) do

begi n
square = nunber * nunber;
cube = nunmber * square;
fourth = nunber * cube;
suspend;
nunber = nunber + 1;

end

end

Again, it depends on the client software if and how you can set the parameter values.

Notes:

» Some clients, especially those allowing the user to submit several statements at once, may require you to
surround the EXECUTE BLOCK statement with SET TERM lines, like this:

set term #;
execute block (...)
as
begi n
st at enent 1;
st at enent 2;
end
#
set term ; #

In Firebird'sisgl client you must set the terminator to something other than “; ” before you type in the EXE-
CUTE BLOCK statement. Otherwise isgl, being line-oriented, will try to execute the part you have entered as
soon as it encounters the first semicolon.

» Executing ablock without input parameters should be possible with every Firebird client that allows the user
to enter his or her own DSQL statements. If there are input parameters, things get trickier: these parameters
must get their values after the statement is prepared but beforeit is executed. Thisrequires special provisions,
which not every client application offers. (Firebird's own isgl, for one, doesn't.)

» The server only accepts question marks (“?”) as placeholders for the input values, not “: a”, “: MyPar anf
etc., or literal values. Client software may support the “: xxx” form though, which it will preprocess before
sending it to the server.

 If the block has output parameters, you must use SUSPEND or nothing will be returned.

e Output is always returned in the form of a result set, just as with a SELECT statement. You can't use
RETURNING_VALUES or execute the block INTO some variables, even if there's only one result row.

73

DML statements

COLLATE in variable and parameter declarations

Changedin: 2.1

Description: Firebird 2.1 and up allow COLLATE clauses in declarations of input/output parameters and local
variables.

Example:

execut e bl ock
(es_1 varchar(20) character set is08859 1 collate es_es = ?)

returns
(nl _1 varchar (20) character set is08859 1 collate du_nl)
as
decl are s_tenp varchar(100) character set utf8 collate unicode
begi n
end

NOT NULL in variable and parameter declarations

Changedin: 2.1

Description: Firebird 2.1 and up allow NOT NULL constraints in declarations of input/output parameters and
local variables.

Example:
execute block (a int not null =2, bint not null = ?)
returns (product bigint not null, nessage varchar(20) not null)
as
decl are usel ess_dumy tinestanp not null
begi n
product = a*b;
if (product < 0) then nessage = 'This is bel ow zero.';
else if (product > 0) then nessage = 'This is above zero.';
el se nessage = 'This nust be zero.';
suspend;
end

Domains instead of datatypes

Changedin: 2.1

Description: Firebird 2.1 and up alow the use of domainsinstead of SQL datatypes when declaring input/output
parameters and local variables. With the “TYPE OF” modifier only the domain'stypeis used, not its NOT NULL
setting, CHECK constraint and/or default value. If the domain is of a text type, its character set and collation
are alwaysincluded.

74

DML statements

Example:

execute block (a ny_domain = ?, b type of mny_other_domain = ?)
returns (p my_third_donai n)
as
declare s_tenp type of my_third_domain;
begi n

end

Warning

For input parameters, the collation that comeswith the domain i s not taken into consi deration when comparisons
(e.g. equality tests) are made. Thisis caused by a bug that has been fixed for Firebird 3.

TYPE OF COLUMN in parameter and variable declarations
Addedin: 2.5

Description: Analogousto the”TYPE OF domai n” syntax supported sinceversion 2.1, it isnow also possibleto
declare variables and parameters as having the type of an existing table or view column. Only the typeitself is
used; in the case of string types, thisincludes the character set and the collation. Constraints and default values
are never copied from the source column.

Example:

create table nunbers (
bi gnum nuneric(18),
smal | num nuneri c(9)

)

execute bl ock (dividend type of columm nunbers. bignum= ?,
di vi sor type of columm nunbers.smal |l num = ?)
returns (quotient type of colum nunbers. bi gnum
remai nder type of colum nunbers. snal | num

as

begi n
quotient = dividend / divisor;
remai nder = nod (dividend, divisor);
suspend;

end

Warning

For input parameters, the collation that comes with the column's type is not taken into consideration when
comparisons (e.g. equality tests) are made. For local variables, the behaviour varies. Thisis caused by a bug
that has been fixed for Firebird 3.

EXECUTE PROCEDURE

Availablein: DSQL, ESQL, PSQL

75

DML statements

Changedin: 1.5

Description: Executes a stored procedure. In Firebird 1.0.x aswell asin InterBase, any input parameters for the
SP must be supplied as literals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5
and above, input parameters may also be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE procnane
[TRANSACTI ON transacti on]
[<in_itenmr [, <in_itemr ...]]
[RETURNI NG_VALUES <out _item> [, <out_item> ...]]

<in_itenp = <inparan® [<nullind>]
<out _itenp = <outvar> [<nullind>]
<i npar anp = an expression evaluating to the decl ared paraneter type
<out var > = a host |anguage or PSQ variable to receive the return val ue
<nul | i nd> = [I NDI CATCR] : host _| ang_i nt var
Notes

e TRANSACTION clauses are not supported in PSQL .
» Expression parameters are not supported in static ESQL, and not in Firebird versions below 1.5.

e NULL indicators are only valid in ESQL code. They must be host language variables of type
integer.

« In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:"). In
PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
NEW.

Examples:
In PSQL (with optional colons):
execut e procedure MakeFul | Nane

:FirstNane, : M ddl eNane, :LastNane
returni ng_val ues : Ful | Nare;

The same call in ESQL (with obligatory colons):
exec sql
execut e procedure MakeFul | Nanme

:FirstNanme, : M ddl eNane, :LastNanme
returni ng_val ues : Ful | Naneg;

...and in Firebird's command-line utility isgl (with literal parameters):

execut e procedure MakeFul | Nane
*J', 'Edgar', 'Hoover';

Note: Inisgl, don't use RETURNING_VALUES. Any output values are shown automatically.
Finally, a PSQL example with expression parameters, only possiblein Firebird 1.5 and up:
execut e procedure MakeFul | Nane

"M./Ms. ' || FirstName, M ddl eName, upper (Last Nane)
returni ng_val ues Ful | Nane;

76

DML statements

INSERT

Availablein: DSQL, ESQL, PSQL

Description: Adds rows to a database table, or to one or more tables underlying a view. Field values can be
given in the VALUES clause, they can be totally absent (in both cases, exactly one row isinserted), or they can
come from a SELECT statement (0 to many rows inserted).

Syntax:

| NSERT [TRANSACTI ON nane]
I NTO {tabl enane | vi ewnane}
{DEFAULT VALUES | [(<colum_list>)] <val ue_source>}
[RETURNI NG <val ue_l i st> [I NTO <vari abl es>]]

<col um_li st > = colname [, colnanme ...]

<val ue_sour ce> = VALUES (<value_list>) | <select_stnt>
<val ue_list> = value_expression [, value_expression ...]
<vari abl es> = varname [, :varnanme ...]

<sel ect _stnt > a SELECT whose result set fits the target col umms

Restrictions

The TRANSACTION directiveisonly availablein ESQL.

The RETURNING clauseis hot availablein ESQL.

The“INTO <vari abl es>" subclauseisonly availablein PSQL.

When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

¢ Sincev. 2.0, no column may appear more than oncein the insert list.

L] L] L] L]

INSERT ... DEFAULT VALUES
Availablein: DSQL, PSQL
Addedin: 2.1

Description: The DEFAULT VALUES clause allows insertion of a record without providing any values at all,
neither directly nor from a SELECT statement. Thisisonly possibleif every NOT NULL or CHECKed columnin
the table either has a valid default declared or gets such avalue from a BEFORE INSERT trigger. Furthermore,
triggers providing required field values must not depend on the presence of input values.

Example:

insert into journal default val ues
returning entry_id

RETURNING clause

Availablein: DSQL, PSQL

77

DML statements

Added in: 2.0
Changedin: 2.1

Description: An INSERT statement adding at most one row may optionally include a RETURNING clause in
order to return values from the inserted row. The clause, if present, need not contain all of the insert columns
and may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE tiggers, but not those in AFTER triggers.

Examples:

insert into Scholars (firstnane, |astnane, address, phone, email)
values ('Henry', '"Hggins', '27A Wnpole Street', '3231212', null)
returning | astnane, fullname, id

insert into Dunbbells (firstnane, |astnanme, iq)
select fnane, Inanme, iq fromFriends order by ig rows 1
returning id, firstname, iqinto :id, :fnane, :iq;

Notes:

* RETURNING isonly supported for VALUES inserts and — since version 2.1 — singleton SELECT inserts.

* InDSQL, a statement with a RETURNING clause always returns exactly one row. If no record was actually
inserted, the fields in this row are all NULL. This behaviour may change in alater version of Firebird. In
PSQL, if no row was inserted, nothing is returned, and the receiving variables keep their existing values.

UNION allowed in feeding SELECT

Changedin: 2.0

Description: A SELECT query used in an INSERT statement may now be a UNION.
Example:

insert into Menbers (nunber, nane)
sel ect nunmber, nanme from Newienbers where Accepted =1
uni on

sel ect nunmber, nane from SuspendedMenbers where Vindicated = 1

MERGE

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Mergesdatainto atable or view. The source may atable, view or derived table (i.e. a parenthesized
SELECT statement or CTE). Each source record will be used to update one or more target records, insert a new
record inthetarget table, or neither. The action taken depends on the provided condition and the WHEN clause(s).
The condition will typically contain a comparison of fieldsin the source and target relations.

78

DML statements

Syntax:

MERGE | NTO {tabl enarme | viewnane} [[AS] alias]
USI NG {tabl ename | viewnane | (select_stnt)} [[AS] alias]
ON condition
WHEN MATCHED THEN UPDATE SET col nane = value [, colnanme = value ...]
WHEN NOT MATCHED THEN | NSERT [(<col urms>)] VALUES (<val ues>)

<colums> ::= colnanme [, colnanme ...]
<val ues> = value [, value A

Note: It is allowed to provide only one of the WHEN cl auses
Examples:

nerge into books b
usi ng purchases p
on p.title = b.title and p.type = 'bk
when nmat ched t hen
update set b.desc = b.desc || '; ' || p.desc
when not matched then
insert (title, desc, bought) values (p.title, p.desc, p.bought)

nmerge into custoners c
using (select * fromcustomers_delta where id > 10) cd
on (c.id = cd.id)
when mat ched then update set name = cd. nane
when not matched then insert (id, name) values (cd.id, cd.name)

Note

WHEN NOT MATCHED should be interpreted from the point of view of the source (the relation in the USING
clause). That is: if a source record doesn't have a match in the target table, the INSERT clause is executed.
Conversely, records in the target table without a matching source record don't trigger any action.

Warning

If the WHEN MATCHED clauseis present and multiple source records match the same record in the target table,
the UPDATE clause is executed for all the matching source records, each update overwriting the previous one.
This is non-standard behaviour: SQL-2003 specifies that in such a case an exception must be raised.

SELECT

Availablein: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality
Changedin: 1.5
Description: Several types of mixing and nesting aggragate functions are supported since Firebird 1.5. They

will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

79

DML statements

Mixing aggregate functions from different contexts

Firebird 1.5 and up allow the use of aggregate functions from different contexts inside a single expression.

Example:
sel ect
r.rdb$rel ati on_nanme as "Tabl e nane",
(select max(i.rdb$statistics) || ' (' || count(*) || ")

fromrdb$rel ation_fields rf
where rf.rdb$rel ati on_nanme = r.rdb$rel ati on_nane
) as "Max. IndexSel (# fields)"
from
rdb$rel ations r
join rdb$indices i on (i.rdb$relation_nane = r.rdb$rel ati on_nane)
group by r.rdb$rel ati on_nane
havi ng max(i.rdb$statistics) >0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on atable, followed by the table'sfield count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contextsin asingle expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

Aggregate functions and GROUP BY items inside subqueries

SinceFirebird 1.5t is possible to use aggregate functions and/or expressions contained in the GROUPBY clause
inside a subquery.

Examples:

Thisquery returnseach table'sID and field count. Thesubquery referstof | ds. r db$r el ati on_nane,
which isaso a GROUPBY item:

sel ect
flds.rdb$rel ati on_nane as "Rel ati on nane",
(select rels.rdb$relation_id
fromrdb$rel ations rels
where rels.rdb$rel ati on_nanme = flds.rdb$rel ati on_nane
) as "ID',
count(*) as "Fields"
fromrdb$relation fields flds
group by flds.rdb$rel ati on_nane

The next query showsthelast field from each table and and its 1-based position. It uses the aggregate
function MAX in asubquery.

sel ect
flds.rdb$rel ati on_nane as "Tabl e",

80

DML statements

(select flds2.rdb$field nane
fromrdb$rel ation_fields flds2
wher e
flds2.rdb$rel ati on_nanme = flds.rdb$rel ati on_nane
and flds2.rdb$field_position = max(flds.rdb$fiel d_position)
) as "Last field",
max(fl ds.rdb$field_position) + 1 as "Last fiel dpos"
fromrdb$relation_fields flds
group by 1

The subquery also containsthe GROUPBY itemf | ds. r db$r el ati on_nane, but that's not imme-
diately obvious because in this case the GROUPBY clause uses the column number.

Subqueries inside aggregate functions
Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.
Example:

sel ect
r.rdb$rel ati on_nane as "Tabl e",
sum (sel ect count(*)
fromrdb$relation_fields rf
where rf.rdb$rel ati on_nane = r.rdb$rel ati on_nane)
) as "Ind. x Fields"
from
rdb$rel ations r
join rdb$i ndi ces
on (i.rdb$rel ation_nanme = r.rdb$rel ati on_nane)

group by
r.rdb$rel ati on_name

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from alower
SQL context. Direct nesting of aggregate function calls, asin “COUNT(MAX(price))", is still forbidden and
punishable by exception.

Example: See under Subqueries inside aggregate functions, where COUNTY() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can beincluded inthe HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in aHAVING or ORDER BY item contains
acolumn name, it isonly accepted if one of the following is true:

» The column name appears in an aggregate function call (e.g. “HAVI NG MAX(SALARY) > 10000").

» The operand equals or is based upon a non-aggregate column that appears in the GROUP BY list (by name
or position).

“Is based upon” means that the operand need not be exactly the same as the column name. Suppose there's a
non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”, “STR || 1"

81

DML statements

or “SUBSTRING(STR FROM 4 FOR 2)" in the HAVING clause — even if these expressions don't appear as such
in the SELECT or GROUPBY list.

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:

sel ect NameBl ob from MyTabl e
where NaneBl ob collate pt_br = 'Joé&o'

Common Table Expressions (“WITH ... AS ... SELECT”")

Availablein: DSQL, PSQL

Addedin: 2.1

Description: A common tableexpression or CTE can bedescribed asavirtual tableor view, defined in apreamble
to amain query, and going out of scope after the main query's execution. The main query can reference any

CTEsdefined inthe preamble asif they wereregular tables or views. CTES can berecursive, i.e. self-referencing,
but they cannot be nested.

Syntax:
<cte-construct> ::= <cte-defs>
<mai n- query>
<ct e- def s> ::= WTH [RECURSI VE] <cte> [, <cte> ...]
<cte> ::= nane [(<colum-list>)] AS (<cte-stnt>)

<col um-1ist> colum-alias [, colum-alias ...]

<cte-stnt> any SELECT statenent or UN ON

<mai n- query> the mai n SELECT statenent, which can refer to the

CTEs defined in the preanble
Example:

wi th dept _year budget as (
sel ect fiscal _year,
dept _no,
sun(proj ect ed_budget) as budget
from proj _dept _budget
group by fiscal _year, dept_no

sel ect d. dept_no,
d. depart nment,

82

DML statements

dyb_2008. budget as budget _08,
dyb_2009. budget as budget 09
from departnent d
left join dept_year_budget dyb_2008
on d.dept_no = dyb_2008. dept _no
and dyb_2008. fi scal _year = 2008
I eft join dept_year_budget dyb_ 2009
on d.dept_no = dyb_2009. dept _no
and dyb_2009. fiscal _year = 2009
where exists (
select * from proj_dept_budget b
where d. dept _no = b. dept_no
)

Notes:

» A CTE definition can contain any legal SELECT statement, as long as it doesn't have a “WITH...” preamble
of itsown (no nesting).

» CTEsdefined for the same main query can reference each other, but care should be taken to avoid loops.
» CTEs can be referenced from anywhere in the main query.
» Each CTE can be referenced multiple times in the main query, possibly with different aliases.

* When enclosed in parentheses, CTE constructs can be used as subqueriesin SELECT statements, but also in
UPDATES, MERGES €tc.

* InPSQL, CTESs are also supported in FOR loop headers:

for with my_rivers as (select * fromrivers where owner = 'ne')
sel ect nane, length fromny_rivers into :rnane, :rlen

do

begi n

end

Recursive CTES

A recursive (self-referencing) CTE is a UNION which must have at least one non-recursive member, called the
anchor. The non-recursive member(s) must be placed before the recursive member(s). Recursive members are
linked to each other and to their non-recursive neighbour by UNION ALL operators. The unions between non-
recursive members may be of any type.

Recursive CTEs require the RECURSIVE keyword to be present right after WITH. Each recursive union member
may referenceitsalf only once, and it must do so in a FROM clause.

A great benefit of recursive CTES is that they use far less memory and CPU cycles than an equivalent recursive
stored procedure.

The execution pattern of arecursive CTE isasfollows:
» The engine begins execution from a non-recursive member.

» For each row evaluated, it starts executing each recursive member one-by-one, using the current values from
the outer row as parameters.

83

DML statements

« If the currently executing instance of a recursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

Example with a recursive CTE:

with recursive
dept _year _budget as (
sel ect fiscal _year
dept _no,
sun(proj ect ed_budget) as budget
from proj _dept _budget
group by fiscal year, dept_no
)¢
dept _tree as (
sel ect dept_no
head_dept,
depart nent,
cast ('' as varchar(255)) as indent
from depart nent
where head_dept is nul

uni on al

sel ect d.dept_no
d. head_dept,
d. depart nent,
h.indent ||

from department d
join dept_tree h on d. head_dept = h.dept_no

)

sel ect d. dept_no,
d.indent || d.department as departnent,
dyb_2008. budget as budget 08,
dyb_2009. budget as budget _09
fromdept_tree d
left join dept_year_budget dyb_ 2008
on d.dept_no = dyb_2008. dept _no
and dyb_2008.fiscal _year = 2008
I eft join dept_year_budget dyb_2009
on d. dept_no = dyb_2009. dept _no
and dyb_2009.fiscal _year = 2009

Notes on recursive CTES:

» Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are not
allowed in recursive union members.

* A recursive reference cannot participate in an outer join.

» The maximum recursion depth is 1024.

Derived tables (“SELECT FROM SELECT”)

Added in: 2.0

Description: A derived tableistheresult set of aSELECT query, used in an outer SELECT asif it werean ordinary
table. Put otherwise, it isasubguery in the FROM clause.

84

DML statements

Syntax:

(sel ect - query)
[[AS] derived-table-alias]
[(<derived-col um-al i ases>)]

<derived-col um-aliases> := colum-alias [, colum-alias ...]

Examples:

The derived table in the query below (shown in boldface) contains al the relation names in the
database followed by their field count. The outer SELECT produces, for each existing field count, the
number of relations having that field count.

sel ect fieldcount,
count (relation) as numtables

from (select r.rdb$relation_nane as relation,

count (*) as fiel dcount

from rdb$relations r
join rdb$relation_fields rf
on rf.rdb$rel ati on_nanme = r.rdb$rel ati on_nane
group by relation)

group by fi el dcount

A trivial example demonstrating the use of a derived table alias and column aliases list (both are
optional):

sel ect dbi nfo. descr
dbi nf o. def _char set
from (select * fromrdb$database) dbinfo
(descr, rel_id, sec_class, def_charset)

Notes:

Derived tables can be nested.

Derived tables can be unions and can be used in unions. They can contain aggregate functions, subselectsand
joins, and can themselves be used in aggregate functions, subselects and joins. They can also be or contain
gueries on selectable stored procedures. They can have WHERE, ORDER BY and GROUP BY clauses, FIRST,
SKIP or ROWS directives, etc. etc.

Every column in aderived table must have aname. If it doesn't have one by nature (e.g. becauseit'saconstant)
it must either be given an alias in the usual way, or a column aiases list must be added to the derived table
specification.

The column aliases list is optional, but if it is used it must be complete. That is: it must contain an alias for
every column in the derived table.

The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subguery, then no join order can be made.

FIRST and SKIP

Availablein: DSQL, PSQL

Added in: 1.0

85

DML statements

Changedin: 1.5
Better alternative: ROWS

Description: FIRST limits the output of a query to the first so-many rows. SKIP will suppress the given number
of rows before starting to return output.

Tip

In Firebird 2.0 and up, use the SQL -compliant ROWS syntax instead.

Syntax:
SELECT [FIRST (<int-expr>)] [SKIP (<int-expr>)] <colums> FROM ...

<i nt - expr>
<col ums>

Any expression evaluating to an integer.
The usual output colum specifications.

Note

If <i nt - expr > isaninteger literal or aquery parameter, the“() " may be omitted. Subselects on
the other hand require an extra pair of parentheses.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmost rows of the output
set are discarded and the first mrows of the remainder are returned.

SKIP 0 is alowed, but of course rather pointless. FIRST 0 is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST 0 causes an error. Negative SKIP and/or FIRST values always result in an error.

If a SKIP lands past the end of the dataset, an empty set isreturned. If the number of rows in the dataset (or the
remainder after a SKIP) isless than the value given after FIRST, that smaller number of rowsis returned. These
are valid results, not error situations.

Examples:
The following query will return the first 10 names from the People table:

select first 10 id, name from Peopl e
order by name asc

The following query will return everything but the first 10 names:

sel ect skip 10 id, nanme from Peopl e
order by nanme asc

And this one returns the last 10 rows. Notice the double parentheses:
sel ect skip ((select count(*) - 10 from Peopl e))

id, name from Peopl e
order by name asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, nane from Peopl e
order by nane asc

86

DML statements

Two Gotchaswith FIRST in subselects
e This
del ete from MyTabl e where ID in (select first 10 ID from M/Tabl e)

will deleteall of therowsin thetable. Ouch! The sub-select is evaluating each 10 candidate rowsfor deletion,
deleting them, dipping forward 10 more... ad infinitum, until there are no rows |eft. Beware! Or better: use
the ROWS syntax, available since Firebird 2.0.

e Querieslike:
...where F1 in (select first 5 F2 from Tabl e2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EXISTS predicate shown below. It's obvious that in this case FIRST N doesn't make any sense:

...Where exists
(select first 5 F2 from Tabl e2
where Tabl e2. F2 = Tabl el. F1
order by 1 desc)

GROUP BY

Description: GROUP BY merges rows that have the same combination of values and/or NULLS in the item list
into a single row. Any aggregate functions in the select list are applied to each group individually instead of
to the dataset as awhole.

Syntax:

SELECT ... FROM...
GROUP BY <itenr [, <itenr ...]

<item> ::= colum-name [COLLATE col | ati on-nane]
| colum-alias
| col um-position
| expression

» Only non-negative integer literals will be interpreted as column positions. If they are outside the
rangefrom 1to the number of columns, an error israised. Integer valuesresulting from expressions
or parameter substitutions are simply invariables and will be used as such in the grouping. They
will have no effect though, astheir value is the same for each row.

* A GROUP BY item cannot be a reference to an aggregate function (including one that is buried
inside an expression) from the same context.

» Theselect list may not contain expressions that can have different values within agroup. To avoid
this, the rule of thumb isto include each non-aggregate item from the select list in the GROUP BY
list (whether by copying, alias or position).

Note: If you group by a column position, the expression at that position is copied internally from the select list.
If it concerns a subquery, that subquery will be executed at |east twice.

87

DML statements

Grouping by alias, position and expressions
Changedin: 1.0, 1.5, 2.0

Description: In addition to column names, Firebird 2 allows column aliases, column positions and arbitrary
valid expressions as GROUP BY items.

Examples:
These three queries al achieve the same resuilt:

sel ect strlen(lastname) as |en_nanme, count(*)
from peopl e
group by | en_name

select strlen(lastname) as |en_nanme, count(*)
from peopl e
group by 1

select strlen(lastname) as |en_nanme, count(*)
from peopl e
group by strlen(l astnane)

History: Grouping by UDF resultswas added in Firebird 1. Grouping by column positions, CASE outcomes and

alimited number of internal functionsin Firebird 1.5. Firebird 2 added column aliases and expressionsin general
asvalid GROUPBY items (“expressionsin general” absorbing the UDF, CASE and internal functions lot).

HAVING: Stricter rules

Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

JOIN

Ambiguous field names rejected
Changedin: 1.0

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

sel ect buses. nane, garages. name
from buses join garages on buses.garage_id = garage.id
where name = ' Phideaux II1I'

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
namesin JOIN statements. Dialect 1 gives awarning but will execute the query anyway.

88

DML statements

CROSS JOIN

Added in: 2.0

Description: Firebird 2.0 and up support CROSS JOIN, which performs a full set multiplication on the tables
involved. Previously you had to achieve this by joining on a tautology (a condition that is always true) or by
using the comma syntax, now deprecated.

Syntax:

SELECT ...
FROM <rel ati on> CRCSS JAO N <rel ation>

<relation> ::= {table | view | cte | (select_stnt)} [[AS] alias]
Note: If you use CROSS JOIN, you can't use ON.
Example:

select * from Men cross join Wnen
order by Men.age, Wonen. age

-- old syntax:

-- select * fromMen join Wnen on 1 =1
-- order by Men.age, Wonen. age

-- conmma syntax:

-- select * from Men, Wnen
-- order by Men.age, Wnen. age

Named colums JOIN

Added in: 2.1

Description: A named colums join is an equi-join on the columns named in the USING clause. These columns
must exist in both relations.

Syntax:
SELECT ...
FROM <rel ati on> [<join_type>] JON <rel ation>
USI NG (col nane [, colnane ...])

<rel ati on> .= {table | view | cte | (select_stnt)} [[AS] alias]
<j oi n_t ype> = INNER | {LEFT | RIGHT | FULL} [CQUTER|

Example:

sel ect *
from books join shelves
usi ng (shel f, bookcase)

89

DML statements

The equivalent in traditional syntax:

sel ect *
from books b join shelves s
on b.shelf = s.shelf and b. bookcase = s. bookcase

Notes:

» Thecolumnsinthe USING clause can be selected without qualifier. Be aware, however, that doing so in outer
joins doesn't lways give the same result as selecting | ef t .col nane or ri ght .col nane. One of the latter
may be NULL while the other isn't; plain col nane always returns the non-NULL alternative in such cases.

e SELECT * from anamed columns join returns each USING column only once. In outer joins, such a column
always contains the non-NULL alternative except for rows where the field is NULL in both tables.

Natural JOIN
Added in: 2.1

Description: A natura join is an automatic equi-join on all the columns that exist in both relations. If there are
no common column names, a CROSS JOIN is produced.

Syntax:

SELECT ...
FROM <rel ation> NATURAL [<join_type>] JO N <rel ation>

{table | view | cte | (select_stnt)} [[AS] alias]
INNER | {LEFT | RIGHT | FULL} [QUTER

<rel ation>
<joi n_type>

Example:
select * fromPupils natural left join Tutors

Assuming that the Pupils and Tutors tables have two field names in common: TUTOR and CLASS,
the equivalent traditional syntax is:

select * fromPupils p left join Tutors t
on p.tutor = t.tutor and p.class = t.class

Notes:

» Common columns can be selected from a natural join without qualifier. Beware, however, that doing so in
outer joins doesn't always gives the same result as selecting | ef t .col name or ri ght .col nane. One of the
latter may be NULL whiletheother isn't; plain col name alwaysreturnsthe non-NULL alternativein such cases.

e SELECT * from anatural join returns each common column only once. In outer joins, such a column aways
contains the non-NULL alternative except for rows where the field is NULL in both tables.

90

DML statements

ORDER BY

Syntax:
SELECT ... FROM ...
d?bER BY <ordering-iten» [, <ordering-item> ...]
<ordering-item> ::= {col-name | col-alias | col-position | expression}
[COLLATE col | ati on- nane]

[ASCI ENDI NG | DESC ENDI NG]
[NULLS {FI RST| LAST}]

Order by column alias

Added in: 2.0

Description: Firebird 2.0 and above support ordering by column alias.
Example:

sel ect rdb$character_set _id as charset _id,
rdb$col l ation_id as coll _id,
rdb$col | ati on_name as nane

fromrdb$col | ati ons

order by charset_id, coll_id

Ordering by column position causes * expansion
Changedin: 2.0

Description: If you order by column position in a “SELECT *” query, the engine will now expand the * to
determine the sort column(s).

Examples:
The following wasn't possiblein pre-2.0 versions:

select * fromrdb$coll ations
order by 3, 2

The following would sort the output set on Fi | nms. Di r ect or in previous versions. In Firebird 2
and up, it will sort on the second column of Books:

sel ect Books.*, Filns.Director from Books, Filns
order by 2

Ordering by expressions

Added in: 1.5

91

DML statements

Description: Firebird 1.5 introduced the possibility to use expressions as ordering items. Please note that ex-
pressions consisting of a single non-negative whole number will be interpreted as column positions and cause
an exception if they're not in the range from 1 to the number of columns.

Example:

select x, y, note fromPairs
order by x+y desc

Note

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedure is
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

Notes:

» Thenumber of function or procedure invocations resulting from a sort based on a UDF or stored procedureis
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

» Only non-negative whole number literalsareinterpreted as column positions. A whole number resulting from
an expression evaluation or parameter substitution is seen as an integer invariable and will lead to a dummy
sort, since its value is the same for each row.

NULLs placement
Changedin: 1.5, 2.0

Description: Firebird 1.5 has introduced the per-column NULLS FIRST and NULLS LAST directives to specify
where NULLSs appear in the sorted column. Firebird 2.0 has changed the default placement of NULLS.

Unless overridden by NULLS FIRST or NULLS LAST, NULLs in ordered columns are placed as follows:
» InFirebird 1.0 and 1.5: at the end of the sort, regardless whether the order is ascending or descending.
» InFirebird 2.0 and up: at the start of ascending orderings and at the end of descending orderings.

See also the table below for an overview of the different versions.

Table7.1. NULLs placement in ordered columns

Ordering NULLSs placement
Firebird 1 Firebird 1.5 Firebird 2
order by Field [asc] bottom bottom top
order by Field desc bottom bottom bottom
order by Field [asc | desc] nulls first — top top
order by Field [asc | desc] nulls last — bottom bottom

92

DML statements

Notes

* Pre-existing databases may need a backup-restore cycle before they show the correct NULL ordering be-
haviour under Firebird 2.0 and up.

« Noindex will be used on columns for which a non-default NULLS placement is chosen. In Firebird 1.5, that
is the case with NULLS FIRST. In 2.0 and higher, with NULLS LAST on ascending and NULLS FIRST on
descending sorts.

Examples:

select * from nsg

order by process_tine desc nulls first

sel ect * from docunent
order by strlen(description) desc

rows 10

sel ect doc_nunber,

uni on all

sel ect doc_nunber,

doc_date from payorder

doc_date from budgorder

order by 2 desc nulls last, 1 asc nulls first

Stricter ordering rules with aggregate statements

Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

PLAN

Availablein: DSQL, ESQL, PSQL

Description: Specifies auser plan for the dataretrieval, overriding the plan that the optimizer would have gen-
erated automatically.

Syntax:

PLAN <pl an_expr >

<pl an_expr >
<plan_itenpr

<basic_itenpr

<i ndexlist>

[JON | [SORT] [MERGE]] (<plan_itenr [,
<basic_itenr | <plan_expr>
{table | alias}
{ NATURAL
| I NDEX (<indexlist>))
| ORDER index [INDEX (<indexlist>)]}

index [, index ...]

Handling of user PLANs improved

Changedin: 2.0

93

<plan_itenm> ...

DML statements

Description: Firbird 2 has implemented the following improvementsin the handling of user-specified PLANS:

» Planfragmentsare propagated to nested levels of joins, enabling manual optimization of complex outer joins.
» User-supplied planswill be checked for correctnessin outer joins.
» Short-circuit optimization for user-supplied plans has been added.

» A user-specified access path can be supplied for any SELECT-based statement or clause.

ORDER with INDEX

Changedin: 2.0

Description: A single plan item can now contain both an ORDER and an INDEX directive (in that order).
Example:

plan (MyTabl e order ix_nyfield index (ix_this, ix_that))

PLAN must include all tables
Changedin: 2.0

Description: In Firebird 2 and up, a PLAN clause must handle all the tables in the query. Previous versions
sometimes accepted incomplete plans, but this is no longer the case.

Relation alias makes real name unavailable

Changedin: 2.0

Description: If you give atable or view an aiasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
sel ect pears from Fruit
select Fruit.pears fromFruit
sel ect pears fromFruit F
select F.pears fromFruit F

No longer possible:

select Fruit.pears fromFruit F

94

DML statements

ROWS

Availablein: DSQL, PSQL

Added in: 2.0

Description: Limits the amount of rows returned by the SELECT statement to a specified number or range.

Syntax:

With asingle SELECT:

SELECT <col ums> FROM ...
[WHERE . . .]
[ORDER BY ...]
ROAS <> [TO <n>]

<col utms> = The usual output columm specifications.
<me, <n> = Any expression evaluating to an integer.
With aUNION:
SELECT [FIRST p] [SKIP g] <colums> FROM . ..

[WHERE . ..]

[ORDER BY ...]

UNION [ALL | DI STI NCT]

SELECT [FIRST r] [SKIP s] <colums> FROM ...
[WHERE .. .]
[ORDER BY ...]

ROAS < [TO <n>]

With asingle argument m the first mrows of the dataset are returned.

Points to note;

If m> the total number of rows in the dataset, the entire set is returned.

If m= 0, an empty set isreturned.

If m< 0, an error israised.

With two arguments mand n, rows mto n of the dataset are returned, inclusively. Row numbers are 1-based.

Points to note when using two arguments:

If m> the total number of rows in the dataset, an empty set is returned.

If mlies within the set but n doesn't, the rows from mto the end of the set are returned.

If m<lorn<1, anerorisraised.
If n = m1, an empty set isreturned.
If n <ml, an error israised.

The SQL-compliant ROWS syntax obviates the need for FIRST and SKIP, except in one case: a SKIP without
FIRST, which returnsthe entire remainder of the set after skipping agiven number of rows. (Y ou can often “fake
it” though, by supplying a second argument that you know to be bigger than the number of rowsin the set.)

95

DML statements

Y ou cannot use ROWS together with FIRST and/or SKIP in asingle SELECT statement, but isit valid to use one
form in the top-level statement and the other in subselects, or to use the two syntaxes in different subselects.

When used with a UNION, the ROWS subclause applies to the UNION as a whole and must be placed after
the last SELECT. If you want to limit the output of one or more individual SELECTs within the UNION, you
have two options: either use FIRST/SKIP on those SELECT statements, or convert them to derived tables with
ROWS clauses.

ROWS can a'so be used with the UPDATE and DELETE statements.

UNION

Availablein: DSQL, ESQL, PSQL

UNIONS in subqueries
Changedin: 2.0

Description: UNIONs are now alowed in subqueries. This applies not only to column-level subgueries in a
SELECT list, but also to subqueries in ANY|SOME, ALL and IN predicates, as well as the optional SELECT
expression that feeds an INSERT.

Example:

sel ect name, phone, hourly_rate from cl owns
where hourly rate < all
(select hourly rate fromjugglers
uni on
select hourly_rate from acrobats)
order by hourly_ rate

UNION DISTINCT
Added in: 2.0

Description: Y ou can now usetheoptional DISTINCT keyword when defining aUNION. Thiswill show duplicate
rows only once instead of every time they occur in one of the tables. Since DISTINCT, being the opposite of
ALL, isthe default mode anyway, this doesn't add any new functionality.

Syntax:

SELECT (...) FROM (...)
UNION [DI STINCT | ALL]
SELECT (...) FROM (...)

Example:

sel ect name, phone fromtranslators
uni on di stinct
sel ect nane, phone from proofreaders

Trandators who also work as proofreaders (a not uncommon combination) will show up only once
in the result set, provided their phone number is the same in both tables. The same result would have
been obtained without DISTINCT. With ALL, they would appear twice.

96

DML statements

WITH LOCK
Availablein: DSQL, PSQL
Addedin: 1.5

Description: WITH LOCK providesalimited explicit pessimistic locking capability for cautious usein conditions
where the affected row set is:

a. extremely small (idedly, asingleton), and

b. precisely controlled by the application code.

Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

Itisessential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:

SELECT ... FROM single_table
[WHERE . . .]
[FOR UPDATE [OF ...]]
W TH LOCK

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

WITH LOCK can only be used with atop-level, single-table SELECT statement. It is not available:

* inasubquery specification;

» forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
« withaview;

» with the output of a selectable stored procedure;

» with an externa table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” isincluded in the Notes. It is a must-read
for everybody who considers using this feature.

UPDATE

Availablein: DSQL, ESQL, PSQL

97

DML statements

Description: Changes valuesin atable (or in one or more tables underlying aview). The columns affected are
specified in the SET clause; the rows affected may be limited by the WHERE and ROWS clauses.

Syntax:

UPDATE [TRANSACTI ON nane] {tabl enanme | viewnane} [[AS] alias]
SET col = newal [, col = newal ...]
[WHERE {search-conditions | CURRENT OF cursornane}]
[PLAN pl an_itens]
[ORDER BY sort_itens]
[ROA5 <> [TO <n>]]
[RETURNI NG <val ues> [| NTO <vari abl es>]]

<P, <n> = Any expression evaluating to an integer.
<val ues> = value_expression [, value_expression ...]
<vari abl es> = :varnane [, :varname ...]

Restrictions

e The TRANSACTION directiveisonly availablein ESQL.

e Inapure DSQL session, WHERE CURRENT OF isn't of much use, since there exists no DSQL
statement to create a cursor.

* ThePLAN, ORDER BY and ROWS clauses are not available in ESQL.

e Sincev. 2.0, no column may be SET more than once in the same UPDATE statement.

e The RETURNING clauseisnot availablein ESQL.

e The“INTO<vari abl es>" subclauseis only availablein PSQL.

« When returning values into the context variable NEW, this name must not be preceded by a
colon (“:).

Changed SET semantics

Changedin: 2.5
Description: In previous Firebird versions, if multiple assignmentswere donein the SET clause, the new column
valueswould becomeimmediately availableto subsequent assigmentsin thesameclause. That is, inaclauselike

“sat a=3, b=a’, b would be set to 3, not to a's old value. This non-standard behaviour has now been corrected.
In Firebird 2.5 and up, any assignmentsin the SET clause will use the old column values.

Example:

Given table TSET:

>

NP
co ' w

the following statement:

update tset set a=5, b=a

98

DML statements

will change its state to
A B

5 1
5 2
In versions prior to Firebird 2.5, this would have been:

A B

(J'I(.ﬂI
1
(SN]

Retaining the old behaviour: For alimited time, you can keep the old, non-standard behaviour by setting the
d dSet O auseSemant i cs parameter in firebird. conf to 1. This parameter will be deprecated and re-
moved in the future. If set, it will be used for all database connections made through the server.

COLLATE subclause for text BLOB columns
Added in: 2.0

Description: COLLATE subclauses are now also supported for text BLOBS.
Example:
update MyTabl e

set NaneBl obSp = ' Juan’
where NaneBl obBr collate pt_br = 'Joao'

ORDER BY
Availablein: DSQL, PSQL
Addedin: 2.0

Description: UPDATE now allows an ORDER BY clause. This only makes sense in combination with ROWS,
but isalso valid without it.

PLAN
Availablein: DSQL, PSQL
Added in: 2.0

Description: UPDATE now allowsaPLAN clause, so users can optimize the operation manually.

Relation alias makes real name unavailable
Changedin: 2.0

99

DML statements

Description: If you give atable or view an adliasin aFirebird 2.0 or above statement, you must use the alias, not
the table name, if you want to qualify fields from that relation.

Examples:
Correct usage:
update Fruit set soort = 'pisang' where ...
update Fruit set Fruit.soort = 'pisang' where ...
update Fruit F set soort = 'pisang' where ...
update Fruit F set F.soort = 'pisang' where ...

No longer possible:

update Fruit F set Fruit.soort = 'pisang' where ...

RETURNING
Availablein: DSQL, PSQL
Addedin: 2.1

Description: An UPDATE statement modifying at most one row may optionally include a RETURNING clause
in order to return values from the updated row. The clause, if present, need not contain all the modified columns
and may also contain other columns or expressions. The returned values reflect any changes that may have been
made in BEFORE tiggers, but not thosein AFTER triggers. OLD.f i el dnarre and NEW.f i el dnane may both be
used in the list of columnsto return; for field names not preceded by either of these, the new value is returned.

Example:
updat e Schol ars
set firstnane = 'Hugh', lastnanme = 'Pickering
where firstname = 'Henry' and | astname = 'Higgins

returning id, old.lastnane, new. | astname

Notes:
* InDSQL, astatement with aRETURNING clause always returns exactly one row. If no record was actually

updated, the fields in this row are all NULL. This behaviour may change in a later version of Firebird. In
PSQL, if no row was updated, nothing is returned, and the receiving variables keep their existing values.

ROWS
Availablein: DSQL, PSQL
Added in: 2.0

Description: Limitsthe amount of rows updated to a specified number or range.

100

DML statements

Syntax:

ROWS < [TO <n>]

<n», <n> ::= Any expression evaluating to an integer.

With a single argument m the update is limited to the first mrows of the dataset defined by the table or view
and the optional WHERE and ORDER BY clauses.

Points to note:

» If m> the total number of rows in the dataset, the entire set is updated.
e If m=0, norows are updated.
* If m<O, anerrorisraised.

With two arguments mand n, the update is limited to rows mto n inclusively. Row numbers are 1-based.
Points to note when using two arguments:

* If m> thetotal number of rows in the dataset, no rows are updated.

* If mlieswithin the set but n doesn't, the rows from mto the end of the set are updated.
* Ifm<lorn<1, anerrorisraised.

e If n =m1, no rows are updated.

e If n<ml, anerrorisraised.

ROWS can a'so be used with the SELECT and DELETE statements.

UPDATE OR INSERT

Availablein: DSQL, PSQL
Addedin: 2.1

Description: UPDATE OR INSERT checks if any existing records already contain the new values supplied for
the MATCHING columns. If so, those records are updated. If not, a new record is inserted. In the absence of a
MATCHING clause, matching is done against the primary key. If aRETURNING clauseis present and more than
one matching record is found, an error is raised.

Syntax:

UPDATE OR | NSERT | NTO
{tabl enane | viewnane} [(<colums>)]
VALUES (<val ues>)
[MATCHI NG (<col urms>)]
[RETURNI NG <val ues> [| NTO <vari abl es>]]

<col ums> = colnamre [, colname ...]
<val ues> = val ue [, value o]
<vari abl es> = :varnane [, :varnane ...]

101

DML statements

Restrictions

« No column may appear more than once in the update/insert column list.

e |f thetable has no PK, the MATCHING clause becomes mandatory.

e The“INTO <vari abl es>" subclauseisonly availablein PSQL.

* When values are returned into the context variable NEW, this name must not be preceded by

acolon (“:).

Example:

update or insert into Cows (Name, Nunmber, Location)
val ues (' Suzy Creantheese', 3278823, 'Geen Pastures')
mat chi ng (Nunber)
returning rec_id into :id;

Notes:

» Matchesare determined with ISNOT DISTINCT, not with the*=" operator. Thismeansthat one NULL matches
another.

* Theoptiona RETURNING clause:

- ..may contain any or all columns of the target table, regardiess if they were mentioned earlier in the

statement, but also other expressions.
- ...may contain OLD and NEW qualifiersfor field names; by default, the new field value is returned.

- ..returnsfield values as they are after the BEFORE triggers have run, but before any AFTER triggers.

102

Chapter 8

Transaction
control statements

RELEASE SAVEPOINT

Availablein: DSQL
Added in: 1.5
Description: Deletes a named savepoint, freeing up al the resources it binds.
Syntax:
RELEASE SAVEPO NT nane [ONLY]
Unless ONLY is added, all the savepoints created after the named savepoint are released as well.

For afull discussion of savepoints, see SAVEPOINT.

ROLLBACK
Availablein: DSQL, ESQL
Syntax:

ROLLBACK [WORK]
[TRANSACTI ON tr_nane]
[RETAI N [SNAPSHOT] | TO [SAVEPO NT] sp_name | RELEASE]

* The TRANSACTION clauseisonly availablein ESQL.
* TheRELEASE clauseisonly availablein ESQL, and is discouraged.

* RETAIN and TO are only available in DSQL.

ROLLBACK RETAIN

Availablein: DSQL

103

Transaction control statements

Added in: 2.0

Description: Undoes al the database changes carried out in the transaction without closing it. User variables
set with RDB$SET_CONTEXT() remain unchanged.

Syntax:

ROLLBACK [WORK] RETAI N [SNAPSHOT]

Note

The functionality provided by ROLLBACK RETAIN has been present since InterBase 6, but the only way to
access it was through the API call i sc_r ol | back_r et ai ni ng() .

ROLLBACK TO SAVEPOINT
Availablein: DSQL
Added in: 1.5
Description: Undoes everything that happened in atransaction since the creation of the savepoint.
Syntax:
ROLLBACK [WORK] TO [SAVEPO NT] nane

ROLLBACK TO SAVEPOINT performs the following operations:

 All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, asisthe save-
point itself. This means that you can rollback to the same savepoint several times.

« All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
requested accessto rowslocked after the savepoint must continue to wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

For afull discussion of savepoints, see SAVEPOINT.

SAVEPOINT

Availablein: DSQL
Addedin: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “nested transactions”.

104

Transaction control statements

Syntax:

SAVEPA NT <nane>

<pane> ::= a user-chosen identifier, unique within the transaction

If the supplied name exists already within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:
ROLLBACK [WORK] TO [SAVEPO NT] nane

ROLLBACK TO SAVEPOINT performs the following operations:

 All the database mutations performed within the transaction since the savepoint was created are undone. User
variables set with RDB$SSET_CONTEXT() remain unchanged.

» All savepoints created after the one named are destroyed. All earlier savepoints are preserved, asisthe save-
point itself. This means that you can rollback to the same savepoint several times.

« All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
regquested accessto rowslocked after the savepoint must continueto wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rowsimmediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especialy if you update the same
records multiple timesin one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can delete the savepoint and free the resources it uses with:

RELEASE SAVEPO NT name [ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
arereleased as well.

Example DSQL session using a savepoint:

create table test (id integer);
comm t;

insert into test values (1);
conmi t;

insert into test values (2);
savepoi nt vy;

del ete fromtest;

select * fromtest; -- returns no rows
rol | back to vy;

select * fromtest; -- returns two rows
rol | back;

select * fromtest; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue aROLLBACK statement, all changes performed in this transaction are backed out via a transac-

105

Transaction control statements

tion-level savepoint and the transaction is then committed. Thislogic reduces the amount of garbage collection
caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (104—106 records
affected), the engine rel eases the transaction-level savepoint and uses the TIP mechanism to roll back the trans-
action if needed.

Tip

If you expect the volume of changesin your transaction to belarge, you can specify the NO AUTO UNDO option
in your SET TRANSACTION statement, or —if you use the APl —set the TPB flagi sc_t pb_no_aut o_undo.
Both prevent the creation of the transaction-level savepoint.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptions in PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

» undo dl actionsin aBEGIN...END block where an exception occurs;

» undo al actions performed by the SP/trigger (or, in the case of a selectable SP, al actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is aso bounded by automatic system savepoints.

SET TRANSACTION

Availablein: DSQL, ESQL

Changedin: 2.0

Description: Starts and optionally configures a transaction.
Syntax:

SET TRANSACTI ON
[NAME host var]
[READ WRI TE | READ ONLY]
[[1SOLATI ON LEVEL] { SNAPSHOT [TABLE STABI LI TY]
| READ COW TTED [[NOQ RECORD_VERSION] }]
[WAIT | NO WAIT]
[LOCK TI MEQUT seconds]
[NO AUTO UNDQ
[1 GNORE LI MBQ
[RESERVI NG <t abl es> | USI NG <dbhandl es>]

<t abl es> ::= <table_spec> [, <table_spec> ...]

106

Transaction control statements

<t abl e_spec> tabl ename [, tablenane ...]

[FOR [SHARED | PROTECTED] {READ | WRI TE}]

<dbhandl es> dbhandl e [, dbhandle ...]

» TheNAME optionisonly availablein ESQL. It must befollowed by apreviously declared and ini-
tialized host-language variable. Without NAME, SET TRANSACTION appliesto the default trans-
action.

» The USING optionisaso ESQL-only. It limits the databases that the transaction can accessto the
ones mentioned here.

e IGNORE LIMBO and LOCK TIMEOUT are not supported in ESQL.
e LOCK TIMEOUT and NO WAIT are mutually exclusive.

» Default option settings are: READ WRITE + WAIT + SNAPSHOT.

IGNORE LIMBO
Availablein: DSQL
Added in: 2.0

Description: With this option, records created by limbo transactions are ignored. Transactions are in limbo if
the second stage of a two-phase commit fails.

Note

IGNORE LIMBO surfacesthei sc_t pb_i gnore_| i mbho TPB parameter, availablein the API since InterBase
times and mainly used by dfix.

LOCK TIMEOUT
Availablein: DSQL
Addedin: 2.0

Description: This option is only available for WAIT transactions. It takes a non-negative integer as argument,
prescribing the maximum number of seconds that the transaction should wait when alock conflict occurs. If the
the waiting time has passed and the lock has still not been released, an error is generated.

Note

Thisis abrand new feature in Firebird 2. Its APl equivalent isthe new i sc_t pb_I ock_t i neout TPB pa
rameter.

NO AUTO UNDO

Availablein: DSQL, ESQL

107

Transaction control statements

Added in: 2.0

Description: With NO AUTO UNDO, the transaction refrains from keeping the log that is normally used to undo
changesin the event of arollback. Should the transaction be rolled back after all, other transactions will pick up
the garbage (eventually). This option can be useful for massive insertions that don't need to be rolled back. For
transactions that don't perform any mutations, NO AUTO UNDO makes no difference at all.

Note

NOAUTO UNDO isthe SQL equivalent of thei sc_t pb_no_aut o_undo TPB parameter, availablein the AP
since InterBase times.

108

Chapter 9

PSQL statements

PSQL — Procedural SQL —is the Firebird programming language used in stored procedures, triggers and exe-
cutable blocks.

BEGIN ... END blocks may be empty

Availablein: PSQL
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:

create trigger bi_atable for atable
active before insert position O

as

begi n

end

BREAK

Availablein: PSQL
Added in: 1.0
Better alternative: LEAVE

Description: BREAK immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

Example:

create procedure sel phrase(numint)
returns (phrase varchar(40))
as
begi n
for select Phr from Phrases into phrase do
begin
if (num< 1) then break;
suspend;
num= num - 1;
end

109

PSQL statements

phrase = '*** Ready! ***';
suspend;
end

This selectable SP returns at most numrows from the table Phrases. The variable numis decremented

in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues at theline“phrase = ' *** Ready! ***';”".

I mportant

Since Firebird 1.5, use of the SQL-99 compliant alternative LEAVE is preferred.

CLOSE cursor

Availablein: PSQL
Added in: 2.0

Description: Closes an open cursor. Any cursors still open when the trigger, stored procedure or EXECUTE
BLOCK statement they belong to is exited, will be closed automatically.

Syntax:

CLGSE cur sor nane;

Example: See DECLARE ... CURSOR.

DECLARE
Availablein: PSQL
Description: Declares a PSQL local variable.

Syntax:

DECLARE [VARI ABLE] varnane <var_spec>;

<var_spec> ::= <type> [NOT NULL] [<coll>] [<default>]
| CURSOR FOR (sel ect-statenent)
<type> = sql_datatype | [TYPE OF] domain | TYPE OF COLUW rel. col
<col | > = COLLATE coll ation
<def aul t > = {=| DEFAULT} value

If sql _dat at ype isatext type, it may include a character set.
Obviously, a COLLATE clause is only alowed with text types.

DECLARE ... CURSOR
Added in: 2.0

110

PSQL statements

Description: Declaresanamed cursor and bindsit to its own SELECT statement. The cursor can later be opened,
used to walk the result set, and closed again. Positioned updates and del etes (using WHERE CURRENT OF) are

also supported. PSQL cursors are available in triggers, stored procedures and EXECUTE BLOCK statements.

Example:

execut e bl ock
returns (relation char(31), sysflag int)
as
decl are cur cursor for
(sel ect rdb$rel ati on_nane, rdb$systemflag fromrdb$relations);
begi n
open cur;
while (1=1) do
begi n
fetch cur into relation, sysflag;
if (row_count = 0) then | eave;
suspend;
end
cl ose cur;
end

Notes:

* A “FOR UPDATE”" clauseis alowed in the SELECT statement, but not required for a positioned update or

delete to succeed.
Make sure that declared cursor names do not clash with any names defined later on in AS CURSOR clauses.

If you need a cursor to loop through an output set, it is amost always easier — and less error-prone — to use
a FOR SELECT statement with an AS CURSOR clause. Declared cursors must be explicitly opened, fetched
from, and closed. Furthermore, you need to check r ow_count after every fetch and break out of the loop
if it iszero. AS CURSOR takes care of all of that automagically. However, declared cursors give you more
control over the sequence of events, and alow you to operate several cursorsin parallel.

The SELECT statement may contain named SQL parameters, likein“sel ect name || :sfx fromnanes
wher e nurmber = : nunf. Each parameter must be a PSQL variable that has been declared previously (this
includes any in/out params of the PSQL module). When the cursor is opened, the parameter is assigned the
current value of the variable.

Caution! If the value of a PSQL variable that is used in the SELECT statement changes during execution of
the loop, the statement may (but will not always) be re-evaluated for the remaining rows. In general, this
situation should be avoided. If you really need this behaviour, test your code thoroughly and make sure you
know how variable changes affect the outcome. Also be advised that the behaviour may depend on the query
plan, in particular the use of indices. Asit is currently not strictly defined, it may change in some future
version of Firebird.

See also; OPEN cursor, FETCH cursor, CLOSE cursor

DECLARE [VARIABLE] with initialization

Changedin: 1.5

Description: InFirebird 1.5 and above, aPSQL local variable can beinitialized upon declaration. TheVARIABLE

keyword has become optional .

111

PSQL statements

Example:

create procedure proccie (a int)
returns (b int)
as
declare p int;
declare q int = 8;
declare r int default 9;
declare variable s int;
declare variable t int = 10;
declare variable u int default 11;
begi n
<intelligent code here>
end

DECLARE with DOMAIN instead of datatype

Added in: 2.1

Description: In Firebird 2.1 and above, PSQL local variables and input/output parameters can be declared with
a domain instead of a datatype. The TYPE OF modifier allows using only the domain's datatype and not its
NOT NULL setting, CHECK constraint and/or default value. If the domain is of atext type, its character set and
collation are always included.

Example:

create procedure MyProc (a int, f ternbool)
returns (b int, x type of bigfloat)
as
declare p int;
declare q int = 8;
decl are y stocknum default -1;
begi n
<very intelligent code here>
end

(This example presupposes that TERNBOOL, BIGFLOAT and STOCKNUM are domains already de-
fined in the database.)

Warning

If you change a domain's definition, existing PSQL code using that domain may becomeinvalid. For informa-
tion on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this document.

TYPE OF COLUMN in variable declaration

Added in: 2.5

Description: Analogousto the“TYPE OF donai n” syntax supported sinceversion 2.1, it isnow also possibleto
declare variables and parameters as having the type of an existing table or view column. Only the typeitself is
used; in the case of string types, thisincludes the character set and the collation. Constraints and default values
are never copied from the source column.

112

PSQL statements

Example:

create table cars (
make varchar (20),
nmodel varchar (20),
wei ght nuneric(4),
t opspeed nuneric(3),
constraint uk_nmake_nodel uni que (nake, nodel)

)

create procedure max_ki netic_energy
(make type of columm cars. nmake,
nodel type of colum cars. nodel)
returns (max_e_kin doubl e precision)
as
decl are mass type of col unn cars. wei ght;
decl are velocity type of columm cars.topspeed,;
begi n
sel ect wei ght, topspeed fromcars
where nake = : nake and nodel = :node
into mass, velocity;
max_e_kin = 0.5 * mass * velocity * velocity;
end

Warnings

e The collation of the source column is not always taken into consideration when comparisons (e.g. equality
tests) are made, even though it should. Thisis due to a bug that has been fixed for Firebird 3.

e PSQL code using TYPE OF COLUMN may become invalid if the column's type is changed at a later time.
For information on how to detect this, please read the note The RDB$VALID_BLR field, near the end of this
document.

COLLATE in variable declaration
Added in: 2.1

Description: In Firebird 2.1 and above, aCOLLATE clauseis alowed in the declaration of text-type PSQL local
variables and input/output parameters.

Example:

create procedure G mMmeText
returns (txt char(32) character set utf8 collate unicode)

as

decl are sinmobunao nytextdomain collate pt_br default 'né&o';
begi n

<stunningly intelligent code here>
end

NOT NULL in variable declaration

Added in: 2.1

113

PSQL statements

Description: In Firebird 2.1 and above, a NOT NULL constraint is allowed in the declaration of PSQL local
variables and input/output parameters.

Example:

create procedure Conmpute(a int not null, b int not null)
returns (outcone bigint not null)

as
decl are tenp bigint not null

begi n
<slightly disappointing code here>

end

EXCEPTION

Availablein: PSQL
Changedin: 1.5

Description: The EXCEPTION syntax has been extended so that the user can
a. Rethrow acaught exception or error.
b. Provide a custom message when throwing a user-defined exception.

Syntax:
EXCEPTI ON [<excepti on-nane> [cust om nmessage]]

<exception-name> ::= A previously defined exception name

Rethrowing a caught exception

Within the exception handling block only, you can rethrow the caught exception or error by giving the EXCEP-
TION command without any arguments. Outside such blocks, this “bare” command has no effect.

Example:
when any do
begi n
insert into error_log (...) values (sqlcode, ...);

exception;
end

This example first logs some information about the exception or error, and then rethrows it.

Providing a custom error message

Firebird 1.5 and up alow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

Examples:

exception ex_data_error 'You just |ost sone val uable data';

114

PSQL statements

exception ex_bad_type 'Wong type for record with id ' || newid;

Note

Starting at version 2.0, the maximum message length is 1021 instead of 78 characters.

EXECUTE PROCEDURE

Availablein: DSQL, PSQL
Changedin: 1.5

Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored
procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

EXECUTE STATEMENT

Availablein: PSQL
Added in: 1.5
Changedin: 2.5

Description: EXECUTE STATEMENT takes a string argument and executes it as if it had been submitted as a
DSQL statement. If the statement returns data, the INTO clause assigns these to local variables. If the statement
may return more than one row of data, the “FOR ... DO” form must be used to create aloop.

Syntax (full):
<execute-statenent> ::= EXECUTE STATEMENT <argunent >
[<option> ...]
[NTO <vari abl es>]
<l ooped- ver si on> .. = FOR <execute-statenent> DO <psql - st at ement >
<ar gunent > ::= paran ess-stnt
| (param ess-stnt)
| (<stnt-with-parans>) (<param val ues>)
<stnt-with-parans> .= A statenment containing one or nore paraneters,
in one of these formns:
- nanmed: ':' + parammane, e.g. :a, :b, :size

- positional: each paramis designated by '?
Naned and positional paraneters may not be m xed.

<paramval ues>
<naned- val ues>
<posi tional - val ues>

<naned-val ues> | <positional -val ues>
paramane : = val ue-expr [, paramane := value-expr ...]
val ue-expr [, value-expr ...]

115

PSQL statements

<option> o= WTH { AUTONOMOUS| COMMON} TRANSACTI ON
| WTH CALLER PRI VI LEGES
| AS USER user
| PASSWORD password
| ROLE role
| ON EXTERNAL [DATA SOURCE] <connect-string>

[<host spec>] pat h-or-ali as

<t cpi p- host spec> | <net beui - host spec>
host nane:

\'\ host nane\

<connect - string>
<host spec>

<t cpi p- host spec>
<net beui - host spec>

<vari abl es> ::= [:]varnane [, [:]varname ...]

<psql - st at ement > ;= A sinple or conmpound PSQL statenent.

NOTI CE:

param ess-stnt, <stnt-with-parans>, user, password, role and <connect-string>

are string expressions. Wen given directly, i.e. as literal strings, they nust

be encl osed in single-quote characters.

The following paragraphs first explain the basic usage of EXECUTE STATEMENT asit has been since Firebird
1.5. After that, the new featuresin 2.5 are introduced.

No data returned
Thisform isused with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.
Syntax (partial):
EXECUTE STATEMENT <st at enent >
<statenment> ::= An SQ statenent returning no data.
Example:

create procedure Dynam cSanpl eOne (ProcNane varchar (100))
as

decl are variabl e stnt varchar(1024);

declare variable paramint;

begi n
sel ect m n(SoreField) from SonmeTabl e i nto param
stnt = 'execute procedure '
|| ProcName
[
| | cast(param as varchar(20))
)
execute statement stnt;
end
Warning

Although this form of EXECUTE STATEMENT can aso be used with all kinds of DDL strings (except CRE-
ATE/DROP DATABASE), it is generaly very, very unwise to use thistrick in order to circumvent the no-DDL
rulein PSQL.

116

PSQL statements

One row of data returned

Thisform is used with singleton SELECT statements.
Syntax (partial):

EXECUTE STATEMENT <sel ect-statenment> | NTO <var> [, <var> ...]

<sel ect-statement> ::= An SQ statenent returning at nbst one row of data.
<var > ::= A PSQL variable, optionally preceded by “:”
Example:
create procedure Dynam cSanpl eTwo (Tabl eName varchar (100))
as
decl are variable paramint;
begi n
execut e statenment
"sel ect max(CheckField) from' || TableNane into :param
if (param > 100) then
exception Ex_Overflow 'Overflowin ' || Tabl eNaneg;
end

Any number of data rows returned

This form — analogous to “FOR SELECT ... DO” —is used with SELECT statements that may return a multi-row
dataset.

Syntax (partial):

FOR EXECUTE STATEMENT <sel ect-statenment> | NTO <var> [, <var> ...]
DO <psql - st at enent >

<sel ect-statement> ::= Any SELECT statenent.

<var > ;= A PSQ variable, optionally preceded by “:”

<psql - st at ement > ::= A sinple or conpound PSQL statenent.
Example:

create procedure Dynam cSanpl eThree
(Text Fiel d varchar (100),
Tabl eName var char (100))

returns
(LongLi ne var char (32000))
as
decl are variabl e Chunk varchar (100);
begi n
Chunk = '";
for execute statenent
"select ' || TextField || ' from"' || TableNane into :Chunk
do

if (Chunk is not null) then
LongLi ne = LongLine || Chunk [| " *;
suspend;
end

117

PSQL statements

Improved performance

Changedin: 2.5

Description: In previous versions, if EXECUTE STATEMENT occurred in a loop, the SQL statement would be
prepared, executed and rel eased upon every iteration. In Firebird 2.5 and above, such astatementisonly prepared
once, giving a huge performance benefit.

WITH {AUTONOMOUS|COMMON} TRANSACTION
Added in: 2.5

Description: Traditionally, the executed SQL statement always ran within the current transaction, and this is
still the default. WITH AUTONOMOUS TRANSACTION causes a separate transaction to be started, with the same
parameters asthe current transaction. It will be committed if the statement runsto compl etion without errorsand
rolled back otherwise. WITH COMMON TRANSACTION uses the current transaction if possible. If the statement
must run in a separate connection, an already started transaction within that connection is used, if available.
Otherwise, anew transaction is started with the same parameters asthe current transaction. Any new transactions
started under the “COMMON” regime are committed or rolled back with the current transaction.

Syntax (partial):

[FOR]
EXECUTE STATEMENT sql - st at ement
W TH { AUTONOMOUS| COMMON} TRANSACTI ON
[...other options...]
[I NTO <vari abl es>]
[DO psql - st at enent]

WITH CALLER PRIVILEGES
Added in: 2.5

Description: By default, the SQL statement is executed with the privileges of the current user. Specifying WITH
CALLERPRIVILEGES addsto thisthe privilegesof thecalling SPor trigger, just asif the statement were executed
directly by the routine. WITH CALLER PRIVILEGES has no effect if the ON EXTERNAL clause is also present.

Syntax (partial):

[FOR]
EXECUTE STATEMENT sql - st at enent
W TH CALLER PRI VI LEGES
[...other options...]
[NTO <vari abl es>]

[DO psql - st at enent]

ON EXTERNAL [DATA SOURCE]

Added in: 2.5

118

PSQL statements

Description: With ON EXTERNAL DATA SOURCE, the SQL statement is executed in a separate connection to
the same or another database, possibly even on another server. If the connect stringisNULL or' ' (empty string),
the entire ON EXTERNAL clauseis considered absent and the statement is executed against the current database.

Syntax (partial):

[FOR]
EXECUTE STATEMENT sql - st at enent
ON EXTERNAL [DATA SOURCE] <connect-string>
[AS USER user]
[PASSWORD passwor d]
[ROLE rol €]
[...other options...]
[NTO <vari abl es>]
[DO psql - st at enent]

<connect-string> = [<hostspec>] path-or-alias

<host spec> .= <tcpip-hostspec> | <netbeui-hostspec>
<t cpi p- host spec> = host nane:

<net beui - host spec> = \\ host nane\

NOTI CE:
sqgl -statenent, user, password, role and <connect-string> are string
expressions. Wien given directly, i.e. as literal strings, they nust

be encl osed in single-quote characters.

Connection pooling:

e External connections made by statements WITH COMMON TRANSACTION (the default) will remain open
until the current transaction ends. They can be reused by subsequent calls to EXECUTE STATEMENT, but
only if the connect string is exactly the same, including case.

» External connections made by statements WITH AUTONOMOUS TRANSACTION are closed as soon as the
statement has been executed.

» Notice that statements WITH AUTONOMOUS TRANSACTION can and will reuse connections that were
opened earlier by statements WITH COMMON TRANSACTION. If this happens, the reused connection will
be left open after the statement has been executed. (It must be, because it has at |east one uncommitted trans-
action!)

Transaction pooling:

e |f WITH COMMON TRANSACTION isin effect, transactions will be reused as much as possible. They will be
committed or rolled back together with the current transaction.

e If WITHAUTONOMOUS TRANSACTION is specified, afresh transaction will always be started for the state-
ment. This transaction will be committed or rolled back immediately after the statement's execution.

Exception handling: When ON EXTERNAL is used, the extra connection is aways made via a so-called ex-
ternal provider, even if the connection is to the current database. One of the consequences is that you can't
catch exceptions the way you are used to. Every exception caused by the statement is wrapped in either an
eds_connection or an eds_statement error. In order to catch them in your PSQL code, you have to use WHEN
GDSCODE eds_connection, WHEN GDSCODE eds_statement or WHEN ANY. (Without ON EXTERNAL, excep-
tions are caught in the usual way, even if an extra connection is made to the current database.)

Mi scellaneous notes:

» The character set used for the external connection is the same as that for the current connection.

119

PSQL statements

» Two-phase commits are not supported.

» For authentication details, please look under ASUSER, PASSWORD and ROLE :: Authentication, below.

AS USER, PASSWORD and ROLE

Added in: 2.5

Description: Optionally, a user name, password and/or role can be specified under which the statement must
be executed.

Syntax (partial):

[FOR]
EXECUTE STATEMENT sql - st at enent
AS USER user
PASSWORD password
ROLE rol e
[...other options...]
[NTO <vari abl es>]
[DO psql - st at enent]

NOTI CE:
sql -statenment, user, password and role are string expressions.
VWhen given directly, i.e. as literal strings, they nust be

encl osed in single-quote characters.

Authentication: How auser isauthenti cated and whether a separate connection isopened depends on the presence
and values of the parameters ON EXTERNAL [DATA SOURCE], AS USER, PASSWORD and ROLE.

» If ON EXTERNAL is present, a new connection is always opened, and:

If at least one of AS USER, PASSWORD and ROLE is present, native authentication is attempted with the
given parameter values (locally or remotely, depending on the connect string). No defaults are used for
missing parameters.

If al three are absent and the connect string contains no hostname, then the new connection is established
onthelocal host with the same user and role asthe current connection. Theterm 'local’ means 'on the same
machine as the server' here. Thisis not necessarily the location of the client.

If al three are absent and the connect string contains a hostname, then trusted authentication is attempted
on the remote host (again, remote from the POV of the server). If this succeeds, the remote OSwill provide
the user name (usually the OS account under which the Firebird process runs).

* |If ON EXTERNAL is absent:

If at least one of AS USER, PASSWORD and ROLE is present, a new connection to the current database is
opened with the given parameter values. No defaults are used for missing parameters.

If all three are absent, the statement is executed within the current connection.

Notice: If aparameter valueisNULL or' ' (empty string), the entire parameter is considered absent. Additionally,
ASUSER isconsidered absent if itsvalueis equal to CURRENT _USER, and ROLE if it'sequal to CURRENT _ROLE.

120

PSQL statements

The comparison is made case-sensitively; in most cases this means that only user and role names given in all-
caps can be equal tot CURRENT _USER or CURRENT_ROLE.

Parameterized statements

Added in: 2.5

Description: Since Firebird 2.5, the SQL statement to be executed may contain parameters. When [FOR] EXE-
CUTE STATEMENT is called, avalue must be provided for each parameter.

Syntax (partial):

[FOR]
EXECUTE STATEMENT (<paraneterized-statenment>) (<param assi gnnments>)
[...options...]
[NTO <vari abl es>]
[DO psql - st at enent]

<paraneterized-statenent> ::= An SQ statenent containing
<nanmed- par ankS Or <positional - paranks

. par amane

<naned- par an> =
0o ?

<posi ti onal - par an

<naned- assi gnment s> | <positional - assi gnnent s>

<par am assi gnnent s> =
<narned- assi gnnment s> ::= paramane := value [, paramane := value ...]
<posi ti onal - assi gnment s> = wvalue [, value ...]

NOTI CE:

<paraneterized-statement> is a string expression. Wen given directly,

i.e. as aliteral string, it nust be enclosed in single-quote characters.

Examples:

With named parameters:

decl are |icense_num varchar (15);
decl are connect _string varchar (100);

decl are stnt varchar(100) =
"select license fromcars where driver = :driver and location = :loc';

begi n

sel ect connstr from databases where cust_id = :id into connect_string;

for select id fromdrivers into current_driver do

begin
for select location fromdriver_| ocations
where driver_id = :current_driver
into current | ocation do
begi n

current _driver,

execute statement (stnt) (driver
current _| ocation)

| oc :
on external connect_string
into |icense_num

121

PSQL statements

The same code with positional parameters:

decl are |icense_num varchar (15);
decl are connect _string varchar(100);
decl are stmt varchar(100) =
‘select license fromcars where driver = ? and |location = ?';
begi n

sel ect connstr from databases where cust_id = :id into connect_string;

for select id fromdrivers into current_driver do

begi n
for select location fromdriver | ocations
where driver_id = :current_driver
into current_l ocation do
begi n

execute statement (stnt) (current_driver, current_|ocation)
on external connect_string
into |icense_num

Notes: Some thingsto be aware of:

* When a statement has parameters, it must be placed in parentheses when EXECUTE STATEMENT is called,
regardiess whether it is given directly as a string, as a variable name, or by another expression.

» Named parameters must be preceded by acolon (“:”) in the statement itself, but not in the parameter assign-
ments.

» Each named parameter may occur several times in the statement, but only once in the assignments.

» Each named parameter must be assigned a value when EXECUTE STATEMENT is called; the assignments
can be placed in any order.

» Theassignment operator for named parametersis“: =", not “=" likein SQL.

» With positional parameters, the number of values supplied must exactly equa the number of parameters
(question marks) in the statement.

Caveats with EXECUTE STATEMENT

1. Thereisnoway to validate the syntax of the enclosed statement.
2. There are no dependency checks to discover whether tables or columns have been dropped.

3. Even though the performance in loops has been significantly improved in Firebird 2.5, execution is still
considerably slower than that of statements given directly.

4. Returnvaluesarestrictly checked for datatypein order to avoid unpredictabl e type-casting exceptions. For
example, the string ' 1234' would convert to an integer, 1234, but ' abc' would give a conversion error.

All in all, this feature is meant to be used very cautiously and you should always take the above factors into
account. If you can achieve the same result with PSQL and/or DSQL, then thisis nearly always preferable.

122

PSQL statements

EXIT

Availablein: PSQL
Changedin: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versions it is only supported in
stored procedures, not in triggers.

FETCH cursor

Availablein: PSQL
Added in: 2.0
Description: Fetchesthe next datarow from acursor'sresult set and storesthe column valuesin PSQL variables.
Syntax:
FETCH cursornane INTO [:]varnanme [, [:]varnane ...];
Notes:

* The ROW COUNT context variable will be 1 if the fetch returned a data row and O if the end of the set has
been reached.

» You can do apositioned UPDATE or DELETE on the fetched row with the WHERE CURRENT OF clause.

Example: See DECLARE ... CURSOR.

FOR EXECUTE STATEMENT ... DO

Availablein: PSQL
Added in: 1.5

Description: See EXECUTE STATEMENT :: Any number of data rows returned.

FOR SELECT ... INTO ... DO

Availablein: PSQL

123

PSQL statements

Description: Executes a SELECT statement and retrieves the result set. In each iteration of the loop, the field
values of the current row are copied into local variables. Adding an AS CURSOR clause enables positioned
deletes and updates. FOR SELECT statements may be nested.

Syntax:
FOR <sel ect-stnt>
I NTO <var> [, <var> ...]
[AS CURSOR nane]

DO
<psql -stnt >

<select-stnt> ::=
<var >
<psql -stnt >

A valid SELECT statenent.
A PSQL variabl e nane, optionally preceded by “:”
A single statement or a bl ock of PSQ. code.

» The SELECT statement may contain named SQL parameters, likein “sel ect name || :sfx
from nanes where nunber = : nuni. Each parameter must be aPSQL variablethat has been
declared previously (thisincludes any in/out params of the PSQL modul€).

» Caution! If the value of a PSQL variable that is used in the SELECT statement changes during
execution of the loop, the statement may (but will not always) be re-evaluated for the remaining
rows. In general, this situation should be avoided. If you really need this behaviour, test your code
thoroughly and make sure you know how variable changes affect the outcome. Also be advised
that the behaviour may depend on the query plan, in particular the use of indices. And as it is
currently not strictly defined, it may also change in some future version of Firebird.

Examples:

create procedure shownums
returns (aa int, bb int, smint, df int)
as
begi n
for select distinct a, b fromnunbers order by a, b
into :aa, :bb

do
begi n
sm= aa + bb
df = aa - bb
suspend;
end
end

create procedure relfields
returns (relation char(32), pos int, field char(32))
as
begi n
for select rdb$rel ati on_name from rdb$rel ati ons
into :relation
do
begin
for select rdb$field_position + 1, rdb$fiel d_nane
fromrdb$rel ation_fields
where rdb$rel ation_nane = :relation
order by rdb$field_position
into :pos, :field
do
begi n
if (pos = 2) then relation =" "'; -- for nicer output

124

PSQL statements

suspend;
end
end
end

AS CURSOR clause
Availablein: PSQL
Added in: IB

Description: The optional AS CURSOR clause creates a named cursor that can be referenced (after WHERE
CURRENT OF) within the FOR SELECT loop in order to update or delete the current row. Thisfeature was already
added in InterBase, but not mentioned in the Language Reference.

Example:

create procedure deltown (towntodel ete varchar(24))
returns (town varchar(24), pop int)
as
begi n
for select town, pop fromtowns into :town, :pop as cursor tcur do
begi n
if (town = towntodel ete)
then delete fromtowns where current of tcur;
el se suspend
end
end

Notes:

* A “FOR UPDATE" clauseis allowed in the SELECT statement., but not required for a positioned update or
delete to succeed.

» Make surethat cursor names defined here do not clash with any names created earlier on in DECLARE CUR-
SOR statements.

* AS CURSOR is not supported in FOR EXECUTE STATEMENT loops, even if the statement to execute is a
suitable SELECT query.

IN AUTONOMOUS TRANSACTION

Availablein: PSQL
Addedin: 2.5

Description: Code running in an autonomous transaction will be committed immediately upon successful com-
pletion, regardless of how the parent transaction finishes. Thisis useful if you want to make sure that certain
actions will not be rolled back, even if an error israised later.

Syntax:

I N AUTONOMOUS TRANSACTI ON DO <psql - st at enent >

125

PSQL statements

Example:

create trigger tr_connect on connect

as

begi n
-- make sure | og nessage is always preserved:
i n autononmous transaction do

insert into log (msg) values ('User ' || current_user || ' connects.');
if (current_user in (select username from bl ocked_users)) then
begi n

-- again, |og nessage nust be preserved and event posted, so:
i n aut ononous transaction do

begi n
insert into log (nsg) values ('"User ' || current_user || ' refused.');
post _event ' Connection attenpt by bl ocked user."';

end

-- now we can safely except:
exception ex_baduser;
end
end

Notes:
» Autonomous transactions have the sameisolation level as their parent transaction.

» Because the autonomous transaction is completely independent of its parent, care must be taken to avoid
deadlocks.

 |f an exception occurs within the autonomous transaction, the work will be rolled back.

LEAVE

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0

Description: LEAVE immediately terminates the innermost WHILE or FOR loop. With the optional | abel ar-
gument introduced in Firebird 2.0, LEAVE can break out of surrounding loops aswell. Execution continues with
the first statement after the outermost terminated loop.

Syntax:

[1abel :]
{FOR | WH LE} ... DO

(possibly nested | oops, with or wthout |abels)
LEAVE [abel];
Example:

If an error occurs during the insert in the example below, the event islogged and the loop terminated.
The program continues at the line of code reading “c = 0;”

126

PSQL statements

while (b < 10) do
begi n
insert into Nunmbers(B) values (:b);
b=>b+ 1;
when any do
begin
execute procedure log_error (current_timestanp, 'Error in B loop');
| eave;
end
end
c = 0;

The next example useslabels. “Leave LoopA” terminatesthe outer loop, “| eave LoopB’ theinner
loop. Noticethat aplain “1 eave” would al so suffice to terminate the inner loop.

stnm1l = '"select Nane from Farns';
LoopA:
for execute statenent :stml into :farmdo
begi n
stnt2 = '"select Nane from Ani mal s where Farm=""";
LoopB:
for execute statement :stm2 || :farm|| '"''" into :animal do
begin
if (animal = "Fluffy') then | eave LoopB;
else if (animal = farm then | eave LoopA;
el se suspend;
end
end

OPEN cursor

Availablein: PSQL

Added in: 2.0

Description: Opensapreviously declared cursor, executing its SELECT statement and enabling it to fetch records
from the result set.

Syntax:

OPEN cur sor nane;

Example: See DECLARE ... CURSOR.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

127

PSQL statements

Subqueries as PSQL expressions

Changedin: 2.5

Description: Previously, subqueries could not be used as value expressions in PSQL, even if they returned a
single value. Thismade it necessary to use SELECT ... INTO, often assigning the result to a variable that wouldn't
have been necessary otherwise. Firebird 2.5 and up support the direct use of scalar subqueries as if they were
simple value expressions.

Examples:

Constructions like the following are now valid PSQL :

var = (select ... from...);

if ((select ... from...) = 1) then ...

if (1 =any (select ... from...)) then ...
if (1in (select ... from...)) then ...

Of course, inthefirst two examples you haveto be sure that the SELECT doesn't return multiple rows!

UDFs callable as void functions

Changedin: 2.0

Description: In Firebird 2.0 and above, PSQL code may call UDFswithout assigning theresult value, i.e. likea
Pascal procedure or C void function. In most cases this is senseless, because the main purpose of almost every
UDF isto produce the result value. Some functions however perform a specific task, and if you're not interested
in the result value you can now spare yourself the trouble of assigning it to adummy variable.

Note

RDB$GET_CONTEXT and RDB$SET_CONTEXT, though classified in this guide under internal functions, are
actually akind of auto-declared UDFs. Y ou may therefore call them without catching the result. Of course this
only makes sense for RDB$SET_CONTEXT.

WHERE CURRENT OF valid again for view cursors

Changedin: 2.0, 2.1

Description: Because of possible reliability issues, Firebird 2.0 disallowed WHERE CURRENT OF for view cur-
sors. In Firebird 2.1, with itsimproved view validation logic, this restriction has been lifted.

128

Chapter 10

Security and access control

ALTER ROLE

Availablein: DSQL
Added in: 2.5

Description: Currently, ALTER ROLE's only purpose is to control the automatic mapping of the RDBSADMIN
role to Windows administrators. For afull discussion, see RDB$SADMIN and AUTO ADMIN MAPPING.

Syntax:

ALTER ROLE RDB$ADM N { SET| DROP} AUTO ADM N MAPPI NG

GRANT and REVOKE

GRANTED BY
Availablein: DSQL
Added in: 2.5

Description: When a privilege is granted, it is normally stored in the database with the current user as the
grantor. With the GRANTED BY clause, the user who grants the privilege can have someone €else registered as
the grantor. When GRANTED BY is used with REVOKE, the privilege (registered as) granted by the named user
will be removed. To make migration from certain other RDBM Ses easier, the non-standard AS is supported as
asynonym of GRANTED BY.

Access. Use of the GRANTED BY clause is reserved to:

* The database owner;

* SYSDBA;

» anybody who has the RDB$SADMIN role in the database and specified it while connecting;

» if AUTOADMIN MAPPING ison for the database: any Windows administrator who connected to the database
using trusted authentication without specifying arole.

Even the owner of the role can't use GRANTED BY if heisn't in the above list.

129

Security and access control

Syntax:
GRANT
{<privileges> ON <object> | role}
TO <grant ees>
[WTH { GRANT| ADM N} OPTI QN
[{GRANTED BY | AS} [USER] grantor]
REVOKE

[{ GRANT| ADM N} OPTI ON FOR]
{<privileges> ON <object> | role}
FROM <gr ant ees>

[{GRANTED BY | AS} [USER] grantor]

(Theseare not the complete GRANT and REV OK E syntaxes, but they are complete asfar asGRANTED
BY isconcerned.)

Example:
-- connected as dat abase owner BOB:

create rol e digger;

grant digger to francis;

grant digger to fred;

grant digger to frank with adnmin option granted by fritz;
commt;

revoke digger fromfred;

-- XK

revoke admin option for digger fromfrank;

-- error: "BOBis not grantor of Role on DI GGER to FRANK."
revoke admin option for digger fromfrank granted by fritz;
-- XK

revoke digger fromfrank

-- error: "BOBis not grantor of Role on DI GGER to FRANK."
comm t;

-- exit BOB, enter FRITZ:

revoke digger from frank;

-- XK

revoke digger fromfrancis;

-- error: "FRITZ is not grantor of Role on DIGGER to FRANCI S. "
revoke digger fromfrancis granted by bob;

-- error: "Only SYSDBA or database owner can use GRANTED BY cl ause"
commt;

Note: Please naotice that a GRANT or ADMIN option is just a flag in the privilege record; it does not have a
separate grantor. So thisline:

grant digger to frank with admin option granted by fritz

does not mean “Grant digger to Frank, and grant the admin option in Fritz's name”, but “Grant digger to Frank
with admin option — all in Fritz's name”.

REVOKE ALL ON ALL

Availablein: DSQL

130

Security and access control

Added in: 2.5

Description: Revokes all privileges (including role memberships) on all objects from one or more users and/or
roles. Thisisaquick way to “clean up” when auser has left the system or must be locked out of the database.

Syntax:
REVOKE ALL ON ALL FROM <grantee> [, <grantee> ...]
<grantee> ::= [USER] usernane | [ROLE] rol enane
Example:
revoke all on all from buddy, peggy, sue
Notes:

» Wheninvoked by aprivileged user (the database owner, SY SDBA or anyone whose CURRENT_ROLE isRDB
$ADMIN), al privileges are removed regardless of the grantor. Otherwise, only those privileges granted by
the current user are removed.

» The GRANTED BY clause is not supported.

» Thisstatement cannot be used to revoke privilegesfrom stored procedure, trigger or view grantees. (Privileges
ON such objects are removed, of course.)

REVOKE ADMIN OPTION
Availablein: DSQL
Added in: 2.0

Description: Revokes apreviously granted admin option (the right to pass on a granted role to others) from the
grantee, without revoking theroleitself. Multipleroles and/or multiple grantees can be handled in one statement.

Syntax:
REVOKE ADM N OPTI ON FOR <rol e-list> FROM <grantee-1|ist>
<role-list> = role [, role ...]
<grantee-list> ::= [USER] <grantee> [, [USER] <grantee> ...]
<grant ee> = usernane | PUBLIC

Example:

revoke admin option for manager from john, paul, george, ringo

If auser has received the admin option from several grantors, each of those grantors must revoke it or the user
will still be able to grant the role(s) in question to others.

The RDB$SADMIN role

Added in: 2.5

131

Security and access control

Description: Firebird 2.5 introducesthe RDB$SADMIN system role, whichis predefined in every database. Grant-
ing someone the RDB$ADMIN role in a database gives him or her SYSDBA rights in that database only. In a
normal database, this means full control over all objects. In the security database, it means the ability to create,
alter and drop user accounts. In both cases, the grantee can always pass the role on to others. In other words,
“WITH ADMIN OPTION" is built in and need not be specified.

In normal databases

Granting the RDB$ADMIN role in a normal database
In aregular database, the RDB$SADMIN role can be granted and revoked with the usual syntax:

GRANT RDB$ADM N TO user nane
REVOKE RDB$ADM N FROM user nane

Grantors can be:

* The database owner;

* SYSDBA;

» anybody who has the RDB$ADMIN role in the database and specified it while connecting;

» if AUTOADMIN MAPPING ison for the database: any Windows administrator who connected to the database
using trusted authentication without specifying arole.

Using the RDB$ADMIN role in a normal database

To make use of his RDB$SADMIN privileges, the grantee simply specifies the role when connecting to the
database.

In the security database

Granting the RDB$ADMIN role in the security database

Since nobody can connect to the security database, the GRANT and REVOKE statements cannot be used here.
Instead, the RDBSADMIN role is granted and revoked with the new SQL user management commands:

CREATE USER newuser PASSWORD ' password' GRANT ADM N ROLE
ALTER USER exi stinguser GRANT ADM N RCLE
ALTER USER exi stinguser REVOKE ADM N ROLE

Please notice that GRANT ADMIN ROLE and REVOKE ADMIN ROLE are not GRANT and REVOKE statements.
They are three-word parameters to CREATE and ALTER USER.

Alternatively, gsec can be used with the - adni n parameter:
gsec -add newuser -pw password -admin yes

gsec -no existinguser -admn yes
gsec -no existinguser -admn no

132

Security and access control

Depending on the situation, more parameters may be needed when invoking gsec, e.g. - user and - pass, or
-trusted.

Grantors can be:

* SYSDBA;

» anybody who has the RDB$ADMIN role in the security database and specified it while connecting (or while
invoking gsec);

* if AUTO ADMIN MAPPING is on for the security database: any Windows administrator who connected (or
invoked gsec) using trusted authentication without specifying arole.

Using the RDB$ADMIN role in the security database

To manage user accounts through SQL, the grantee must specify the RDBSADMIN role when connecting. But
this poses a problem, because nobody can connect to the security database. The solution isthat the user connects
to another — regular — database where he also has RDB$SADMIN rights. He specifies the role when connecting
to the regular database, and can then give any SQL user management command. It's not the most elegant of
solutions, but it is the only way. If there isn't aregular database where the grantee has the RDBSADMIN role,
the SQL route is blocked.

To perform user management with gsec, the grantee must provide the extra parameter - r ol e r db$adni n.

AUTO ADMIN MAPPING

Platform: Windows only
Added in: 2.5

Description: In Firebird 2.1, Windows administrators would automatically receive SY SDBA privileges if they
used trusted authentication to connect to the server. In Firebird 2.5, thisis no longer the case. Whether admin-
istrators have automatic SY SDBA rights now depends on the setting of AUTO ADMIN MAPPING. Thisis a per-
database switch which isoff by default. If AUTOADMIN MAPPING ison, it will take effect whenever aWindows
administrator: a) connects using trusted authentication, and b) does not specify any role when connecting. After
asuccessful “auto admin” connect, the current role is set to RDBSADMIN.

In normal databases
To turn the automatic mapping on and off in aregular database:

ALTER ROLE RDB$ADM N SET AUTO ADM N MAPPI NG
ALTER ROLE RDB$ADM N DROP AUTO ADM N MAPPI NG

These statements must be issued by a user with sufficient rights, that is:

* The database owner;

e SYSDBA;

» anybody who has the RDBSADMIN role in the database and specified it while connecting;

» if AUTOADMIN MAPPING ison for the database: any Windows administrator who connected to the database
using trusted authentication without specifying arole.

133

Security and access control

In normal databases, the status of AUTO ADMIN MAPPING is checked at connect time only. If an administrator
hasthe RDB$SADMIN role because the mapping was on when he connected, hewill keep that role for the duration
of the connection, even if he or someone else turns off the mapping in the meantime. Likewise, setting AUTO
ADMIN MAPPING on will not change the current role to RDBSADMIN for administrators who were already
connected.

In the security database

There are no SQL statements to turn the automatic mapping on and off in the security database. Instead, gsec
must be used:

gsec -mappi ng set
gsec -mappi ng drop

Depending on the situation, more parameters may be needed when invoking gsec, e.g. - user and - pass, or
-trusted.

These commands can be given by:

* SYSDBA;
» if AUTO ADMIN MAPPING is on for the security database: any Windows administrator who invokes gsec
using trusted authentication without specifying arole.

Unlike the case with regular databases, users connecting with the RDB$SADMIN role cannot turn AUTO ADMIN
MAPPING on or off in the security database. Also notice that the Windows administrator in the second listitem
can only turn the mapping off. In doing so, he shuts off the very mechanism that gave him access in the first
place, so he won't be able to turn it back on again. (Even in an interactive gsec session, the new setting takes
effect immediately.)

SQL user management commands

Availablein: DSQL
Addedin: 2.5

Description: Firebird 2.5 and up provide SQL statements for user account management. Except in one case,

they are only available to the following privileged users:

* SYSDBA;

* Any user who has been granted the RDB$SADMIN rolein the security database and at |east one other database.
The user must specify the role when connecting to the database.

* If AUTO ADMIN MAPPING is on for the security database: any Windows administrator connected to any
database using trusted authentication without specifying arole. Whether AUTO ADMIN MAPPING isoninthe
connection database is unimportant.

Non-privileged users can only use ALTER USER, to change their own account details.

CREATE USER

Description: Creates a Firebird user account.

134

Security and access control

Syntax:

CREATE USER user nane PASSWORD ' password'
[FI RSTNAME ' firstnane']
[M DDLENAME ' ni ddl enane']
[LASTNAME ' | ast nane']
[GRANT ADM N ROLE]

GRANT ADMIN ROLE givesthe new user the RDB$SADMIN rolein the security database. Thisallows
him to manage user accounts, but doesn't give him any special privileges in regular databases. For
more infomation, see The RDB$ADMIN role.

Examples:

create user bigshot password 'buckshot'
create user john password 'fYe_3Ksw firstnane 'John' |astnane ' Doe'
create user mary password '|lanb_chop' firstnane 'Mary' grant admin role

ALTER USER

Description: Alters details of a Firebird user account. Thisis the only account management statement that can
also be used by non-privileged users, in order to change their own account details.

Syntax:
ALTER USER user nane
[PASSWORD ' password' |
[FI RSTNAME ' firstnane']
[M DDLENAME ' ni ddl enane']
[LASTNAME ' | ast nane']
[{ GRANT| REVOKE} ADM N ROLE]

-- At |least one of the optional paranmeters nmust be present.
-- GRANT/ REVOKE ADM N ROLE is reserved to privil eged users.

Examples:

al ter user bobby password '67-U T_G8' grant admin role
alter user dan firstname 'No_Jack' |astnane 'Kennedy'
al ter user dunmbbell revoke adnmin role

DROP USER

Description: Removes a Firebird user account.
Syntax:

DROP USER user name
Example:

drop user tinmmy

135

Chapter 11

Context variables

CURRENT _CONNECTI ON

Availablein: DSQL, PSQL
Addedin: 1.5
Changedin: 2.1
Description: CURRENT_CONNECTI ON contains the unique identifier of the current connection.
Type: INTEGER
Examples:
sel ect current_connection from rdb$dat abase
execut e procedure P_Logi n(current_connecti on)

The value of CURRENT_CONNECTI ON is stored on the database header page and reset to O upon restore. Since
version 2.1, it isincremented upon every new connection. (In previous versions, it was only incremented if the
client read it during a session.) As aresult, CURRENT_CONNECTI ON now indicates the number of connections
since the creation — or most recent restoration — of the database.

CURRENT ROLE

Availablein: DSQL, PSQL
Addedin: 1.0

Description: CURRENT _RCOLE is a context variable containing the role of the currently connected user. If there
isno active role, CURRENT _ROLE is NONE.

Type: VARCHAR(31)
Example:

if (current_role <> ' MANAGER)
then exception only_managers_may_del et e;

136

Context variables

el se
del ete from Custoners where custno = :custno;

CURRENT_ROLE alwaysrepresents avalid role or NONE. If auser connects with a non-existing role, the engine
silently resetsit to NONE without returning an error.

CURRENT_TI ME

Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: CURRENT_TI ME returns the current server time. In versions prior to 2.0, the fractional part used to
be aways “. 0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward you can specify a
precision when polling this variable. The default is still O decimals, i.e. seconds precision.

Type: TIME

Syntax:

CURRENT_TI ME [(precision)]

precision ::= 0| 1] 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

sel ect current_tine fromrdb$dat abase
-- returns e.g. 14:20:19.6170

select current_tinme(2) fromrdb$dat abase
-- returns e.g. 14:20:23.1200

Notes:

» Unlike CURRENT_TI ME, the default precision of CURRENT_TI MESTAMP has changed to 3 decimals. As a
result, CURRENT_TI MESTAMP is no longer the exact sum of CURRENT _DATE and CURRENT_TI ME, unless
you explicitly specify aprecision.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TI ME will remain
constant every timeit is read. If multiple modules call or trigger each other, the value will remain constant
throughout the duration of the outermost module. If you need a progressing valuein PSQL — e.g. to measure
timeintervals—use' NOW with afull cast (not shorthand syntax).

CURRENT _TI MESTAMP

Availablein: DSQL, PSQL, ESQL

137

Context variables

Changedin: 2.0

Description: CURRENT_TI MESTAMNP returns the current server date and time. In versions prior to 2.0, the frac-
tional part used to be always “. 0000”, giving an effective precision of 0 decimals. From Firebird 2.0 onward
you can specify a precision when polling this variable. The default is 3 decimals, i.e. milliseconds precision.

Type: TIMESTAMP
Syntax:

CURRENT_TI MESTAMP [(precision)]

precision ::= 0] 1| 2] 3

The optional pr eci si on argument is not supported in ESQL.
Examples:

sel ect current_tinmestanp from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:19.6170

sel ect current_tinestanp(2) from rdb$dat abase
-- returns e.g. 2008-08-13 14:20:23. 1200

Notes:

» Thedefault precision of CURRENT_TI MEisstill 0 decimals, soin Firebird 2.0 and up CURRENT_TI MESTAMP
isno longer the exact sum of CURRENT_DATE and CURRENT _TI ME, unlessyou explicitly specify aprecision.

» Within a PSQL module (procedure, trigger or executable block), the value of CURRENT_TI MESTAMP will
remain constant every time it is read. If multiple modules call or trigger each other, the value will remain
constant throughout the duration of the outermost module. If you need a progressing value in PSQL —e.g. to
measure time intervals—use' NOW with afull cast (not shorthand syntax).

CURRENT_TRANSACTI ON

Availablein: DSQL, PSQL
Addedin: 1.5
Description: CURRENT_TRANSACTI ON contains the unique identifier of the current transaction.
Type: INTEGER
Examples:
sel ect current_transaction from rdb$dat abase

New. Txn_I D = current _transaction

The value of CURRENT_TRANSACTI ON is stored on the database header page and reset to 0 upon restore. It is
incremented with every new transaction.

138

Context variables

CURRENT_USER

Availablein: DSQL, PSQL
Addedin: 1.0

Description: CURRENT_USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)

Example:
create trigger bi_custoners for custoners before insert as
begi n
New. added_by = CURRENT_USER
New. pur chases = 0;
end

DELETI NG

Availablein: PSQL
Added in: 1.5

Description: Availableintriggersonly, DELETI NGindicatesif the trigger fired because of a DELETE operation.
Intended for use in multi-action triggers.

Type: boolean
Example:
if (deleting) then
begi n
insert into Removed_Cars (id, make, nodel, renpved)

val ues (old.id, old.mke, old. nodel, current_timestanp);
end

GDSCODE

Availablein: PSQL
Added in: 1.5

Changedin: 2.0

139

Context variables

Description: Ina“WHEN ... DO” error handling block, the GDSCODE context variable containsthe numerical rep-
resentation of the current Firebird error code. Prior to Firebird 2.0, GDSCCODE was only set in WHEN GDSCODE
handlers. Now it may also be non-zero in WHEN ANY, WHEN SQLCODE and WHEN EXCEPTION blocks, pro-
vided that the condition raising the error correspondswith aFirebird error code. Outside error handlers, GDSCODE
isaways 0. Outside PSQL it doesn't exist at al.

Type: INTEGER
Example:

when gdscode grant_obj _notfound, gdscode grant_fld_notfound,
gdscode grant_nopriv, gdscode grant_nopriv_on_base
do
begi n
execute procedure | og_grant_error(gdscode);
exit;
end

Please notice: After WHEN GDSCODE, you must use symbolic names like grant_obj_notfound etc. But the
GDSCODE context variable isan INTEGER. |f you want to compare it against a certain error, you have to use the
numeric value, e.g. 335544551 for grant_obj_notfound.

| NSERTI NG

Availablein: PSQL
Addedin: 1.5

Description: Availablein triggersonly, | NSERTI NGindicates if the trigger fired because of an INSERT opera-
tion. Intended for use in multi-action triggers.

Type: boolean
Example:
if (inserting or updating) then
begi n
if (new. serial_numis null) then

new. serial _num = gen_i d(gen_serials, 1);
end

NEW

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: NEWcontains the new version of a database record that has just been inserted or updated. Starting
with Firebird 2.0 it isread-only in AFTER triggers.

140

Context variables

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — NEWis always available. But if the trigger is fired by
a DELETE, there will be no new version of the record. In that situation, reading from NEWwill always return
NULL; writing to it will cause a runtime exception.

" NOW
Availablein: DSQL, PSQL, ESQL
Changedin: 2.0

Description: ' NOW isnot avariable but astring literal. It is, however, specia in the sense that when you CAST()
it to adate/time type, you will get the current date and/or time. The fractional part of the time used to be always
“. 0000", giving an effective seconds precision. Since Firebird 2.0 the precisionis 3 decimals, i.e. milliseconds.
' NOW is case-insensitive, and the engine ignores leading or trailing spaces when casting.

Type: CHAR(3)
Examples:

sel ect 'Now from rdb$dat abase
-- returns ' Now

sel ect cast('Now as date) from rdb$database
-- returns e.g. 2008-08-13

sel ect cast('now as tine) fromrdb$database
-- returns e.g. 14:20:19.6170

sel ect cast(' NOW as tinmestanp) fromrdb$database
-- returns e.g. 2008-08-13 14:20:19.6170

Shorthand syntax for the last three statements:

sel ect date 'Now from rdb$dat abase
select tinme 'now from rdb$dat abase
select tinestanp ' NOWN from rdb$dat abase

Notes:

* When used with CAST(), ' NOW aways returns the actual date/time, even in PSQL modules, where
CURRENT _DATE, CURRENT_TI ME and CURRENT_TI MESTANMNP return the same val ue throughout the duration

of the outermost routine. This makes' NOW useful for measuring time intervals in triggers, procedures and
executabl e blocks.

» When used with the shorthand syntax, ' NOW isevaluated at parse time and the value is frozen for aslong as

the statement stays prepared — even across multiple executions of the prepared statement! This is something
to be aware of.

141

Context variables

» Unless you really need progressing values in PSQL, or frozen values during multiple executions, read-
ing CURRENT _DATE, CURRENT_TI ME and CURRENT_TI MESTAMP is generally preferable to using ' NOW .
Be aware though that CURRENT _TI ME defaults to seconds precision; to get milliseconds precision, use
CURRENT_TI ME(3).

LD

Availablein: PSQL, triggers only
Changedin: 1.5, 2.0

Description: OLD contains the existing version of a database record just before a deletion or update. Starting
with Firebird 2.0 it isread-only.

Type: Datarow

Note

In multi-action triggers — introduced in Firebird 1.5 — OLD is dways available. But if the trigger is fired by
an INSERT, there is obviously no pre-existing version of the record. In that situation, reading from OLD will
aways return NULL; writing to it will cause a runtime exception.

ROW COUNT

Availablein: PSQL
Addedin: 1.5
Changedin: 2.0
Description: The ROW COUNT context variable contains the number of rows affected by the most recent DML
statement (INSERT, UPDATE, DELETE, SELECT or FETCH) inthe current trigger, stored procedure or executable
block.
Type: INTEGER
Example:

update Figures set Nunber = 0 where id = :id;

if (row_count = 0) then

insert into Figures (id, Nunber) values (:id, 0);

Behaviour with SELECT and FETCH:
» After asingleton SELECT, ROW COUNT is1if adatarow was retrieved and O otherwise.

* InaFOR SELECT loop, ROW COUNT isincremented with every iteration (starting at O before the first).

142

Context variables

» After aFETCH from a cursor, ROW COUNT is 1 if a data row was retrieved and O otherwise. Fetching more
records from the same cursor does not increment ROW COUNT beyond 1.

* InFirebird 1.5.x, ROW COUNT is O after any type of SELECT statement.

Note

ROW_COUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT or EXE-
CUTE PROCEDURE command.

SQLCODE
Availablein: PSQL
Addedin: 1.5
Changedin: 2.0
Deprecatedin: 2.5.1

Description: Ina“WHEN ... DO” error handling block, the SQLCODE context variable contains the current SQL
error code. Prior to Firebird 2.0, SQLCODE was only set in WHEN SQLCODE and WHEN ANY handlers. Now it
may also be hon-zero in WHEN GDSCODE and WHEN EXCEPTION blocks, provided that the condition raising
the error corresponds with an SQL error code. Outside error handlers, SQLCODE is always 0. Outside PSQL it
doesn't exist at all.

Type: INTEGER
Example:

when any
do
begi n
if (sqglcode <> 0) then
Msg = "An SQ. error occurred!"';
el se
Msg = ' Sonet hi ng bad happened!"
exception ex_custom Msg;
end

Important notice: SQLCODE is now deprecated in favour of the SQL-2003-compliant SQLSTATE status code.
Support for SQLCODE and WHEN SQLCODE will be discontinued in some future version of Firebird.

SQLSTATE

Availablein: PSQL

Added in: 2.5.1

143

Context variables

Description: In a “WHEN ... DO” error handler, the SQLSTATE context variable contains the 5-character,
SQL-2003-compliant status code resulting from the statement that raised the error. Outside error handlers, SQL-
STATE is always '00000'. Outside PSQL it is not available at all.

Type: CHAR(5)
Example:

when any
do
begi n
Msg = case sql state
when ' 22003' then 'Nuneric val ue out of range.
when ' 22012' then 'Division by zero.'
when ' 23000' then 'Integrity constraint violation.'

el se ' Sonmet hi ng bad happened! SQLSTATE = ' || sqglstate
end;
exception ex_custom Msg;
end
Notes:

* SQLSTATE is destined to replace SQLCODE. The latter is now deprecated in Firebird and will disappear in
some future version.

» Firebird does not (yet) support the syntax “WHEN SQLSTATE ... DO”. You have to use WHEN ANY and test
the SQLSTATE variable within the handler.

» Each SQLSTATE code is the concatenation of a 2-character class and a 3-character subclass. Classes 00
(successful completion), 01 (warning) and 02 (no data) represent completion conditions. Every status code
outside these classesis an exception. Because classes 00, 01 and 02 don't raise an error, they won't ever show
up inthe SQLSTATE variable.

» For acompletelisting of SQLSTATE codes, consult the Appendix to the Firebird 2.5 Release Notes.

UPDATI NG

Availablein: PSQL
Addedin: 1.5

Description: Availableintriggersonly, UPDATI NGindicatesif thetrigger fired because of an UPDATE operation.
Intended for use in multi-action triggers.

Type: boolean
Example:

if (inserting or updating) then
begi n
if (new.serial_numis null) then
new. seri al _num = gen_id(gen_serials, 1);
end

144

http://www.firebirdsql.org/rlsnotesh/rlsnotes25.html#rnfb25-appx-sqlstates

Chapter 12

Operators and predicates

NULL literals allowed as operands

Changedin: 2.0

Description: Before Firebird 2.0, most operators and predicates did not allow NULL literals as operands. Tests
or operationslike“A <> NULL",“B + NULL” or “NULL < ANY(...)" would berejected by the parser. Now
they are allowed almost everywhere, but please be aware of the following:

The vast majority of these newly allowed expressions return NULL regardless of the state or value of
the other operand, and are therefore worthless for any practicle purpose whatsoever.

In particular, don't try to determine (non-)nullness of afield or variable by testing with “= NULL” or “<> NULL".
Alwaysuse“l S [NOT] NULL”".

Predicates. The IN, ANY/SOME and ALL predicates now also allow NULL literals where they were previously
taboo. Here too, there is no practical benefit to enjoy, but the situation is a little more complicated in that

predicates with NULLS do not always return a NULL result. For details, see the Firebird Null Guide, section
Predicates.

|| (String concatenator)

Availablein: DSQL, ESQL, PSQL

Text BLOB concatenation

Changedin: 2.1

Description: Since Firebird 2.1 the concatenation operator supports BLOBs of any length and any character set.
If a mixture of BLOBS and non-BLOBSs is involved, the result is a BLOB. If both text and binary BLOBs are
involved, the result is abinary BLOB.

Result type VARCHAR or BLOB

Changedin: 2.0, 2.1

145

http://www.firebirdsql.org/manual/nullguide-predicates.html

Operators and predicates

Description: Before Firebird 2.0, the result type of string concatenations used to be CHAR(n). In Firebird 2.0
thiswas changed to VARCHAR(n). As aresult, the maximum length of a concatenation outcome became 32765
instead of 32767. In Firebird 2.1 and up, if at least one of the operands is a BLOB, the result is also a BLOB
and the maximum doesn't apply. For non-BLOB concatenationsthe result is still VARCHAR(n) with amaximum
of 32765 bytes.

Overflow checking

Changedin: 1.0, 2.0

Description: In Firebird versions 1.x, an error would be raised if the sum of the declared string lengths in a
concatenation exceeded 65535 bytes, even if the actual result lay within the maximum string length of 32767
bytes. In Firebird 2.0 and up, the declared string lengths will never cause an error. Only if the actual outcome
exceeds 32765 bytes (the new limit for concatenation results) will an error be raised.

ALL

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

Description: The ALL predicate now allowsaNULL asthetest value. Notice that thisbrings no practical benefits.
In particular, a NULL test value will not be considered equal to NULLs in the subquery result set. Even if the
entire set isfilled with NULLs and the operator chosen is“=", the predicate will not returnt r ue, but NULL.

UNION as subselect

Changedin: 2.0

Description: The subselect in an ALL predicate may now also be a UNION.

ANY / SOME

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

146

Operators and predicates

Description: The ANY (or SOME) predicate now allows a NULL as the test value. Notice that this brings no
practical benefits. In particular, aNULL test value will not be considered equal to aNULL in the subquery result
Set.

UNION as subselect

Changedin: 2.0

Description: The subselect in an ANY (or SOME) predicate may now also be a UNION.

Availablein: DSQL, ESQL, PSQL

NULL literals allowed

Changedin: 2.0

Description: The IN predicate now allows NULL literals, both as the test value and in the list. Notice that this
brings no practical benefits. In particular, “NULL IN (..., NULL, ..., ...)" will not returnt r ue and “NULL NOT IN
(o.y NULL, ..., ...)" will not returnf al se.

UNION as subselect

Changedin: 2.0

Description: A subselect in an IN predicate may now also be a UNION.

IS [NOT] DISTINCT FROM

Availablein: DSQL, PSQL
Added in: 2.0

Description: Two operands are considered DISTINCT if they have a different value or if one of them is NULL
and the other isn't. They are NOT DISTINCT if they have the same value or if both of them are NULL.

Result type: Boolean
Syntax:

opl IS [NOT] DI STI NCT FROM op2

147

Operators and predicates

Examples:

sel ect id, name, teacher from courses
where start_day is not distinct from end_day

if (New.Job is distinct from d d. Job)
then post _event 'job_changed';

IS[NOT] DISTINCT FROM awaysreturnst r ue or f al se, never NULL (unknown). The“=" and “<>" operators,
by contrast, return NULL if one or both operands are NULL. See also the table below.

Table 12.1. Comparison of [NOT] DISTINCT to“=" and “<>"

Operand char- Resultswith the different operators
acteristics
= NOT DISTINCT <> DISTINCT
Same value true true fal se fal se
Different values fal se fal se true true
Both NULL NUL L true NULL fal se
One NULL NULL fal se NULL true

NEXT VALUE FOR

Availablein: DSQL, PSQL
Addedin: 2.0

Description: Returns the next value in a sequence. SEQUENCE is the SQL-compliant term for what InterBase
and Firebird have aways called a generator. NEXT VALUE FOR is fully equivalent to GEN_ID(..., 1) and is the
recommended syntax from Firebird 2.0 onward.

Syntax:

NEXT VALUE FCR sequence- nane
Example:
new. cust _id = next value for custseq;

NEXT VALUE FOR doesn't support increment values other than 1. If you absolutely need other step values, use
the legacy GEN_ID function.

See also: CREATE SEQUENCE, GEN_ID()

SIMILAR TO

Availablein: DSQL, PSQL

148

Operators and predicates

Added in: 2.5

Description: SIMILAR TO matches a string against an SQL regular expression pattern. Unlike in some other
languages, the pattern must match the entire string in order to succeed — matching a substring is not enough. If
any operand is NULL, the result is NULL. Otherwise, the result is TRUE or FALSE.

Result type: Boolean
Syntax: IMILARTO:

string-expression [NOT] SIMLAR TO <pattern> [ESCAPE <escape- char >]

<pattern>
<escape- char >

an SQ. regul ar expression
a single character

Syntax: WL regular expressions. The following syntax defines the SQL regular expression format. It isacom-
plete and correct top-down definition. It is also highly formal, rather long and probably perfectly fit to discour-
age everybody who hasn't already some experience with regular expessions (or with highly formal, rather long
top-down definitions). Feel free to skip it and read the next section, Building regular expressions, which uses
a bottom-up approach, aimed at the rest of us.

<regul ar expressi on> ::= <regular terme ['|' <regular ternr ...]

<regul ar terne <regul ar factor> ...

<regul ar factor> <regul ar prinmary> [<quantifier>]

<quantifier> =7

| *

| +

| {" <m [,[<n>]] "}
<P, <n> .= wunsigned int, with <m» <= <n> if both present
<regul ar primary> ::= <character>

| <character class>

| %

| (<regul ar expression>)
<character> 1= <escaped character>

| <non-escaped character>
<escaped character> .= <escape-char> <special character>

| <escape-char> <escape-char>
<speci al character> ::= any of the characters []J()]|"-+*% ?{

any character that is not a <special character>
and not equal to <escape-char> (if defined)

<non- escaped character>

<character class> 0aE

| '"[' <menber> ... ']'

| '"[~ <non-menber> ... ']’

| "[' <menber> ... '~ <non-nenber> ... ']’
<menber >, <non-nmenber> 1= <character>

| <range>

| <predefined class>

<r ange> ;1= <character>-<character>

149

Operators and predicates

<pr edefi ned cl ass> ::= '"[:' <predefined class name> ':]'

<predefined class nane> ::= ALPHA | UPPER| LONER | DIG T
| ALNUM | SPACE | WH TESPACE

Building regular expressions

Characters

Within regular expressions, most characters represent themselves. The only exceptionsarethe special characters
below:

(1T)Y I ~»-+*%_7{
...and the escape character, if it is defined.

A regular expression that doesn't contain any special or escape characters only matches strings that are identical
toitself (subject to the collation in use). That is, it functions just like the “=" operator:

"Apple' simlar to 'Apple' -- true

"Apples' sinmlar to 'Apple -- fal se

"Apple' sinmilar to 'Apples' -- fal se

"APPLE simlar to 'Apple' -- depends on collation
Wildcards

The known SQL wildchards _ and %match any single character and a string of any length, respectively:

"Birne' simlar to 'B_rne' -- true
"Birne' sinmlar to 'B_ne' -- fal se
"Birne' simlar to 'B%e' -- true
"Birne' simlar to 'Bir%me% -- true
"Birne' simlar to 'Birr%e' -- false

Notice how %also matches the empty string.

Character classes

A bunch of characters enclosed in brackets define a character class. A character in the string matches aclassin
the pattern if the character is a member of the class:

"Citroen' simlar to 'Ct[arju]oen' -- true
"Citroen' simlar to "G [tr]oen' -- fal se
"Citroen' simlar to "G [tr][tr]oen -- true

As can be seen from the second line, the class only matches a single character, not a sequence.

Within a class definition, two characters connected by a hyphen define a range. A range comprises the two
endpoints and all the charactersthat lie between them in the active collation. Ranges can be placed anywherein
the class definition without special delimiters to keep them apart from the other elements.

150

Operators and predicates

‘Datte' similar to 'Dat[qg-u]e -- true
'"Datte' simlar to 'Dat[abg-uy]e' -- true
"Datte' simlar to 'Dat[bcg-km pwz]e' -- fal se

The following predefined character classes can also be used in a class definition:

[:ALPHA:]
Latin letters a..z and A..Z. With an accent-insensitive collation, this class also matches accented forms of
these characters.

[:DIGIT:]
Decimal digits0..9.

[:ALNUM:]
Union of [:ALPHA:] and [:DIGIT].

[:UPPER:]
Uppercase Latin letters A..Z. Also matches lowercase with case-insensitive collation and accented forms
with accent-insensitive collation.

[:LOWER]
Lowercase Latin letters a..z. Also matches uppercase with case-insensitive collation and accented forms
with accent-insensitive collation.

[:SPACE:]
Matches the space character (ASCII 32).

[:WHITESPACE:]
Matches vertical tab (ASCII 9), linefeed (ASCII 10), horizontal tab (ASCII 11), formfeed (ASCII 12), car-
riage return (ASCII 13) and space (ASCII 32).

Including a predefined class hasthe same effect asincluding all its members. Predefined classesare only allowed
within class definitions. If you need to match against a predefined class and nothing more, place an extra pair
of brackets around it.

"Erdbeere’ simlar to 'Erd[[: ALNUM]]eere' -- true
"Erdbeere’ simlar to "Erd[[:DIAT:]]eere -- fal se
'Erdbeere' simlar to 'Erd[a[: SPACE:] b] eere’ -- true
"Erdbeere' simlar to [[:ALPHA]] -- false
'E simlar to [[:ALPHA:]] -- true

If aclass definition starts with a caret, everything that follows is excluded from the class. All other characters
match:

' Franboise' simlar to 'Fra[~ck-p]boise' -- false
"Franmboi se' simlar to 'Fr[”a]["a]boise' -- fal se
"Franmboi se' simlar to 'Fra[?"[:DIAT:]]boise -- true

If the caret is not placed at the start of the sequence, the class contains everything before the caret, except for
the elements that also occur after the caret:

"Grapefruit' simlar to 'Gap[a-nf-i]fruit’ -- true
"Grapefruit' simlar to ' Gap[abc*xyz]fruit' -- false
"Grapefruit' simlar to 'Gap[abc”hrde]fruit' -- false
"Grapefruit' simlar to ' Gap[aberde]fruit’ -- false

151

Operators and predicates

'3 simlar to DAT:]"4-8]"

I -- true
'6' simlar to '[[:DGAT:]"4-8]"

-- false
Lastly, the already mentioned wildcard “_" is a character class of its own, matching any single character.

Quantifiers

A question mark immediately following a character or class indicates that the preceding item may occur O or
1 timesin order to match:

"Hallon' simlar to 'Hal?0on' fal se
"Hallon' simlar to 'Hal?lon' true
"Hallon' simlar to "Halll?on' true
"Hallon' simlar to "Hallll ?on’ fal se
"Hallon' simlar to 'Halx?lon' true
"Hallon' similar to 'Ha-c]?llon[x-2z]? true

An asterisk immediately following a character or class indicates that the preceding item may occur O or more
timesin order to match:

"I caque' similar to 'lca*que' true
"l caque' similar to 'lcar*que' true
"l caque' similar to 'I[a-c]*que' true
"I caque' sinmlar to ' _*' true
"l caque' simlar to '[[:ALPHA:]]*' true
"lcaque' simlar to 'lca[xyz]*e' fal se

A plus sign immediately following a character or class indicates that the preceding item must occur 1 or more
timesin order to match:

"Jujube' simlar to 'Ju_+ true
"Jujube' sinmilar to 'Ju+jube' true
"Jujube' simlar to 'Jujuber+' fal se
"Jujube' simlar to 'J[jux]+be' true
"Jujube' sililar to 'J[[:D dT:]]+uj ube' fal se

If a character or class is followed by a number enclosed in braces, it must be repeated exactly that number of
timesin order to match:

"Kiwi' simlar to '"Ki{2}w' fal se
"Kiwi' simlar to "Klipw{2}i' true
"Kiwi' simlar to "K[ipw {2} fal se
"Kiwi' simlar to 'K[ipw{3} true

If the number isfollowed by acomma, the item must be repeated at |east that number of timesin order to match:

"Linone' similar to 'Li{2,}none -- false
"Linmone' similar to 'Li{1,}none -- true
"Linpbne' simlar to 'Li[nezonj{2,}' -- true

If the braces contain two numbers seperated by a comma, the second number not smaller than thefirst, then the
item must be repeated at least the first number and at most the second number of timesin order to match:

"Mandarijn' simlar to 'Ma-p]{2,5}rijn' -- true
"Mandarijn' sinmilar to 'Ma-pl{2, 3}rijn -- false
"Mandarijn' simlar to 'Ma-p]{2,3}arijn -- true

152

Operators and predicates

The quantifiers ?, * and + are shorthand for { 0, 1}, {0, } and {1, }, respectively.

OR-ing terms

Regular expression terms can be OR'ed with the| operator. A match is made when the argument string matches
at least one of the terms:

"Nektarin' simlar to 'Nek|tarin' -- fal se
"Nektarin' simlar to 'Nektarin| Persika' -- true
"Nektarin' simlar to ' M+ N_+ P_+ -- true

Subexpressions

One or more parts of the regular expression can be grouped into subexpressions (also called subpatterns) by
placing them between parentheses. A subexpression is a regular expression in its own right. It can contain all
the elements allowed in aregular expression, and can also have quantifiers added to it.

"Orange’ similar to "Q(ralri|ro)nge’ -- true
"Orange' sinmilar to 'Q(r[a-e])+nge' -- true
"Orange' sinmilar to 'Q(ra){2, 4} nge' -- false
"Orange' simlar to 'Q(r(an|in)g|rong)?e' -- true

Escaping special characters

In order to match against acharacter that is special in regular expressions, that character hasto be escaped. There
is no default escape character; rather, the user specifies one when needed:

'"Peer (Poire)' simlar to "P[~]+ \(P[*]+\)" escape "\’ -- true
"Pera [Pear]' simlar to "P[™]+ #[P["]+#]' escape '# -- true
' Paron- Appl edryck' sinmilar to 'P%-A% escape '$' -- true
"Parondryck' similar to ' P%-A% escape '-' -- false

The last line demonstrates that the escape character can also escape itself, if needed.

SOME

See ANY

153

Chapter 13

Aggregate functions

Aggregate functions operate on groups of records, rather than on individual records or variables. They are often
used in combination with a GROUP BY clause.

LIST()

Availablein: DSQL, PSQL
Addedin: 2.1
Changedin: 2.5

Description: LIST returns a string consisting of the non-NULL argument values in the group, separated either
by a comma or by a user-supplied delimiter. If there are no non-NULL values (this includes the case where the
group isempty), NULL is returned.

Result type: BLOB
Syntax:

LI ST ([ALL | DI STINCT] expression [, separator])

e ALL (the default) resultsin all non-NULL values to be listed. With DISTINCT, duplicates are re-
moved, except if expr essi on isaBLOB.

* In Firebird 2.5 and up, the optional separ at or argument may be any string expression. This
makesit possibleto specify e.g. asci i _char (13) asaseparator. (Thisimprovement hasalso been
backported to 2.1.4.)

» Theexpressi on and separ at or arguments support BLOBS of any size and character set.
» Date/time and numerical arguments are implicitly converted to strings before concatenation.
» Theresult isatext BLOB, except when expr essi on isaBLOB of another subtype.

» The ordering of the list valuesis undefined.

MAX()

Availablein: DSQL, ESQL, PSQL
Addedin: IB

154

Aggregate functions

Changedin: 2.1

Description: MAX returns the maximum argument value in the group. If the argument is a string, thisis the
value that comes last when the active collation is applied.

Result type: Varies
Syntax:
MAX (expression)
» If thegroup is empty or contains only NULLS, the result isNULL.

» Since Firebird 2.1, this function fully supports text BLOBS of any size and character set.

MIN()

Availablein: DSQL, ESQL, PSQL
Addedin: IB

Changedin: 2.1

Description: MIN returns the minimum argument value in the group. If the argument isastring, thisisthe value
that comes first when the active collation is applied.

Result type: Varies
Syntax:
M N (expression)
 If thegroup is empty or contains only NULLS, the result isNULL.

e Since Firebird 2.1, this function fully supports text BLOBs of any size and character set.

155

Chapter 14

Internal functions

ABS()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the absolute value of the argument.
Result type: Numerical
Syntax:

ABS (nunber)

I mportant

If the external function ABS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ACOS()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the arc cosine of the argument.

Result type: DOUBLE PRECISION
Syntax:
ACOS (number)
» Theresultisan anglein therange [0, #].

 If theargument is outside the range [-1, 1], NaN is returned.

I mportant

If the external function ACGCS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

156

Internal functions

ASCIl_CHAR()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the ASCII character corresponding to the number passed in the argument.
Result type: [VAR]JCHAR(1) CHARACTER SET NONE
Syntax:
ASCI | _CHAR (<code>)

<code> ::= an integer in the range [0..255]

| mportant

e |f the external function ASCl | _CHAR s declared in your database, it will override the internal function. To
make the internal function available, DROP or ALTER the external function (UDF).

¢ |f you are used to the behaviour of the ASCI | _ CHAR UDF, which returns an empty string if the argument is
0, please natice that the internal function correctly returns a character with ASCII code O here.

ASCIl_VAL()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the ASCII code of the character passed in.
Result type: SMALLINT
Syntax:
ASCI | _VAL (ch)

ch ::= a [VAR]CHAR or text BLOB of max. 32767 bytes

* If the argument is a string with more than one character, the ASCII code of the first character is
returned.

« |f theargument is an empty string, O is returned.
» If theargument is NULL, NULL is returned.
 If thefirst character of the argument string is multi-byte, an error israised. (A bugin Firebird 2.1—

2.1.3 and 2.5 causes an error to beraised if any character in the string is multi-byte. Thisis fixed
inversions2.1.4 and 2.5.1.)

157

Internal functions

Important

If the external function ASCI | _VAL isdeclared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

ASIN()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the arc sine of the argument.

Result type: DOUBLE PRECISION
Syntax:
ASI N (number)
* Theresultisan angleintherange [-#/2, #/2].

 If theargument is outside the range [-1, 1], NaN is returned.

I mportant

If the external function ASI Nis declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

ATAN()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the arc tangent of the argument.
Result type: DOUBLE PRECISION

Syntax:

ATAN (nurber)

» Theresult isan angle in the range <-#/2, #/2>.

I mportant

If the external function ATAN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

158

Internal functions

ATAN2()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.
Result type: DOUBLE PRECISION
Syntax:
ATAN2 (y, x)
» Theresult isan anglein the range [-#, #].
» If x isnegative, theresultis#if y is0, and -#if y is-0.

» If bothy and x are 0, the result is meaningless. Starting with Firebird 3, an error will be raised
if both arguments are 0.

I mportant

If the external function ATAN2 is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Notes:

» A fully equivalent description of this function is the following: ATAN2(y, x) is the angle between the posi-
tive X-axis and the line from the origin to the point (x, y). This also makes it obvious that ATAN2(O, 0) is
undefined.

» If x isgreater than 0, ATAN2(y, x) isthe same as ATAN(y/x).

 If both sine and cosine of the angle are already known, ATAN2(si n, cos) givesthe angle.

BIN_AND()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the result of the bitwise AND operation on the argument(s).

Result type: INTEGER or BIGINT

159

Internal functions

Syntax:

BI N_AND (nunber [, nunber ...])

I mportant

If the external function BI N_AND is declared in your database, it will override the internal function. To make
theinternal function available, DROP or ALTER the external function (UDF).

BIN_OR()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the result of the bitwise OR operation on the argument(s).
Result type: INTEGER or BIGINT
Syntax:

BI N_OR (nunber [, nunber ...])

I mportant

If the external function BI N_ORis declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

BIN_SHL()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the first argument bitwise left-shifted by the second argument, i.e. a << b or a-2"b.

Result type: BIGINT
Syntax:

BI N_SHL (nunber, shift)

BIN_SHR()

Availablein: DSQL, PSQL

160

Internal functions

Added in: 2.1

Description: Returns the first argument bitwise right-shifted by the second argument, i.e. a >> b or a/2"b.

Result type: BIGINT
Syntax:

Bl N_SHR (nunber, shift)

» The operation performed is an arithmetic right shift (SAR), meaning that the sign of the first
operand is always preserved.

BIN_XOR()
Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the result of the bitwise XOR operation on the argument(s).
Result type: INTEGER or BIGINT
Syntax:

BI N_XOR (nunber [, nunber ...])

I mportant

If the external function BI N_XOR is declared in your database, it will override the internal function. To make
the internal function available, DROP or ALTER the external function (UDF).

BIT_LENGTH()

Availablein: DSQL, PSQL
Added in: 2.0

Changedin: 2.1

Description: Gives the length in bits of the input string. For multi-byte character sets, this may be less
than the number of characters times 8 times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” bit length, not counting the trailing spaces,
right-TRIM the argument before passing it to BIT_LENGTH.

161

Internal functions

Result type: INTEGER
Syntax:
BI T_LENGTH (str)
BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.
Examples:

select bit_length('Hello!') fromrdb$dat abase
-- returns 48

select bit_length(_iso8859 1 'GaB di!') fromrdb$dat abase
-- returns 64: 0 and B take up one byte each in |S08859 1

select bit_length

(cast (_is08859 1 "G iR di!' as varchar(24) character set utf8))
from rdb$dat abase

-- returns 80: U and B take up two bytes each in UTF8

select bit_length
(cast (_is08859 1 'GuR di!' as char(24) character set utf8))
from rdb$dat abase
-- returns 208: all 24 CHAR positions count, and two of themare 16-bit

See also: OCTET_LENGTH(), CHARACTER_LENGTH()

CAST()

Availablein: DSQL, ESQL, PSQL
Added in: IB
Changedin: 2.0,2.1, 2.5

Description: CAST converts an expression to the desired datatype or domain. If the conversion is not possible,
an error israised.

Result type: User-chosen.
Syntax:

CAST (expression AS <target_type>)

<target _type> .= sql_datatype
| [TYPE OF] donain
| TYPE OF COLUW rel nane. col nane
Shorthand syntax:
Alternative syntax, supported only when casting a string literal to aDATE, TIME or TIMESTAMP:

datatype 'date/tinmestring'

162

Internal functions

This syntax was aready available in InterBase, but was never properly documented. Please notice:
The shorthand syntax is evaluated immediately at parse time, causing the value to stay the same
until the statement is unprepared. For datetime literalslike' 12- Oct - 2012' this doesn't make any
difference. But for the pseudo-variables ' NOW , ' YESTERDAY' , ' TODAY' and ' TOMORROW this
may not be what you want. If you need the value to be evaluated at every call, use CAST().

Examples:

A full-syntax cast:
select cast ('12'" || '-June-' || '1959' as date) from rdb$database
A shorthand string-to-date cast:

updat e People set AgeCat = 'dd
where BirthDate < date '1-Jan-1943'

Notice that you can drop even the shorthand cast from the example above, as the engine will under-
stand from the context (comparison to a DATE field) how to interpret the string:

updat e People set AgeCat = 'Ad
where BirthDate < '1-Jan-1943'

But thisis not always possible. The cast below cannot be dropped, otherwise the engine would find
itself with an integer to be subtracted from a string:

sel ect date 'today' - 7 from rdb$dat abase

The following table shows the type conversions possible with CAST.

Table 14.1. Possible CASTs

From

To

Numeric types

Numeric types
[VAR]CHAR
BLOB

[VAR]CHAR
BLOB

[VAR]CHAR
BLOB
Numeric types
DATE

TIME
TIMESTAMP

DATE
TIME

[VAR]CHAR
BLOB
TIMESTAMP

TIMESTAMP

[VAR]CHAR
BLOB
DATE
TIME

163

Internal functions

Keepin mind that sometimesinformationislost, for instance when you cast aTIMESTAMPto aDATE. Also, the
fact that types are CAST-compatible isin itself no guarantee that a conversion will succeed. “ CAST(123456789
as SMALLINT)” will definitely result in an error, as will “ CAST('Judgement Day' as DATE)".

Casting input fields: Since Firebird 2.0, you can cast statement parameters to a datatype:
cast (? as integer)

This givesyou control over the type of input field set up by the engine. Please notice that with statement param-
eters, you always need a full-syntax cast — shorthand casts are not supported.

Castingtoadomain or itstype: Firebird 2.1 and above support casting to adomain or its base type. When casting
toadomain, any constraints (NOT NULL and/or CHECK) declared for the domain must be satisfied or the cast will
fail. Please be aware that a CHECK passes if it evaluatesto TRUE or NULL! So, given the following statements:

create domain quint as int check (value >= 5000)

sel ect cast (2000 as quint) from rdb$dat abase -- (1)
sel ect cast (8000 as quint) from rdb$dat abase -- (2)
sel ect cast (null as quint) fromrdb$database -- (3)

only cast number (1) will result in an error.

When the TYPE OF modifier is used, the expression is cast to the base type of the domain, ignoring any con-
straints. With domain quint defined as above, the following two casts are equivalent and will both succeed:

sel ect cast (2000 as type of quint) from rdb$dat abase
sel ect cast (2000 as int) fromrdb$database

If TYPE OF is used with a (VAR)CHAR type, its character set and collation are retained:

create dommin iso20 varchar(20) character set iso08859 1;

create domain dunl 20 varchar(20) character set is08859_1 collate du_nl;
create table zinnen (zin varchar(20));

comm t;

insert into zinnen values (' Deze');
insert into zinnen values ('Die');
insert into zinnen values ('die');
insert into zinnen values ('deze');

sel ect cast(zin as type of is020) from zinnen order by 1;
-- returns Deze -> Die -> deze -> die

sel ect cast(zin as type of dunl20) from zi nnen order by 1;
-- returns deze -> Deze -> die -> Die

Warning

If a domain's definition is changed, existing CASTS to that domain or its type may become invaid. If these
CASTs occur in PSQL modules, their invalidation may be detected. See the note The RDBSVALID BLR field,
near the end of this document.

Casting to a column'stype: In Firebird 2.5 and above, it is possible to cast expressions to the type of an existing
table or view column. Only the type itself is used; in the case of string types, thisincludes the character set but
not the collation. Constraints and default values of the source column are not applied.

create table ttt (
s varchar (40) character set utf8 collate unicode_ci_ai

164

Internal functions

)

comm t;

sel ect cast ('Jag har mdnga vanner' as type of colum ttt.s) from rdb$dat abase;

Warnings

» For text types, character set and collation are preserved by the cast — just as when casting to a domain.
However, dueto abug, the collation is not aways taken into consideration when comparisons (e.g. equality
tests) are made. In cases where the collation is of importance, test your code thoroughly before deploying!
This bug isfixed for Firebird 3.

« If acolumn'sdefinition isaltered, existing CASTsto that column'stype may becomeinvalid. If these CASTs
occur in PSQL modules, their invalidation may be detected. See the note The RDB$VALID_BLR field, near
the end of this document.

Casting BLOBs:. Successful casting to and from BLOBSs is possible since Firebird 2.1.

CEIL(), CEILING()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the smallest whole number greater than or equal to the argument.
Result type: BIGINT or DOUBLE PRECISION

Syntax:

CEIL[ING (nunber)

Important

If the external function CEI LI NGis declared in your database, it will override the internal function CEILING
(but not CEIL). To make the internal function available, DROP or ALTER the external function (UDF).

See also: FLOOR()

CHAR_LENGTH(), CHARACTER_LENGTH()

Availablein: DSQL, PSQL
Addedin: 2.0
Changedin: 2.1

Description: Givesthe length in characters of the input string.

165

Internal functions

Note

With arguments of type CHAR, thisfunction returnsthe formal string length (i.e. the declared length of afield or
variable). If you want to obtain the “logical” length, not counting the trailing spaces, right-TRIM the argument
before passing it to CHAR[ACTER]_LENGTH.

Result type: INTEGER

Syntax:

CHAR LENGTH (str)
CHARACTER _LENGTH (str)

BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.
Examples:

sel ect char_length('Hello!') fromrdb$database
-- returns 6

sel ect char_length(_iso08859 1 'GuR di!') fromrdb$dat abase
-- returns 8

sel ect char_length
(cast (_is08859 1 "G uB di!' as varchar(24) character set utf8))
from rdb$dat abase
-- returns 8; the fact that U and B take up two bytes each is irrel evant

sel ect char_length

(cast (_is08859 1 "G uUR di!' as char(24) character set utf8))
from rdb$dat abase

-- returns 24: all 24 CHAR positions count

See also: BIT_LENGTH(), OCTET_LENGTH()

CHAR_TO_UUID()

Availablein: DSQL, PSQL
Addedin: 2.5
Description: Converts a human-readable 36-char UUID string to the corresponding 16-byte UUID.

Result type: CHAR(16) CHARACTER SET OCTETS

Syntax:
CHAR_TO UUI D (ascii_uuid)
ascii_uuid ::= a string of length 36 wth:
* '-' (hyphen) at positions 9, 14, 19 and 24;

* valid hex digits at every other position.

166

Internal functions

Examples:

sel ect char_to_uui d(' AObF4E45- 3029- 2a44- D493- 4998c9b439A3') from r db$dat abase
-- returns AOBF4E4530292A44D4934998C9B439A3 (16-byte string)

sel ect char _to_uui d(' AObF4E45- 3029- 2A44- X493- 4998c9b439A3') from rdb$dat abase
-- error: -Human readabl e UUI D argunment for CHAR TO UUI D nust
-- have hex digit at position 20 instead of "X (ASCI| 88)"

See also: UUID_TO_CHAR(), GEN_UUID()

COALESCE()

Availablein: DSQL, PSQL
Addedin: 1.5

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, the result is NULL.

Result type: Depends on input.

Syntax:
COALESCE (<expl>, <exp2> [, <expN> ...])
Example:
sel ect
coal esce (N ckname, FirstName, "M./Ms.') || ' ' || LastNane

as Ful | Nane
from Per sons

This example picks the Nickname from the Persons table. If it happensto be NULL, it goes on to FirstName. If
that too isNULL, “Mr./Mrs.” isused. Finaly, it adds the family name. All in all, it triesto use the available data
to compose afull name that is asinformal as possible. Notice that this scheme only works if absent nicknames
and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the *nvl external
functions.

COS()

Availablein: DSQL, PSQL

Added in: 2.1

167

Internal functions

Description: Returns an angle's cosine. The argument must be given in radians.

Result type: DOUBLE PRECISION
Syntax:

COS (angl e)

* Any non-NULL result is— obviously —in therange [-1, 1].

Important

If the externa function COS is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COSH()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the hyperbolic cosine of the argument.

Result type: DOUBLE PRECISION
Syntax:

COSH (nunber)

e Any non-NULL result isin therange[1, INF].

Important

If the external function COSH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

COT()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns an angle's cotangent. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

COT (angl e)

168

Internal functions

Important

If the external function COT is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

DATEADD()

Availablein: DSQL, PSQL
Addedin: 2.1
Changedin: 2.5

Description: Addsthe specified number of years, months, weeks, days, hours, minutes, seconds or milliseconds
to adate/time value. (The WEEK unitisnew in 2.5.)

Result type: DATE, TIME or TIMESTAMP
Syntax:

DATEADD (<ar gs>)

<args> ;.= <anount> <unit> TO <datetine>
| <unit>, <anpunt>, <datetinme>

<anount >
<unit>

an integer expression (negative to subtract)
YEAR | MONTH | WEEK | DAY

| HOUR | MNUTE | SECOND | M LLI SECOND
a DATE, TIME or Tl MESTAMP expression

<dat et i me>

» Theresult typeis determined by the third argument.

* With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, unitssmaller
than DAY were disallowed for DATES.)

» With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.
Examples:

dat eadd (28 day to current_date)
dateadd (-6 hour to current_tinme)

dat eadd (rmonth, 9, DateCOf Conception)
dat eadd (-38 week to DateOFBirth)
dateadd (minute, 90, tinme 'now)
dateadd (? year to date '11-Sep-1973")

DATEDIFF()

Availablein: DSQL, PSQL

169

Internal functions

Added in: 2.1
Changedin: 2.5

Description: Returnsthe number of years, months, weeks, days, hours, minutes, seconds or milliseconds elapsed
between two date/time values. (The WEEK unit isnew in 2.5.)

Result type: BIGINT
Syntax:
DATEDI FF (<args>)

<ar gs> ::= <unit> FROM <rnorent 1> TO <nonent 2>
| <unit>, <nonentl>, <nonent2>

<uni t> = YEAR | MONTH | WEEK | DAY
| HOUR | M NUTE | SECOND | M LLI SECOND
<morment N> 1 := a DATE, TIME or TIMESTAMP expression

* DATE and TIMESTAMP arguments can be combined. No other mixes are allowed.

* With TIMESTAMP and DATE arguments, all units can be used. (Prior to Firebird 2.5, units smaller
than DAY were disallowed for DATES.)

» With TIME arguments, only HOUR, MINUTE, SECOND and MILLISECOND can be used.
Computation:
» DATEDIFF doesn't look at any smaller units than the one specified in the first argument. As aresult,

“datedi ff (year, date '1-Jan-2009', date '31-Dec-2009')" returnsO, but
“datedi ff (year, date '31-Dec-2009', date '1-Jan-2010')" returnsl

It does, however, look at al the bigger units. So:
- “datediff (day, date '26-Jun-1908', date '11-Sep-1973')" returns23818
* A negative result value indicates that monment 2 lies before nonent 1.
Examples:
datedi ff (hour fromcurrent_timestanp to timestanp '12-Jun-2059 06: 00")
datediff (minute fromtine '0:00" to current_tinme)

datedi ff (nmonth, current_date, date '1-1-1900")
datedi ff (day fromcurrent_date to cast(? as date))

DECODE()

Availablein: DSQL, PSQL
Added in: 2.1

Description: DECODE is a shortcut for the so-called “simple CASE” construct, in which a given expression is
compared to a number of other expressions until a match is found. The result is determined by the value listed

170

Internal functions

after the matching expression. If no match is found, the default result is returned, if present. Otherwise, NULL
is returned.

Result type: Varies
Syntax:

DECODE (<test-expr>,
<expr>, result
[, <expr> result ...]
[, defaultresult])

The equivaent CASE construct:

CASE <t est - expr>
VWHEN <expr> THEN resul t
[WHEN <expr> THEN result ...]
[ELSE defaul tresult]

END

Caution

Matching is done with the “=" operator, so if <t est - expr > is NULL, it won't match any of the
<expr >s, not even those that are NULL.

Example:
sel ect nane,
age,
decode(upper (sex),
"M, 'Male',
"F', 'Fenule',
" Unknown'),
religion
from peopl e

See also: CASE, Simple CASE

EXP()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the natural exponential, "™
Result type: DOUBLE PRECISION
Syntax:
EXP (nunber)

See also: LN()

171

Internal functions

EXTRACT()

Availablein: DSQL, ESQL, PSQL
Addedin: IB 6
Changedin: 2.1

Description: Extracts and returns an element from aDATE, TIME or TIMESTAMP expression. Thisfunction was
aready added in InterBase 6, but not documented in the Language Reference at the time.

Result type: SMALLINT or NUMERIC
Syntax:
EXTRACT (<part> FROM <dat et i nme>)
<part> ::= YEAR | MONTH | WEEK
| DAY | WEEKDAY | YEARDAY
| HOUR| M NUTE | SECOND | M LLI SECOND
<datetine> ::= a DATE, TIME or TIMESTAMP expression

The returned datatypes and possible ranges are shown in the table below. If you try to extract a part that isn't
present in the date/time argument (e.g. SECOND from a DATE or YEAR from a TIME), an error occurs.

Table 14.2. Types and ranges of EXTRACT results

Part Type Range Comment

YEAR SMALLINT 1-9999

MONTH SMALLINT 1-12

WEEK SMALLINT 1-53

DAY SMALLINT 1-31

WEEKDAY SMALLINT 0-6 0 = Sunday

YEARDAY SMALLINT 0-365 0= January 1

HOUR SMALLINT 0-23

MINUTE SMALLINT 0-59

SECOND NUMERIC(9,4) 0.0000-59.9999 includes millisecond as
fraction

MILLISECOND NUMERIC(9,1) 0.0-999.9 brokenin2.1,2.1.1

MILLISECOND

Added in: 2.1 (with bug)

172

Internal functions

Fixedin: 2.1.2

Description: Firebird 2.1 and up support extraction of themillisecond fromaTIME or TIMESTAMP. The datatype
returned isNUMERIC(9,1).

Note

If you extract the millisecond from CURRENT_TIME, be aware that this variable defaults to seconds precision,
so the result will always be 0. Extract from CURRENT_TIME(3) or CURRENT_TIMESTAMP to get milliseconds
precision.

WEEK
Added in: 2.1

Description: Firebird 2.1 and up support extraction of the | SO-8601 week number from aDATE or TIMESTAMP.
ISO-8601 weeks start on a Monday and always have the full seven days. Week 1 is the first week that has a
majority (at least 4) of its daysin the new year. The first 1-3 days of the year may belong to the last week (52
or 53) of the previous year. Likewise, ayear's final 1-3 days may belong to week 1 of the following year.

Caution

Be careful when combining WEEK and Y EAR results. For instance, 30 December 2008 liesin week 1 of 20009,
so“extract (week from date '30 Dec 2008')” returns 1. However, extracting YEAR always gives
the calendar year, which is 2008. In this case, WEEK and Y EAR are at odds with each other. The same happens
when the first days of January belong to the last week of the previous year.

Please aso notice that WEEKDAY is not 1SO-8601 compliant: it returns O for Sunday, whereas |SO-8601
specifies 7.

FLOOR()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the largest whole number smaller than or equal to the argument.
Result type: BIGINT or DOUBLE PRECISION

Syntax:

FLOOR (number)

I mportant

If the external function FLOOR is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

173

Internal functions

See also: CEIL() / CEILING()

GEN_ID()

Availablein: DSQL, ESQL, PSQL
Added in: IB

Description: Increments agenerator or sequence and returnsits new value. From Firebird 2.0 onward, the SQL -
compliant NEXT VALUE FOR syntax is preferred, except when an increment other than 1 is needed.

Result type: BIGINT
Syntax:
GEN_I D (generator-nane, <step>)
<step> ::= An integer expression.
Example:

new.rec_id = gen_id(gen_recnum 1);

Warning

Unlessyou know very well what you are doing, using GEN_ID() with step valueslower than 1 may compromise
your data's integrity.

See also: NEXT VALUE FOR, CREATE GENERATOR

GEN_UUID()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns a universally unique ID as a 16-byte character string.
Result type: CHAR(16) CHARACTER SET OCTETS
Syntax:
GEN_UUI D ()
Example:

sel ect gen_uuid() fromrdb$dat abase
-- returns e.g. 017347BFE212B2479C00FA4323B36320 (16-byte string)

174

Internal functions

See also: UUID_TO_CHAR(), CHAR_TO_UUID()

HASH()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns a hash value for the input string. This function fully supports text BLOBSs of any length
and character set.

Result type: BIGINT
Syntax:

HASH (string)

F()

Availablein: DSQL, PSQL
Added in: 2.0

Description: 11F takesthree arguments. If thefirst evaluatestot r ue, the second argument is returned; otherwise
thethird is returned.

Result type: Depends on input.
Syntax:

I F (<condition> ResultT, ResultF)

<condition> ::= A bool ean expression.
Example:
select iif(sex ='M, "Sir', '"Madam) from Custoners

[IF(Cond, Resul t 1, Resul t 2) is a shortcut for “CASE WHEN Cond THEN Resul t 1 ELSE Resul t 2 END”.
Y ou can aso compare IIF to the ternary “? : ” operator in C-like languages.

LEFT()

Availablein: DSQL, PSQL

Added in: 2.1

175

Internal functions

Description: Returns the leftmost part of the argument string. The number of charactersis given in the second
argument.

Result type: VARCHAR or BLOB
Syntax:
LEFT (string, |ength)

» Thisfunction fully supportstext BLOBs of any length, including those with amulti-byte character
Set.

e |fstringisaBLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the
length of the input string.

» If thel engt h argument exceeds the string length, the input string is returned unchanged.

» If thel engt h argument is not awhole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

See also: RIGHT()

LN()

Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the natural logarithm of the argument.
Result type: DOUBLE PRECISION
Syntax:
LN (nunber)

* Anerrorisraised if the argument is negative or O.

I mportant

If the external function LN is declared in your database, it will override the interna function. To make the
internal function available, DROP or ALTER the external function (UDF).

See also: EXP()

LOG()

Availablein: DSQL, PSQL

176

Internal functions

Added in: 2.1
Changed in: 2.5
Description: Returns the x-based logarithm of y.
Result type: DOUBLE PRECISION
Syntax:
LOG (x,)

 |If either argument is O or below, an error israised. (Before 2.5, thiswould result in NaN, £1 NF or
0, depending on the exact values of the arguments.)

* If both arguments are 1, NaN is returned.
e Ifx=1andy <1, -I NFisreturned.

e Ifx=1andy > 1,1 NFisreturned.

I mportant

If the externa function LOG is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

LOG10()

Availablein: DSQL, PSQL
Addedin: 2.1
Changedin: 2.5
Description: Returns the 10-based logarithm of the argument.
Result type: DOUBLE PRECISION
Syntax:
LOGLO (nunber)

* Anerrorisraised if the argument is negative or 0. (In versions prior to 2.5, such values would
result in NaN and -1 NF, respectively.)

I mportant

If the external function LOGLO is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

177

Internal functions

LOWER()

Available in: DSQL, ESQL, PSQL
Added in: 2.0
Changedin: 2.1

Description: Returns the lower-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are lowercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
Set.

Result type: (VAR)CHAR or BLOB

Syntax:

LONER (str)

Note

Because LOWER is a reserved word, the internal function wil take precedence even if the external function
by that name has also been declared. To call the (inferior!) external function, use double-quotes and the exact
capitalisation, asin" LONER' (st r).

Example:

sel ect Sheriff from Towns
where | ower (Nane) = 'cooper''s valley'

See also; UPPER

LPAD()

Availablein: DSQL, PSQL

Added in: 2.1

Changed in: 2.5 (backported to 2.1.4)

Description: Left-pads a string with spaces or with a user-supplied string until a given length is reached.
Result type: VARCHAR or BLOB

Syntax:

LPAD (str, endlen [, padstr])

178

Internal functions

» Thisfunction fully supports text BLOBS of any length and character set.
» If str isaBLOB, theresultisaBLOB. Otherwise, theresultisaVARCHAR(endl en).
» If padstr isgivenand equals' ' (empty string), no padding takes place.

» If endl en islessthan the current string length, the string istruncated to endl| en, evenif padst r
isthe empty string.

Important

If the external function LPAD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Note

In Firebird 2.1-2.1.3, al non-BLOB results were of type VARCHAR(32765), which made it advisable to cast
them to a more modest size. Thisis no longer the case.

Examples:

| pad ("Hello', 12) -- returns ' Hel | o'
Ipad ("Hello', 12, '-') -- returns '------- Hel | o'
I pad ("Hello', 12, '") -- returns 'Hello

I pad ("Hello', 12, "abc') -- returns 'abcabcaHel | o'
I pad ("Hello', 12, 'abcdefghij"') -- returns 'abcdefgHell o'
I pad ('Hello', 2) -- returns ' He'

Ipad ("Hello', 2, '-") -- returns 'He'

Ipad ("Hello', 2, '") -- returns ' He'

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBS are involved.

See also: RPAD()

MAXVALUE()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returnsthe maximum valuefrom alist of numerical, string, or date/time expressions. Thisfunction
fully supports text BLOBs of any length and character set.

Result type: Varies
Syntax:

MAXVALUE (expr [, expr ...])

179

Internal functions

 If one or more expressions resolve to NULL, MAXVALUE returns NULL. This behaviour differs
from the aggregate function MAX.

See also: MINVALUE()

MINVALUE()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returnsthe minimum value from alist of numerical, string, or date/time expressions. Thisfunction
fully supports text BLOBs of any length and character set.

Result type: Varies
Syntax:
M NVALUE (expr [, expr ...])

» If one or more expressions resolve to NULL, MINVALUE returns NULL. This behaviour differs
from the aggregate function MIN.

See also: MAXVALUE()

MOD()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns the remainder of an integer division.
Result type: INTEGER or BIGINT
Syntax:
MDD (a, b)

» Non-integer arguments are rounded before the division takes place. So, “7.5 mod 2.5” gives 2 (8
mod 3), not 0.

I mportant

If the external function MOD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

180

Internal functions

NULLIF()

Availablein: DSQL, PSQL
Addedin: 1.5

Description: NULLIF returns the value of the first argument, unlessit is equal to the second. In that case, NULL
isreturned.

Result type: Depends on input.
Syntax:
NULLI F (<expl>, <exp2>)
Example:
sel ect avg(nullif(Weight, -1)) from Fat Peopl e
This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,

since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note

In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nul |'i f external
functions.

OCTET_LENGTH()

Availablein: DSQL, PSQL
Added in: 2.0
Changedin: 2.1

Description: Gives the length in bytes (octets) of the input string. For multi-byte character sets, this may
be less than the number of characters times the “formal” number of bytes per character as found in RDB
$CHARACTER_SETS.

Note

With arguments of type CHAR, this function takes the entire formal string length (e.g. the declared length of a
field or variable) into account. If you want to obtain the “logical” byte length, not counting the trailing spaces,
right-TRIM the argument before passing it to OCTET_LENGTH.

Result type: INTEGER

181

Internal functions

Syntax:

OCTET_LENGTH (str)
BLOB support: Since Firebird 2.1, this function fully supports text BLOBs of any length and character set.
Examples:

sel ect octet_length('Hello!') fromrdb$database
-- returns 6

sel ect octet_length(_iso8859 1 'GuR di!') fromrdb$dat abase
-- returns 8: U and B take up one byte each in | SC8859_1

sel ect octet_length
(cast (_is08859 1 "G iR di!' as varchar(24) character set utf8))
from r db$dat abase
-- returns 10: U and B take up two bytes each in UTF8
sel ect octet_length
(cast (_is08859 1 'GuR di!' as char(24) character set utf8))
from rdb$dat abase
-- returns 26: all 24 CHAR positions count, and two of themare 2-byte

See also: BIT_LENGTH(), CHARACTER_LENGTH()

OVERLAY()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Overwrites part of astring with another string. By default, the number of characters removed from
the host string equal sthelength of the replacement string. With the optional fourth argument, the user can specify
adifferent number of charactersto be removed.

Result type: VARCHAR or BLOB

Syntax:
OVERLAY (string PLACI NG repl acement FROM pos [FOR | ength])
» Thisfunction supports BLOBs of any length.

e If string or repl acenent is a BLOB, the result is a BLOB. Otherwise, the result is a
VARCHAR(n) with n the sum of the lengths of st ri ng andr epl acenent .

» Asusuad in SQL string functions, pos is 1-based.
» If pos isbeyondtheend of stri ng, repl acenent isplaced directly after st ri ng.
 If thenumber of charactersfrom pos totheend of st ri ng issmaller thanthelength of r epl ace-

ment (or thanthel engt h argument, if present), st ri ng istruncated at pos and r epl acenent
placed after it.

182

Internal functions

» Theeffect of a“FOR Q" clauseisthat r epl acenent issimply insertedinto st ri ng.
» If any argument isNULL, the result isNULL.

* If pos or | engt h is not a whole number, bankers rounding (round-to-even) is applied, i.e. 0.5
becomes O, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Examples:
overlay (' Goodbye' placing 'Hello" from 2) -- returns ' GHel | oe'
overlay (' Goodbye' placing 'Hello'" from5) -- returns ' GoodHel | o'
overlay (' Goodbye' placing 'Hello'" from 8) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing 'Hello' from 20) -- returns ' GoodbyeHel | o'
overlay (' Goodbye' placing "Hello' from2 for 0) -- r. 'GHel | ooodbye’
overlay (' Goodbye' placing 'Hello'" from?2 for 3) -- r. 'GHel |l obye'
overlay (' Goodbye' placing '"Hello' from2 for 6) --r. 'Glello
overlay (' Goodbye' placing "Hello' from2 for 9) --r. 'Glello
overlay (' Goodbye' placing '' from 4) -- returns ' Goodbye'
overlay (' Goodbye' placing '' from4 for 3) -- returns ' Gooe'
overlay (' Goodbye' placing '' from4 for 20) -- returns 'Goo'
overlay ('' placing 'Hello' from4) -- returns 'Hello'
overlay ('' placing 'Hello' from4 for 0) -- returns 'Hello
overlay ('' placing 'Hello' from4 for 20) -- returns 'Hello'

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBs are involved.

See also: REPLACE()

PI1()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns an approximation of the value of #.
Result type: DOUBLE PRECISION

Syntax:

Pl ()

I mportant

If the external function PI is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

183

Internal functions

POSITION()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the (1-based) position of the first occurrence of a substring in a host string. With the
optional third argument, the search starts at a given offset, disregarding any matches that may occur earlier in
the string. If no match isfound, the result is 0.

Result type: INTEGER
Syntax:
PCSI TI ON (<ar gs>)

<args> ::= substr IN string
| substr, string [, startpos]

* The optional third argument is only supported in the second syntax (comma syntax).

» Theempty stringisconsidered asubstring of every string. Therefore, if subst r is" (empty string)
andstringisnot NULL, theresultis:

- lifstartpos isnhot given,
- startposifstartpos lieswithinstring;
- Oif start pos liesbeyond theend of st ri ng.

Notice: A bugin Firebird 2.1-2.1.3 and 2.5 causes POSITION to alwaysreturn 1 if subst r isthe
empty string. Thisisfixedin 2.1.4 and 2.5.1.

» Thisfunction fully supports text BLOBS of any size and character set.

Examples:
position ('be'" in 'To be or not to be') -- returns 4
position ('be', 'To be or not to be') -- returns 4
position ('be', 'To be or not to be', 4) -- returns 4
position ('be', 'To be or not to be', 8) -- returns 17
position ('be', "To be or not to be', 18) -- returns O
position ('be'" in 'Aas, poor Yorick!") -- returns O
Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBSs are involved.

POWER()

Availablein: DSQL, PSQL

184

Internal functions

Added in: 2.1
Description: Returns x to the y'th power.
Result type: DOUBLE PRECISION
Syntax:

PONER (x,)

» |If x negative, an error israised.

I mportant

If the external function POAER is declared in your database as power instead of the default dPower , it will
override the internal function. To make the internal function available, DROP or ALTER the external function

(UDF).

RAND()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns arandom number between 0 and 1.
Result type: DOUBLE PRECISION

Syntax:

RAND ()

Important

If the external function RAND is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

RDB$GET_CONTEXT()

Note

RDB$GET_CONTEXT and its counterpart RDBSSET_CONTEXT are actually predeclared UDFs. They are listed

here asinternal functions because they are aways present — the user doesn't have to do anything to make them
available.

Availablein: DSQL, ESQL, PSQL

185

Internal functions

Added in: 2.0
Changedin: 2.1

Description: Retrieves the value of a context variable from one of the namespaces SY STEM, USER_SESSION
and USER_TRANSACTION.

Result type: VARCHAR(255)
Syntax:

RDB$SGET_CONTEXT (' <nanespace>', ' <varnane>')

<namespace> = SYSTEM | USER SESSI ON | USER_TRANSACTI ON
<var nanme> = A case-sensitive string of max. 80 characters
The namespaces:

The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can create and set
variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$SGET_CONTEXT(). The SYSTEM
namespace is read-only. It contains a number of predefined variables, shown in the table below.

Table 14.3. Context variablesin the SY STEM namespace

DB_NANME Either the full path to the database or — if connecting via the path is disallowed
—itsalias.

NETWORK _PROTOCCOL The protocol used for the connection: ' TCPv4' ,' WNET' ,' XNET' or NULL.

CLI ENT_ADDRESS For TCPv4, thisis the IP address. For XNET, the local process ID. For all other
protocolsthis variableis NULL.

CURRENT _USER Same as global CURRENT _USER variable.

CURRENT _ROLE Same as global CURRENT_ROLE variable.

SESSI ON_I D Same as global CURRENT _CONNECTI ON variable.

TRANSACTI ON | D Same as global CURRENT _TRANSACTI ON variable.

| SOLATI ON_LEVEL Theisolation level of the current transaction: * READ COMM TTED' ,' SNAPSHOT'

or ' CONS| STENCY' .

ENG NE_VERSI ON The Firebird engine (server) version. Added in 2.1.

Return valuesand error behaviour: If the polled variable existsin the given namespace, itsvalue will be returned
as a string of max. 255 characters. If the namespace doesn't exist or if you try to access a non-existing variable
in the SY STEM namespace, an error israised. If you poll anon-existing variable in one of the other namespaces,
NULL isreturned. Both namespace and variable names must be given as single-quoted, case-sensitive, non-NULL
strings.

Examples:
sel ect rdb$get _context (' SYSTEM, 'DB_NAME) from rdb$dat abase

New. User Addr = rdb$get context (' SYSTEM, ' CLI ENT_ADDRESS');

186

Internal functions

insert into MyTable (TestField)
val ues (rdb$get context (' USER_SESSION , 'MyVar'))

See also: RDB$SET_CONTEXT()

RDB$SET _CONTEXT()

Note

RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actually predeclared UDFs. They are listed

here asinternal functions because they are always present — the user doesn't have to do anything to make them
available.

Availablein: DSQL, ESQL, PSQL
Added in: 2.0

Description: Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

Result type: INTEGER

Syntax:
RDB$SET_CONTEXT (' <nanespace>', '<varname>', <value> | NULL)

<namespace> = USER _SESSI ON | USER_TRANSACTI ON

<var nane> ::= A case-sensitive string of nax. 80 characters

<val ue> ;= A value of any type, as long as it's castable
to a VARCHAR(255)

The namespaces:

TheUSER_SESSION and USER_TRANSACTION namespacesareinitially empty. The user can create and set vari-
ablesin them with RDB$SET_CONTEXT() and retrieve them with RDBSGET_CONTEXT(). The USER_SESSION
context is bound to the current connection. Variablesin USER_TRANSACTION only exist in the transaction in
which they have been set. When the transaction ends, the context and all the variablesdefined in it are destroyed.

Return values and error behaviour:
Thefunction returns 1 if the variable already existed before the call and O if it didn't. To remove avariable from

acontext, set it to NULL. If the given namespace doesn't exist, an error is raised. Both namespace and variable
names must be entered as single-quoted, case-sensitive, non-NULL strings.

Examples:
sel ect rdb$set context (' USER SESSION', 'My/Var', 493) from rdb$dat abase

rdb$set _context (' USER_SESSI ON', ' RecordsFound', RecCounter);

sel ect rdb$set _context (' USER_TRANSACTI ON , ' Savepoints', 'Yes')
from r db$dat abase

187

Internal functions

Notes:
* The maximum number of variablesin any single context is 1000.

e All USER_TRANSACTION variableswill surviveaROLLBACK RETAIN or ROLLBACK TO SAVEPOINT un-
atered, no matter at which point during the transaction they were set.

e DuetoitsUDF-likenature, RDB$SET_CONTEXT can—in PSQL only —becalled like avoid function, without
assigning the result, asin the second example above. Regular internal functions don't allow this type of use.

See also: RDB$GET_CONTEXT()

REPLACE()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Replaces all occurrences of a substring in a string.
Result type: VARCHAR or BLOB
Syntax:
REPLACE (str, find, repl)
» Thisfunction fully supports text BLOBs of any length and character set.

» If any argument is a BLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n
calculated from the lengths of st r, fi nd and r epl in such away that even the maximum possible number
of replacements won't overflow the field.

» Iffindistheempty string, st r isreturned unchanged.
* If repl istheempty string, al occurrences of f i nd are deleted from st r .

» [f any argument is NULL, the result is aways NULL, even if nothing would have been replaced.

Examples:
replace ('Billy Wlder', 'il', '"oog') -- returns ' Boogly Wogder'
replace ("Billy Wlder', "il' ") -- returns 'Bly Wler'
replace ("Billy Wlder', null, 'oog') -- returns NULL
replace ("Billy Wlder', ‘"il', null) -- returns NULL
replace ("Billy Wlder', 'xyz', null) -- returns NULL (!)
replace ('Billy Wlder', '"xyz', "abc') -- returns 'Billy WIder'
replace ("Billy Wlder'", "', "abc') -- returns 'Billy WIder'

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBSs are involved.

See also: OVERLAY()

188

Internal functions

REVERSE()

Availablein: DSQL, PSQL
Addedin: 2.1
Description: Returns a string backwards.
Result type: VARCHAR
Syntax:
REVERSE (str)
Examples:

reverse ('spoonful') -- returns 'l ufnoops'
reverse ("Was it a cat | saw?') -- returns '?was | tac a ti saW

Tip
This function comesin very handy if you want to group, search or order on string endings, e.g. when dealing

with domain names or email addresses:

create index ix_people_emil on people
computed by (reverse(email));

sel ect * from peopl e
where reverse(email) starting with reverse('.br');

RIGHT()

Availablein: DSQL, PSQL
Added in: 2.1

Description: Returnsthe rightmost part of the argument string. The number of charactersis given in the second
argument.

Result type: VARCHAR or BLOB
Syntax:

RI GHT (string, |ength)

» Thisfunction supports text BLOBS of any length, but has abug in versions 2.1-2.1.3 and 2.5 that
makesit fail with text BLOBs larger than 1024 bytes that have a multi-byte character set. This has
been fixed in versions 2.1.4 and 2.5.1.

e |fstringisaBLOB, the result is a BLOB. Otherwise, the result is a VARCHAR(n) with n the
length of the input string.

189

Internal functions

» If thel engt h argument exceeds the string length, the input string is returned unchanged.

» If thel engt h argument is not awhole number, bankers' rounding (round-to-even) is applied, i.e.
0.5 becomes 0, 1.5 becomes 2, 2.5 becomes 2, 3.5 becomes 4, etc.

Warning

mance if huge BLOBs are involved.

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-

I mportant

(UDF).

If the external function RI GHT is declared in your database asri ght instead of the default sri ght , it will
override the internal function. To make the internal function available, DROP or ALTER the external function

See also: LEFT()

ROUND()

Availablein: DSQL, PSQL
Addedin: 2.1

Description: Rounds a number to the nearest integer. If the fractional part is exactly 0. 5, rounding is upward
for positive numbers and downward for negative numbers. With the optional scal e argument, the number can
be rounded to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE
Syntax:
ROUND (<number> [, <scale>])

<nunber >
<scal e>

a nunerical expression

toward whi ch shoul d be rounded,

2 for rounding to the
1 for rounding to the
0 for rounding to the
-1 for rounding to the
-2 for rounding to the

Notes:

near est
near est
near est
near est
near est

an integer specifying the nunber of decinmal places

e.g.:
mul tiple of 0.01
multiple of 0.1
whol e nunber

mul tiple of 10

mul tiple of 100

» |f thescal e argument is present, the result usually has the same scale as the first argument, e.g.

- ROUND(123.654, 1) returns 123.700 (not 123.7)
- ROUND(8341.7, -3) returns 8000.0 (not 8000)
- ROUND(45.1212, 0) returns 45.0000 (not 45)

Otherwise, the result scaleis O:

190

Internal functions

- ROUND(45.1212) returns 45

Important

« If the external function ROUND is declared in your database, it will override the internal function. To make
the internal function available, DROP or ALTER the external function (UDF).

 |If you are used to the behaviour of the external function ROUND, please notice that the internal function
aways rounds halves away from zero, i.e. downward for negative numbers.

Available
Added in:
Changed i

RPAD()

in: DSQL, PSQL
2.1

n: 2.5 (backported to 2.1.4)

Description: Right-pads a string with spaces or with a user-supplied string until a given length is reached.

Result type: VARCHAR or BLOB

Syntax:

RPAD (str, endlen [, padstr])

» Thisfunction fully supports text BLOBs of any length and character set.

o If
o If

o |If
is

str isaBLOB, theresult isaBLOB. Otherwise, theresult isaVARCHAR(end! en).
padstr isgivenand equals' ' (empty string), no padding takes place.

endl en islessthan the current string length, the string istruncated to endl en, evenif padst r
the empty string.

Important

If the external function RPAD is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

Note

In Firebird 2.1-2.1.3, al non-BLOB results were of type VARCHAR(32765), which made it advisable to cast
them to a more modest size. Thisis no longer the case.

Examples:

r pad
r pad
r pad
r pad
r pad

('"Hello', 12) -- returns 'Hello
("Hello, 12, '-") -- returns 'Hello------- '
("Hello', 12, '") -- returns 'Hello'
("Hello', 12, 'abc") -- returns ' Hell oabcabca'
("Hello', 12, 'abcdefghij") -- returns ' Hell oabcdefg'

191

Internal functions

rpad ('Hello', 2) -- returns ' He'

rpad ("Hello', 2, '"-") -- returns ' He'

rpad ("Hello', 2, '") -- returns ' He'
Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

See also: LPAD()

SIGN()

Availablein: DSQL, PSQL

Added in: 2.1

Description: Returns the sign of the argument: -1, O or 1.
Result type: SMALLINT

Syntax:

SI GN (nunber)

Important

If the external function SI GNis declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SIN()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns an angle's sine. The argument must be given in radians.

Result type: DOUBLE PRECISION

Syntax:

SIN (angl e)

e Any non-NULL result is—obviously —in therange [-1, 1].

I mportant

If the external function SI N is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

192

Internal functions

SINH()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the hyperbolic sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

SINH (nunber)

Important

If the external function SI NHis declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SQRT()
Availablein: DSQL, PSQL
Added in: 2.1
Description: Returns the square root of the argument.
Result type: DOUBLE PRECISION
Syntax:

SQRT (nunber)

Important

If the external function SQRT is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

SUBSTRING()

Availablein: DSQL, PSQL

Added in: 1.0

193

Internal functions

Changedin: 2.0,2.1,2.15,25.1

Description: Returns a string's substring starting at the given position, either to the end of the string or with
agiven length.

Result type: VARCHAR(n) or BLOB

Syntax:

SUBSTRI NG (str FROM startpos [FOR | ength])

This function returns the substring starting at character position st ar t pos (the first position being 1). Without
the FOR argument, it returns all the remaining characters in the string. With FOR, it returns| engt h characters
or the remainder of the string, whichever is shorter.

In Firebird 1.x, st ar t pos and | engt h must be integer literals. In 2.0 and above they can be any valid integer
expression.

Starting with Firebird 2.1, this function fully supports binary and text BLOBs of any length and character set. If
str isaBLOB, theresultisalso aBLOB. For any other argument type, the resultisaVARCHAR(n). Previoudly,
the result type used to be CHAR(n) if the argument was a CHAR(n) or a string literal.

For non-BLOB arguments, thewidth of theresult field isalwaysequal tothelength of st r , regardlessof st ar t -
pos and | engt h. So, subst ri ng(' pi nhead” from 4 for 2) will return aVARCHAR(7) containing the
string* he' .

If any argument is NULL, the result isNULL.

Bugs

e |f str isaBLOB and the | engt h argument is not present, the output is limited to 32767 characters.
Workaround: with long BLOBS, always specify char_length(st r) — or a sufficiently high integer — as the
third argument, unless you are sure that the requested substring fits within 32767 characters.

This bug has been fixed in version 2.5.1; the fix was a so backported to 2.1.5.

e A bug in Firebird 2.0 which caused the function to return “false emptystrings’ if st art pos or | engt h
was NULL, has been fixed.

Example:

insert into AbbrNanmes(Abbr Nane)
sel ect substring(LongName from 1 for 3) from LongNanes

Warning

When used on a BLOB, this function may need to load the entire object into memory. Although it does try to
limit memory consumption, this may affect performance if huge BLOBs are involved.

TAN()

Availablein: DSQL, PSQL

194

Internal functions

Added in: 2.1

Description: Returns an angle's tangent. The argument must be given in radians.
Result type: DOUBLE PRECISION

Syntax:

TAN (angl e)

Important

If the external function TAN is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TANH()
Availablein: DSQL, PSQL
Addedin: 2.1

Description: Returns the hyperbolic tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:

TANH (nunber)

* Dueto rounding, any non-NULL result isin therange [-1, 1] (mathematically, it's<-1, 1>).

I mportant

If the external function TANH is declared in your database, it will override the internal function. To make the
internal function available, DROP or ALTER the external function (UDF).

TRIM()

Availablein: DSQL, PSQL
Added in: 2.0

Changedin: 2.1

Description: Removes leading and/or trailing spaces (or optionally other strings) from the input string. Since
Firebird 2.1 this function fully supports text BLOBS of any length and character set.

Result type: VARCHAR(n) or BLOB

195

Internal functions

Syntax:

TRIM ([<adj ust>] str)

<adjust> ::= {[where] [what]} FROM
wher e .= BOTH | LEADI NG | TRAILING /* default is BOTH */
what ::= The substring to be renoved (repeatedly if necessary)
fromstr's head and/or tail. Default is ' ' (space).
Examples:
select trim (' Waste no space ') from rdb$dat abase

-- returns 'Waste no space’

select trim(leading from' Waste no space ') fromrdb$dat abase
-- returns 'Waste no space '

select trim(leading '.' from' Waste no space ') fromrdb$dat abase
-- returns ' Waste no space '
select trim(trailing '!" from'Help!'!'!'!") fromrdb$dat abase

-- returns 'Help'

select trim('la" from'lalala | love you Ella') fromrdb$database
-- returns ' | love you EI'
select trim('la" from'Lalala | love you Ella') fromrdb$database
-- returns 'Lalala | love you E"
Notes:

If str isaBLOB, theresult isaBLOB. Otherwise, it isaVARCHAR(n) with n the formal length of st r.

The substring to be removed, if specified, may not be bigger than 32767 bytes. However, if thissubstring is
repeated at st r 's head or tail, the total number of bytes removed may be far greater. (The restriction on the
size of the substring will be lifted in Firebird 3.)

Warning

When used on a BLOB, this function may need to load the entire object into memory. This may affect perfor-
mance if huge BLOBSs are involved.

TRUNC()
Availablein: DSQL, PSQL
Added in: 2.1

Description: Returns the integer part of a number. With the optional scal e argument, the number can be trun-
cated to powers-of-ten multiples (tens, hundreds, tenths, hundredths, etc.) instead of just integers.

Result type: INTEGER, (scaled) BIGINT or DOUBLE

196

Internal functions

Syntax:
TRUNC (<nunber> [, <scale>])

<nunber >
<scal e>

a nunerical expression
an integer specifying the nunber of decinmal places
toward which should be truncated, e.g.
2 for truncating to a multiple of 0.01
1 for truncating to a multiple of 0.1
0 for truncating to a whol e nunber
-1 for truncating to a multiple of 10
-2 for truncating to a nultiple of 100

Notes:
» If thescal e argument is present, the result usually has the same scal e as the first argument, e.g.

- TRUNC(789.2225, 2) returns 789.2200 (not 789.22)
- TRUNC(345.4, -2) returns 300.0 (not 300)
- TRUNC(-163.41, 0) returns -163.00 (not -163)

Otherwise, the result scaleis O:

- TRUNC(-163.41) returns-163

Important

If you are used to the behaviour of the external function TRUNCATE, please notice that the internal function
TRUNC aways truncates toward zero, i.e. upward for negative numbers.

UPPER()

Availablein: DSQL, ESQL, PSQL
Addedin: IB
Changedin: 2.0, 2.1

Description: Returns the upper-case equivalent of the input string. The exact result depends on the character
set. With ASCII or NONE for instance, only ASCII characters are uppercased; with OCTETS, the entire string is
returned unchanged. Since Firebird 2.1 this function also fully supports text BLOBs of any length and character
Set.

Result type: (VAR)CHAR or BLOB
Syntax:

UPPER (str)
Examples:

sel ect upper(_i so8859 1 ' Débacle')
from r db$dat abase
-- returns 'DEBACLE' (before Firebird 2.0: 'DEBACLE)

197

Internal functions

sel ect upper(_iso8859 1 'Débéacle' collate fr_fr)
from r db$dat abase
-- returns 'DEBACLE , follow ng French uppercasing rules

See also: LOWER

UUID_TO CHAR()

Availablein: DSQL, PSQL
Added in: 2.5
Description: Converts a 16-byte UUID to its 36-character, human-readable ASCI| representation.
Result type: CHAR(36)
Syntax:
UUIl D_TO CHAR (uui d)
uuid ::= a string consisting of 16 single-byte characters
Examples:

sel ect uuid_to_char(x' 876C45F4569B320DBCB4735AC3509E5F') from r db$dat abase
-- returns ' 876C45F4- 569B- 320D BCB4- 735AC3509E5F

sel ect uuid_to_char(gen_uuid()) fromrdb$database
-- returns e.g. '680D946B- 45FF- DB4E- B103- BB5711529B86

select uuid_to _char('Firebird swings!') fromrdb$dat abase
-- returns ' 46697265-6269- 7264- 2073- 77696E677321"

See also: CHAR_TO_UUID(), GEN_UUID()

198

Chapter 15

External functions (UDFs)

External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two external function libraries:

* i b_udf —inherited from InterBase;
» fbudf —anew library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can aso create their own UDF libraries or acquire them from third parties.

abs

Library: ib_udf
Added in: IB
Better alternative: Internal function ABS()
Description: Returns the absolute value of the argument.
Result type: DOUBLE PRECISION
Syntax:
abs (numnber)
Declaration:

DECLARE EXTERNAL FUNCTI ON abs
DOUBLE PRECI S| ON
RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_abs' MODULE_NAME 'i b_udf’

aCosS

Library: ib_udf
Addedin: IB

Better alternative: Internal function ACOS()

199

External functions (UDFs)

Description: Returns the arc cosine of the argument.
Result type: DOUBLE PRECISION
Syntax:
acos (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON acos
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_acos' MODULE_NAME 'ib_udf’

addDay

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber days added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:
addday (atimestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addDay
TI MESTAWP, | NT
RETURNS Tl MESTAVP
ENTRY_PO NT ' addDay' MODULE_NAME ' f budf'

addHour

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD

Description: Returns the first argument with nunber hours added. Use negative numbers to subtract.

200

External functions (UDFs)

Result type: TIMESTAMP
Syntax:

addhour (atinestanp, number)
Declaration:

DECLARE EXTERNAL FUNCTI ON addHour
TI MESTAVP, | NT
RETURNS Tl MESTAMP
ENTRY_PO NT ' addHour' MODULE_NAME ' f budf'

addM | I I Second

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber milliseconds added. Use hegative numbers to subtract.
Result type: TIMESTAMP
Syntax:
addm | | i second (atinestanmp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM I 1i Second
TI MESTAMP, | NT
RETURNS TI MESTAMP
ENTRY_PO NT 'addM | |i Second" MODULE_NAME ' f budf'

addM nut e

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with nunber minutes added. Use negative numbers to subtract.

Result type: TIMESTAMP

201

External functions (UDFs)

Syntax:
addm nute (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM nut e
TI MESTAMP, | NT
RETURNS TI MESTAMP
ENTRY_PO NT * addM nute’ MODULE_NAME * f budf’

addMont h

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber months added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:
addnont h (ati mestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addMont h
TI MESTAMP, | NT
RETURNS TI MESTAMP
ENTRY_PO NT ' addMont h' MODULE_NAME ' f budf’

addSecond

Library: foudf

Added in: 1.0 (Win), 1.5 (Linux)

Better alternative: Internal function DATEADD

Description: Returns the first argument with nunber seconds added. Use negative numbers to subtract.
Result type: TIMESTAMP

Syntax:

addsecond (atimestanp, nunber)

202

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON addSecond
TI MESTAMP, | NT

RETURNS Tl MESTAWP
ENTRY_PO NT ' addSecond’ MODULE_NAME ' f budf'

addWeek

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber weeks added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addweek (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addWeek

TI MESTAVP, | NT

RETURNS Tl MESTAWP
ENTRY_PO NT ' addWeek' MODULE_NAME ' f budf'

addYear

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function DATEADD
Description: Returns the first argument with nunber years added. Use negative numbers to subtract.
Result type: TIMESTAMP
Syntax:

addyear (atinestanp, numnber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addYear

TI MESTAMP, | NT

RETURNS Tl MESTAMP
ENTRY_PO NT ' addYear' MODULE_NAME ' f budf'

203

External functions (UDFs)

ascii _char

Library: ib_udf
Changedin: 1.0, 2.0
Better alternative: Internal function ASCII_CHAR()
Description: Returns the ASCII character corresponding to the integer value passed in.
Result type: VARCHAR(1)
Syntax (unchanged):
ascii_char (intval)
Declaration:

DECLARE EXTERNAL FUNCTI ON ascii _char
| NTEGER NULL
RETURNS CSTRING(1) FREE IT
ENTRY_PO NT 'IB_UDF_ascii_char' MODULE _NAME 'i b_udf'

The declaration reflects the fact that the UDF as such returns a 1-character C string, not an SQL
CHAR(1) as stated in the InterBase declaration. The engine will pass the result to the caller as a
VARCHAR(1) though.

TheNULL after INTEGER isan optional addition that becameavailablein Firebird 2. When declared
withtheNULL keyword, theenginewill passaNULL argument unchanged to the function. Thiscauses
aNULL result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions),
NULL is passed to the function as 0 and the result is an empty string.
For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

* ascii_char(0) returnsan empty stringin al versions, not a character with ASCII value 0.

» Before Firebird 2.0, the result type was CHAR(1).

asci i _val

Library: ib_udf
Added in: IB

Better alternative: Internal function ASCII_VAL()

204

External functions (UDFs)

Description: Returns the ASCII code of the character passed in.
Result type: INTEGER
Syntax:
ascii_val (ch)
Declaration:
DECLARE EXTERNAL FUNCTI ON ascii _val
CHAR(1)

RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_ascii_val' MODULE_NAME 'ib_udf’

Caution

Because CHAR fields are padded with spaces, an empty string argument will be seen as a space, and yield a
result of 32. The internal function AscCII_VAL returns O in this case.

asin

Library: ib_udf
Added in: IB
Better alternative: Internal function ASIN()
Description: Returns the arc sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

asi n (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON asin
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_asin' MODULE_NAME 'ib_udf'

at an

Library: ib_udf

Added in: IB

205

External functions (UDFs)

Better alternative: Internal function ATAN()
Description: Returns the arc tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:

atan (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON at an
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_atan' MODULE_NAME 'ib_udf'

at an2

Library: ib_udf
Added in: IB
Better alternative: Internal function ATAN2()

Description: Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle, including the
angles -#/2 and #/2.

Result type: DOUBLE PRECISION
Syntax:

atan2 (nunt, nung)
Declaration:

DECLARE EXTERNAL FUNCTI ON at an2
DOUBLE PRECI SI ON, DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' | B_UDF_at an2' MODULE_NAME ‘i b_udf’

bi n_and

Library: ib_udf
Added in: IB

Better alternative: Internal function BIN_AND()

206

External functions (UDFs)

Description: Returns the bitwise AND result of the arguments.
Result type: INTEGER
Syntax:
bi n_and (nunt, nunR)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_and
| NTEGER, | NTEGER
RETURNS | NTEGER BY VALUE
ENTRY_POI NT ' | B_UDF_bi n_and' MODULE_NAME 'ib_udf"

bi n_or
Library: ib_udf
Addedin: IB
Better alternative: Internal function BIN_OR()
Description: Returns the bitwise OR result of the arguments.
Result type: INTEGER
Syntax:
bi n_or (nunl, nunR)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_or
| NTEGER, | NTEGER
RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' 1B _UDF_bin_or' MODULE_NAME 'ib_udf'

bl n_xor
Library: ib_udf
Addedin: IB
Better alternative: Internal function BIN_XOR()
Description: Returns the bitwise XOR result of the arguments.

Result type: INTEGER

207

External functions (UDFs)

Syntax:
bi n_xor (nuntl, nunR)
Declaration:

DECLARE EXTERNAL FUNCTI ON bi n_xor
| NTEGER, | NTEGER
RETURNS | NTEGER BY VALUE
ENTRY_POI NT ' | B_UDF_bi n_xor' MODULE_NAME 'ib_udf"

ceiling

Library: ib_udf
Added in: IB
Better alternative: Internal function CEIL() / CEILING()
Description: Returns the smallest whole number that is greater than or equal to the argument.
Result type: DOUBLE PRECISION
Syntax:

ceiling (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON cei | i ng
DOUBLE PRECI SI ON
RETURNS DOUBLE PREC! S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_cei | i ng' MODULE_NAME 'ib_udf"

COS

Library: ib_udf

Added in: IB

Better alternative: Internal function COS()

Description: Returns an angle's cosine. The argument must be given in radians.
Result type: DOUBLE PRECISION

Syntax:

cos (angle)

208

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON cos
DOUBLE PREC!I SI ON

RETURNS DOUBLE PREC! S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_cos' MODULE_NAME 'i b_udf’

cosh

Library: ib_udf
Added in: IB
Better alternative: Internal function COSH()
Description: Returns the hyperbolic cosine of the argument.
Result type: DOUBLE PRECISION
Syntax:

cosh (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON cosh

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_cosh' MODULE_NAME 'ib_udf’

cot

Library: ib_udf
Added in: IB
Better alternative: Internal function COT()
Description: Returns an angle's cotangent. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

cot (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON cot

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_cot' MODULE_NAME 'ib_udf'

209

External functions (UDFs)

dow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the day of the week from a timestamp argument. The returned name may be localized.
Result type: VARCHAR(15)
Syntax:
dow (ati nmestanp)
Declaration:

DECLARE EXTERNAL FUNCTI ON dow
TI MESTANP,
VARCHAR(15) RETURNS PARAMETER 2
ENTRY_PO NT ' DOW MODULE_NAME ' f budf’

See also: sdow

dpower

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function POWER()
Description: Returns x to the y'th power.
Result type: DOUBLE PRECISION
Syntax:
dpower (x,)
Declaration:

DECLARE EXTERNAL FUNCTI ON dPower
DOUBLE PRECI S| ON BY DESCRI PTOR, DOUBLE PRECI S| ON BY DESCRI PTOR,
DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS PARAMETER 3
ENTRY_PO NT ' power' MODULE_NAME ' f budf'

210

External functions (UDFs)

fl oor

Library: ib_udf
Added in: IB
Better alternative: Internal function FLOOR()
Description: Returns the largest whole number that is smaller than or equal to the argument.
Result type: DOUBLE PRECISION
Syntax:
fl oor (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON f | oor
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI SI ON BY VALUE
ENTRY_PO NT ' 1B _UDF_floor' MODULE NAME 'ib_udf’

get Exact Ti nest anp

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: CURRENT _TI MESTAMP or ' NOW

Description: Returns the system time with milliseconds precision. This function was added because in pre-2.0
versions, CURRENT_TI MESTAMP always had . 0000 in the fractional part of the second. In Firebird 2.0 and up
it is better to use CURRENT _TI MESTAMP, which now also defaults to milliseconds precision. To measure time
intervalsin PSQL modules, use' NOW .

Result type: TIMESTAMP
Syntax:

getexactti mest anp()
Declaration:

DECLARE EXTERNAL FUNCTI ON get Exact Ti nest anp
TI MESTAMP RETURNS PARAMETER 1
ENTRY_PO NT ' get Exact Ti nest anp’ MODULE_NAME ' f budf"

211

External functions (UDFs)

| 64r ound
Seeround.
| 64t runcat e
Seetruncate.
| n
Library: ib_udf
Added in: IB

Better alternative: Internal function LN()
Description: Returns the natural logarithm of the argument.
Result type: DOUBLE PRECISION
Syntax:
I n (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON I n
DOUBLE PRECI S| ON
RETURNS DOUBLE PREC! S| ON BY VALUE
ENTRY_POI NT ' I B_UDF_I n' MODULE_NAME 'ib_udf'

| og
Library: ib_udf
Addedin: IB
Changedin: 1.5
Better alternative: Internal function LOG()

Description: In Firebird 1.5 and up, | og(x, y) returns the the base-x logarithm of y. In Firebird 1.0.x and
InterBase, it erroneously returns the base-y logarithm of x.

212

External functions (UDFs)

Result type: DOUBLE PRECISION
Syntax (unchanged):
log (x,)
Declaration (unchanged):
DECLARE EXTERNAL FUNCTI ON | og
DOUBLE PRECI SI ON, DOUBLE PREC! SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_| og' MODULE_NAME 'i b_udf’

Warning

If any of your pre-1.5 databases use | og, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get

wrong results.
| 0g10
Library: ib_udf
Addedin: IB

Better alternative: Internal function LOG10()
Description: Returns the 10-based logarithm of the argument.
Result type: DOUBLE PRECISION
Syntax:

| 0g10 (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON | 0g10

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_| 0g10' MODULE NAME 'ib_udf'

| ower

Library: ib_udf
Added in: IB
Changedin: 2.0

Better alternative: Internal function LOWER()

213

External functions (UDFs)

Description: Returns the lower-case version of the input string. Please notice that only ASCII characters are
handled correctly. If possible, use the superior internal function LOWER instead.

Result type: VARCHAR(n)
Syntax:
"LOWER' (str)
Declaration:
DECLARE EXTERNAL FUNCTI ON " LOWER"
CSTRI NG&(255) NULL
RETURNS CSTRI NG(255) FREE | T
ENTRY_POI NT ' B_UDF_| ower' MODULE_NAME 'ib_udf'

The above declaration is from the file i b_udf 2. sgl . "LOMNER" has been surrounded by dou-
ble-quotes because LOWER, being areserved word, cannot be used as an identifier except when quot-
ed. When you call the function, you also have to add the quotes and use the exact capitalization,
otherwise the internal function will take precedence. (Most other internal function names are not re-
served words; in those cases, the external function prevailsif it is declared.)

The NULL after CSTRING(255) is an optional addition that became available in Firebird 2. When
declared with the NULL keyword, the engine will pass a NULL argument unchanged to the function.
Thisleadsto aNULL result, whichis correct. Without the NULL keyword (your only option in pre-2.0
versions), NULL is passed to the function as an empty string and the result is an empty string as well.

For more information about passing NULLS to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

| pad
Library: ib_udf
Added in: 1.5
Changedin: 1.5.2, 2.0
Better alternative: Internal function LPAD()
Description: Returns the input string left-padded with padchar suntil endl engt h isreached.
Result type: VARCHAR(n)

Syntax:

| pad (str, endlength, padchar)

214

External functions (UDFs)

Declaration:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255) NULL, |NTEGER CSTRING(1) NULL
RETURNS CSTRI NG(255) FREE I T
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME ' i b_udf'

The above declaration is from the filei b_udf 2. sgl . The NUL L s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the enginewill passaNULL argument value unchanged to thefunction. Thisleadsto aNULL
result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULLS
are passed to the function as empty strings and the result isa string with endl engh padchars (if st r

iSNULL) or acopy of st r itsdlf (if padchar isSNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.

Notes:

Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

When calling this function, make sure endl engt h does not exceed the declared result length.

If endl engt h isless than st r's length, st r is truncated to endl engt h. If endl engt h is negative, the
result isNULL.

A NULL endl engt h istreated asif it were 0.

If padchar isempty, orif padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r isreturned unchanged (or truncated to endl engt h).

Before Firebird 2.0, the result type was CHAR(n).
A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

In Firebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

[trim

Library: ib_udf

Changedin: 1.5,1.5.2,2.0

Better alternative: Internal function TRIM()

Description: Returns the input string with any leading space characters removed. In new code, you are advised
to usethe internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(n)

Syntax (unchanged):

ltrim(str)

215

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTION Itrim
CSTRI NG(255) NULL

RETURNS CSTRI NG(255) FREE I T
ENTRY_POINT ' IB_UDF_|trim MODULE_NAME 'ib_udf"

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLS to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

» InFirebird 1.0.x, thisfunction returned NULL if the input string was either empty or NULL.

nod

Library: ib_udf
Added in: IB
Better alternative: Internal function MOD()
Description: Returns the remainder of an integer division.
Result type: DOUBLE PRECISION
Syntax:

nmod (a, b)
Declaration:

DECLARE EXTERNAL FUNCTI ON nod

| NTEGER, | NTEGER

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_rpd' MODULE_NAME ' i b_udf’

*nul I'if

Library: fbudf

216

External functions (UDFs)

Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function NULLIF()

Description: Thefour *nul I'i f functions—for integers, bigints, doubles and strings, respectively — each return
the first argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Result type: Varies, see declarations.

Syntax:

inullif (intl, int2)

i 64nul 1if (bigintl, bigint2)
dnul |if (doubl e1, doubl e2)
snul Iif (stringl, string2)

Asfrom Firebird 1.5, use of the internal function NULLIF is preferred.

Warnings

» Thesefunctionsreturn NULL when the second argument iSNULL, even if thefirst argument isaproper value.
Thisisawrong result. The NULLIF internal function doesn't have this bug.

e i64nullif anddnullif will return wrong and/or bizarre resultsif it is not 100% clear to the engine that
each argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTION inull'if
I NT BY DESCRI PTOR, | NT BY DESCRI PTCR
RETURNS | NT BY DESCRI PTCR
ENTRY_POI NT "iMNulllf' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64nul |if

NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS NUMERI C(18, 4) BY DESCRI PTOR
ENTRY_POI NT "i NullIf* MODULE_NAME ' fbudf’

DECLARE EXTERNAL FUNCTI ON dnul I'i f
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTCR
ENTRY_PO NT " dNul I I f' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON snul I'i f
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,

VARCHAR(100) BY DESCRI PTOR RETURNS PARAVETER 3
ENTRY_POI NT *sNul | I f* MODULE_NAME ' f budf

*nvi

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

217

External functions (UDFs)

Better alternative: Internal function COALESCE()

Description: Thefour nvl functions—for integers, bigints, doubles and strings, respectively —are NULL replac-
ers. They each return the first argument's value if it isnot NULL. If the first argument is NULL, the value of the
second argument is returned.

Result type: Varies, see declarations.
Syntax:
i nvl (int1, int2)
i 64nvl (bigintl, bigint2)
dnvl (doubl e1, doubl e2)

snvl (stringl, string2)

Asfrom Firebird 1.5, use of the internal function COALESCE is preferred.

Warning

i 64nvl and dnvl will return wrong and/or bizarre results if it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTI ON i nvl
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTCR
ENTRY_PO NT 'idNvl' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64nvl
NUMERI C(18, 0) BY DESCRI PTOR, NUVMERI C(18, 0) BY DESCRI PTOR
RETURNS NUMERI C(18, 0) BY DESCRI PTOR
ENTRY_PO NT 'idNvl' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON dnvl
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT ' idNvl' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON snvl
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT ' sNvI' MODULE_NAME ' f budf’

Library: ib_udf
Added in: IB
Better alternative: Internal function Pi()

Description: Returns an approximation of the value of #.

218

External functions (UDFs)

Result type: DOUBLE PRECISION
Syntax:

pi- ()
Declaration:

DECLARE EXTERNAL FUNCTI ON pi
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_pi' MODULE_NAME 'ib_udf'

r and

Library: ib_udf
Changedin: 2.0
Better alternative: Internal function RAND()

Description: Returns a pseudo-random number. Before Firebird 2.0, this function would first seed the random
number generator with the current timein seconds. Multipler and() callswithin the same second would there-
fore return the same value. If you want that old behaviour in Firebird 2 and up, use sr and() .

Result type: DOUBLE PRECISION
Syntax:

rand ()
Declaration:

DECLARE EXTERNAL FUNCTI ON r and
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_rand’ MODULE_NAME 'ib_udf’

right

Seesright.

round, i 64r ound

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Changedin: 1.5,2.1.3

219

External functions (UDFs)

Better alternative: Internal function ROUND()

Description: Thesefunctionsreturn thewhole number that isnearest to their (scaled numeric/decimal) argument.
They do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18,4)
Syntax:

round (nunber)
i 64round (bi gnunber)

Caution

Halves are always rounded upward, i.e. away from zero for positive numbers and toward zero for negative
numbers. For instance, 3. 5 isrounded to 4, but - 3. 5 isrounded to - 3. Theinternal function ROUND, available
since Firebird 2.1, rounds al halves away from zero.

Declarations:
In Firebird 1.0.x, the entry point for both functionsisr ound:

DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTCR
RETURNS PARAMETER 2
ENTRY_PO NT ' round'" MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUVERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_POI NT ' round' MODULE_NAME ' f budf"

In Firebird 1.5, the entry point has been renamed to f br ound:

DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTCR
RETURNS PARAMETER 2
ENTRY_PO NT ' f bround" MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMVERI C(18, 4) BY DESCRI PTOR, NUVERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' f bround’ MODULE_NAME ' f budf*

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound and

*t r uncat e declarations and declare them anew, using the updated entry point names. From Firebird
2.0 onward you can aso perform this update with ALTER EXTERNAL FUNCTION.

r pad

Library: ib_udf

Added in: 1.5

220

External functions (UDFs)

Changedin: 1.5.2, 2.0
Better alternative: Internal function RPAD()
Description: Returns the input string right-padded with padchar s until endl engt h is reached.
Result type: VARCHAR(n)
Syntax:
rpad (str, endlength, padchar)
Declaration:

DECLARE EXTERNAL FUNCTI ON r pad
CSTRI NG(255) NULL, |NTEGER, CSTRING(1) NULL
RETURNS CSTRI NG(255) FREE I T
ENTRY_POI NT ' | B_UDF_rpad’ MODULE_NAME 'ib_udf’

The above declaration is from the filei b_udf 2. sql . The NULL s after the CSTRING arguments
are an optional addition that became availablein Firebird 2. If an argument is declared with the NULL
keyword, the enginewill passaNULL argument value unchanged to the function. Thisleadsto aNULL
result, which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULLS
are passed to the function as empty strings and the result isastring with endl engh padchars (if st r

iISNULL) or acopy of st r itself (if padchar iSNULL).

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» When calling this function, make sure endl engt h does not exceed the declared result length.

* If endl engt h isless than st r'slength, str is truncated to endl engt h. If endl engt h is negative, the
result isNULL.

* A NULL endl engt h istreated asif it were 0.

* If padchar isempty, or if padchar isNULL and the function has been declared without the NULL keyword
after the last argument, st r isreturned unchanged (or truncated to endl engt h).

» Before Firebird 2.0, the result type was CHAR(n).
* A bug that caused an endless loop if padchar was empty or NULL has been fixed in 2.0.

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

rtrim

Library: ib_udf

221

External functions (UDFs)

Changedin: 1.5,1.5.2, 2.0
Better alternative: Internal function TRIM()

Description: Returns the input string with any trailing space characters removed. In new code, you are advised
to usethe internal function TRIM instead, asit is both more powerful and more versatile.

Result type: VARCHAR(n)
Syntax (unchanged):

rtrim(str)
Declaration:

DECLARE EXTERNAL FUNCTION rtrim
CSTRI NG(255) NULL
RETURNS CSTRI NG(255) FREE I T
ENTRY_PONT 'IB_UDF rtrim MODULE NAME 'ib_udf'

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InFirebird 1.0.x, this function returned NULL if the input string was either empty or NULL.

sdow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Result type: VARCHAR(5)

Syntax:

sdow (ati nestanp)

222

External functions (UDFs)

Declaration:

DECLARE EXTERNAL FUNCTI ON sdow
TI MESTAMP,
VARCHAR(5) RETURNS PARAMETER 2
ENTRY_PO NT ' SDOW MODULE_NAME ' f budf’

See also:; dow

Si gn

Library: ib_udf
Addedin: IB
Better alternative: Internal function SIGN()
Description: Returns the sign of the argument: -1, O or 1.
Result type: INTEGER
Syntax:

sign (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON si gn
DOUBLE PRECI SI ON
RETURNS | NTEGER BY VALUE
ENTRY_PO NT ' | B_UDF_si gn' MODULE_NAME 'ib_udf’

sin
Library: ib_udf
Added in: IB
Better alternative: Internal function SIN()
Description: Returns an angle's sine. The argument must be given in radians.
Result type: DOUBLE PRECISION
Syntax:

sin (angle)

223

External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON sin
DOUBLE PREC!I SI ON

RETURNS DOUBLE PREC! S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_sin' MODULE_NAME 'i b_udf’

si nh

Library: ib_udf
Added in: IB
Better alternative: Internal function SINH()
Description: Returns the hyperbolic sine of the argument.
Result type: DOUBLE PRECISION
Syntax:

si nh (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON si nh

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_si nh' MODULE_NAME ' i b_udf’

sqgrt

Library: ib_udf
Added in: IB
Better alternative: Internal function SQRT()
Description: Returns the sguare root of the argument.
Result type: DOUBLE PRECISION
Syntax:

sqrt (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON sqrt

DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POI NT ' | B_UDF_sqrt' MODULE_NAME 'ib_udf'

224

External functions (UDFs)

sr and

Library: ib_udf
Added in: 2.0
Description: Seeds the random number generator with the current time in seconds and then returns the first
number. Multiplesr and() callswithinthe same second will return the samevalue. Thisisexactly how r and()
behaved before Firebird 2.0.
Result type: DOUBLE PRECISION
Syntax:
srand ()

Declaration:

DECLARE EXTERNAL FUNCTI ON srand
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_srand’ MODULE_NAME 'ib_udf'

sright

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function RIGHT()

Description: Returns the rightmost nunthar s characters of the input string. Only works with 1-byte character
sets.

Result type: VARCHAR(100)
Syntax:

sright (str, nunchars)
Declaration:

DECLARE EXTERNAL FUNCTI ON sri ght
VARCHAR(100) BY DESCRI PTOR, SMALLI NT,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT ' right' MODULE_NAME ' f budf’

225

External functions (UDFs)

string2bl ob

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Better alternative: Internal function CAST()
Description: Returns the input string as a BLOB.
Result type: BLOB
Syntax:
string2bl ob (str)
Declaration:
DECLARE EXTERNAL FUNCTI ON stri ng2bl ob
VARCHAR(300) BY DESCRI PTOR,

BLOB RETURNS PARAMETER 2
ENTRY_PO NT ' string2bl ob' MODULE_NAME ' f budf'’

strl en

Library: ib_udf
Added in: IB
Better alternatives: Internal functions BIT_LENGTH(), CHAR[ACTER] _LENGTH and OCTET_LENGTH()
Description: Returns the length of the argument string.
Result type: INTEGER
Syntax:

strlen (str)
Declaration:

DECLARE EXTERNAL FUNCTI ON strlen

CSTRI N& 32767)

RETURNS | NTEGER BY VALUE
ENTRY_PO NT '1B _UDF_strlen' MODULE _NAME 'ib_udf'

substr

Library: ib_udf

226

External functions (UDFs)

Changedin: 1.0,1.5.2, 2.0

Description: Returnsastring'ssubstring fromst ar t pos toendpos, inclusively. Positionsare 1-based. If end-
pos ispast theend of the string, subst r returnsall the charactersfrom st ar t pos to the end of the string. This
function only works correctly with single-byte characters.

Result type: VARCHAR(n)
Syntax (unchanged):

substr (str, startpos, endpos)
Declaration:

DECLARE EXTERNAL FUNCTI ON substr
CSTRI NG(255) NULL, SMALLINT, SMALLINT
RETURNS CSTRI NG(255) FREE I T
ENTRY_PO NT ' | B_UDF_substr' MODULE_NAME 'ib_udf'

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).
* InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

* InlinterBase, subst r returned NULL if endpos lay past the end of the string.

Tip

Although the function arguments are slightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility and multi-byte character set support.

substrl en
Library: ib_udf
Added in: 1.0

Changedin: 1.5.2, 2.0

Better alternative: Internal function SUBSTRING()

227

External functions (UDFs)

Description: Returns the substring starting at st ar t pos and having | engt h characters (or less, if the end of
the string is reached first). Positions are 1-based. If either st art pos or | engt h is smaller than 1, an empty
string is returned. This function only works correctly with single-byte characters.

Result type: VARCHAR(n)
Syntax:

substrlen (str, startpos, |ength)
Declaration:

DECLARE EXTERNAL FUNCTI ON substrl en
CSTRI NG 255) NULL, SMALLINT, SMALLI NT
RETURNS CSTRI NG 255) FREE_IT
ENTRY_PO NT ' 1 B_UDF_substrlen' MODULE_NAME 'ib_udf'

The above declaration is from thefilei b_udf 2. sql . The NULL after the argument is an optional
addition that became available in Firebird 2. If the argument is declared with the NULL keyword,
the engine will pass a NULL argument value unchanged to the function. This leads to a NULL result,
which is correct. Without the NULL keyword (your only option in pre-2.0 versions), NULL is passed
to the function as an empty string and the result is an empty string as well.

For more information about passing NULLs to UDFs, see the note at the end of this book.
Notes:

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

» Before Firebird 2.0, the result type was CHAR(n).

e InFirebird 1.5.1 and below, the default declaration used CSTRING(80) instead of CSTRING(255).

Tip

Firebird 1.0 has also implemented the internal SQL function SUBSTRING, effectively rendering subst r | en
obsolete in the same version in which it was introduced. SUBSTRING also supports multi-byte character sets.
In new code, use SUBSTRING.

tan

Library: ib_udf

Addedin: IB

Better alternative: Internal function TAN()

Description: Returns an angle's tangent. The argument must be given in radians.

Result type: DOUBLE PRECISION

228

External functions (UDFs)

Syntax:
tan (angle)
Declaration:

DECLARE EXTERNAL FUNCTI ON tan
DOUBLE PRECI S| ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_tan' MODULE_NAME 'i b_udf'

t anh

Library: ib_udf
Added in: IB
Better alternative: Internal function TANH()
Description: Returns the hyperbolic tangent of the argument.
Result type: DOUBLE PRECISION
Syntax:
tanh (nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON t anh
DOUBLE PRECI SI ON
RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_PO NT ' | B_UDF_tanh' MODULE_NAME 'ib_udf’

truncate, i 64truncate

Library: foudf

Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5,2.1.3

Better alternative: Internal function TRUNC()

Description: Thesefunctionsreturn thewhole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.

Result type: INTEGER / NUMERIC(18)

229

External functions (UDFs)

Syntax:

truncate (nunber)
i 64t runcat e (bi gnunber)

Caution

Both functions round to the nearest whole number that islower than or equal to the argument. This means that
negative numbers are also “truncated” downward. For instance, t r uncat e(- 2. 37) returns - 3. The internal
function TRUNC, available since Firebird 2.1, always truncates toward zero.

Declarations:
In Firebird 1.0.x, the entry point for both functionsist r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncat e
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON i 64Truncate
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTCR
RETURNS PARAMETER 2
ENTRY PO NT 'truncate' MODULE NAME ' f budf’

In Firebird 1.5, the entry point has been renamed to f bt r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate
I NT BY DESCRI PTOR, | NT BY DESCRI PTCR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Truncate
NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE _NAME ' f budf’

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing *r ound and
*t r uncat e declarationsand declare them anew, using the updated entry point names. From Firebird
2.0 onward you can aso perform this update with ALTER EXTERNAL FUNCTION.

230

Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer trandliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets — such as SIS (Japanese) and WIN1251 (Russian) — even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “asis’ and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese data
columns using either parameterized queries or literal strings without introducer syntax would fail with tranglit-
eration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
aretill stored “asis’ but what is stored is an exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no transliteration
error. When the connection character set isNONE, no attempt is made in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw atrandliteration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sql subt ype field in the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still required when handling heteroge-
neous character sets from a client context that is anything other than NONE. Both methods are shown below,
using character set 1S08859_1 as an example target. Notice the “_" prefix in the introducer syntax.

Introducer syntax:
_1SCB859 1 nystring

Casting:
CAST (nystring AS VARCHAR(n) CHARACTER SET | SC8859 1)

231

Notes

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides alimited explicit pessimistic locking capability for cautious use in conditions where the
affected row setis:

a. extremely small (idedly, asingleton), and

b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. Thisis an expert feature, intended for use by those who thor-
oughly understand its consequences. Knowledge of the various levels of transaction isolation is essential. WITH
LOCK isavailablein DSQL and PSQL, and only for top-level, single-table SELECTSs. As stated in the reference
part of this guide, WITH LOCK is not available:

* inasubquery specification;

» for joined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
e withaview;

» with the output of a selectable stored procedure;

* with an externa table.

Syntax and behaviour

SELECT ... FROM single_table
[WHERE . ..]
[FOR UPDATE [OF ...]]

[W TH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtai ning write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

Asthe engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardiess of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

232

Notes

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and areig-
nored.

isc_tpb_concurrency If arecord is modified by any transaction that was committed since the trans-

_ _ action attempting to get explicit lock started, or an active transaction has per-

+isc_tpb_nowait formed a modification of this record, an update conflict exception israised im-
mediately.

isc_tpb_concurrency If the record is modified by any transaction that has committed since the transac-

_ _ tion attempting to get explicit lock started, an update conflict exception is raised
+isc_tpb_wait immediately.

If an active transaction is holding ownership on this record (viaexplicit locking
or by anormal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This meansthat, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read committed | If thereis an active transaction holding ownership on this record (via explicit

locking or normal update), an update conflict exception is raised immediately.
+isc_tpb_nowait

isc_tpb_read committed | If thereis an active transaction holding ownership on this record (via explicit
locking or by a normal optimistic write-lock), the transaction attempting the ex-
+isc_tpb_wait plicit lock waits for the outcome of blocking transation and when it finishes, at-
temptsto get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement triesto accessarecord that islocked by another transaction, it either raisesan update
conflict exception or waits for the locking transaction to finish, depending on TPB mode. Engine behaviour here
isthe same asif this record had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, viajoins, subqueries, etc. It also guaranteesthat rows not meeting the search conditionswill not belocked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, paralel transactions commit their changes during the course of the locking
statement's execution.

233

Notes

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches’). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

The optional “OF <col um- nanes>" sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<col um- nanes>" subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. Thiswould
enableyou to processthe currently-locked row before the next isfetched and locked, or to handle errorswithout
rolling back your transaction.

Caveats using WITH LOCK

Rolling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

Most applications do not need explicit locks at al. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to arelational database in aclustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

Explicit locking is an advanced feature; do not misuseit! While solutions for these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking

Simple:
SELECT * FROM DOCUMENT WHERE | D=? W TH LOCK

Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT WHERE PARENT_| D=7
FOR UPDATE W TH LOCK

234

Notes

A note on CSTRING parameters

External functionsinvolving strings often use the type CSTRING(n) in their declarations. Thistype represents a
zero-terminated string of maximum length n. Most of the functions handling CSTRINGs are programmed in such
away that they can accept and return zero-terminated strings of any length. So why the n? Because the Firebird
engine has to set up space to process the input an output parameters, and convert them to and from SQL data
types. Most strings used in databases are only dozens to hundreds of byteslong; it would be awaste to reserve
32 KB of memory each time such a string is processed. Therefore, the standard declarations of most CSTRING
functions—asfound in thefilei b_udf . sql — specify alength of 255 bytes. (In Firebird 1.5.1 and below, this
default length is 80 bytes.) As an example, here's the SQL declaration of | pad:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(255), | NTEGER, CSTRI NG 1)
RETURNS CSTRI NG(255) FREE I T
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME ' i b_udf'

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or causeit to return astring longer than the declared output length. But the standard declarations are
just reasonabl e defaults; they're not cast in concrete, and you can change them if you want to. If you haveto | eft-
pad strings of up to 500 byteslong, then it's perfectly OK to change both 255'sin the declaration to 500 or more.

A specia caseiswhen you usually operate on short strings (say lessthen 100 bytes) but occasionally haveto call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that all the callswill be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that mgjority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(100), | NTEGER, CSTRI NG 1)
RETURNS CSTRI NG(100) FREE I T
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf';

DECLARE EXTERNAL FUNCTI ON | padbi g
CSTRI NG(32000), | NTEGER, CSTRI NG(1)
RETURNS CSTRI NG(32000) FREE I T
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf';

Now you can cal | pad() for al the small stringsand | padbi g() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

235

Notes

Passing NULL to UDFs in Firebird 2

If apre-2.0 Firebird engine must pass an SQL NULL argument to a user-defined function, it always converts it
to a zero-equivalent, e.g. anumerical O or an empty string. The only exception to this rule are UDFs that make
use of the “BY DESCRIPTOR” mechanism introduced in Firebird 1. Thef budf library uses descriptors, but the
vast majority of UDFs, including thosein Firebird'sstandard i b_udf library, still usethe old style of parameter
passing, inherited from InterBase.

As aconseguence, most UDFs can't tell the difference between NULL and zero input.

Firebird 2 comes with a somewhat improved calling mechanism for these old-style UDFs. The engine will now
pass NULL input as anull pointer to the function, if the function has been declared to the database with a NULL
keyword after the argument(s) in question, e.g. likethis:

decl are external function Itrim
cstring(255) null
returns cstring(255) free_it
entry_point '"IB_ UDF_Itriml nodul e_nane 'ib_udf';

This requirement ensures that existing databases and their applications can continue to function like before.
Leave out the NULL keyword and the function will behave like it did under Firebird 1.5 and earlier.

Please note that you can't just add NULL keywordsto your declarations and then expect every function to handle
NULL input correctly. Each function has to be (re)written in such a way that NULLS are dealt with correctly.
Always ook at the declarations provided by the function implementor. For the functionsinthei b_udf library,
consult i b_udf 2. sql in the Firebird UDF directory. Notice the 2 in the file name; the old-style declarations
areini b_udf. sql .

Thesearethei b_udf functionsthat have been updated to recognise NULL input and handle it properly:

* ascii_char

* | ower

e | padandrpad

e Itrimandrtrim

e substr andsubstrlen

Mosti b_udf functionsremain asthey were; in any case, passing NULL to an old-style UDF is never possible
if the argument isn't of areferenced type.

On aside note: don't usel ower, . tri mand subst r* in new code; use the internal functions LOWER, TRIM
and SUBSTRING instead.

“Upgrading” i b_udf functions in an existing database

If you are using an existing database with one or more of the functions listed above under Firebird 2, and you
want to benefit from theimproved NULL handling, runthescripti b_udf _upgr ade. sql against your database.
Itislocated in the Firebird mi sc\ upgr ade\i b_udf directory.

236

Notes

Maximum number of indices
In different Firebird versions

Between Firebird 1.0 and 2.0 there have been quite a few changes to the maximum number of indices per
database table. The table below sums them al up.

Table A.2. Max. indices per tablein Firebird 1.0-2.0

Page Firebird version(s)
Size

1.0,1.0.2 1.03 1.5.x 2.0

lcol | 2cols| 3cols| 1col | 2cols | 3cols| 1col | 2cols| 3cols| 1col | 2cols| 3cols

1024 62 50 41 62 50 41 62 50 41 50 35 27

2048 65 65 65 126 101 84 126 101 84 101 72 56

4096 65 65 65 254 203 169 254 | 203 169 203 145 113

8192 65 65 65 510 408 340 257 257 257 408 291 227

16384 | 65 65 65 1022 | 818 681 257 257 257 818 584 454

237

Notes

The RDB$VALID_BLR field

Thefield RDB$VALID_BLR wasadded to the system tables RDB$PROCEDURES and RDB$TRIGGERS i n Firebird
2.1. Its purpose is to signal possible invalidation of a PSQL module when a domain or a table column upon
which the module dependsisaltered. If such invalidations occur, RDBSVALID_BLRisset to O for any procedure
or trigger whose code is no longer valid.

The following query will find the modules that depend on a specific domain and report the state of their RDB
$VALID_BLR fields:

select * from(

sel ect 'Procedure', rdb$procedure_nane, rdb$valid_blr fromrdb$procedures

uni on

select 'Trigger', rdb$trigger _nane, rdb$valid _blr fromrdb$triggers
) (type, nane, valid)
where exists

(select * from rdb$dependenci es

wher e rdb$dependent _nane = nanme and rdb$depended_on_nane = ' MYDOVAI N)

/* Replace MYDOMAIN with the actual donmmin name. Use all-caps if the domain
was created case-insensitively. G herw se, use the exact capitalisation. */

The following query will find the modules that depend on a specific table column and report the state of their
RDB$VALID BLR fields:

select * from (
sel ect 'Procedure', rdb$procedure_nane, rdb$valid_blr from rdb$procedures
uni on
select 'Trigger', rdb$trigger_nanme, rdb$valid _blr fromrdb$triggers
) (type, nane, valid)
where exists
(select * from rdb$dependenci es
wher e rdb$dependent _nane name
and rdb$depended_on_nane ' MYTABLE' and rdb$fi el d_name = ' MYCOLUW')

/* Repl ace MYTABLE and MYCOLUMN with the actual table and col um nanes.
Use all-caps if the table/colum was created case-insensitively.
O herwi se, use the exact capitalisation. */

Unfortunately, not all PSQL invalidations will be reflected in the RDB$VALID _BLR field. After changing a
domain or table column, it is therefore advisable to have agood look at all the procedures and triggers reported
by the above queries, even those having alinthe “VALID” column.

Please notice that for PSQL modules inherited from earlier Firebird versions (including a number of system
triggers, even if the database was created under Firebird 2.1 or higher), RDB$VALID_BLR iSNULL. This does
not imply that their BLR isinvalid.

The isgl commands SHOW PROCEDURES and SHOW TRIGGERS flag modules whose RDB$VALID_BLR field
is zero with an asterisk. SHOW PROCEDURE PROCNAME and SHOW TRIGGER TRI GNAME, which display indi-
vidual PSQL modules, do not signal invalid BLR.

238

Appendix B:
Reserved words and
keywords — full lists

Reserved words

Full list of reserved wordsin Firebird 2.5:

ADD

ADMIN

ALL

ALTER

AND

ANY

AS

AT

AVG

BEGIN
BETWEEN
BIGINT
BIT_LENGTH
BLOB

BOTH

BY

CASE

CAST

CHAR
CHAR_LENGTH
CHARACTER
CHARACTER_LENGTH
CHECK

CLOSE
COLLATE
COLUMN
COMMIT
CONNECT
CONSTRAINT
COUNT
CREATE
CROSS
CURRENT
CURRENT_CONNECTION
CURRENT_DATE

239

Reserved words and keywords — full lists

CURRENT_ROLE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSACTION
CURRENT_USER

CURSOR
DATE
DAY
DEC
DECIMAL
DECLARE
DEFAULT
DELETE
DISCONNECT
DISTINCT
DOUBLE
DROP
ELSE
END
ESCAPE
EXECUTE
EXISTS
EXTERNAL
EXTRACT
FETCH
FILTER
FLOAT
FOR
FOREIGN
FROM
FULL
FUNCTION
GDSCODE
GLOBAL
GRANT
GROUP
HAVING
HOUR

IN

INDEX
INNER
INSENSITIVE
INSERT
INT
INTEGER
INTO

IS

JOIN
LEADING
LEFT
LIKE
LONG

240

Reserved words and keywords — full lists

LOWER
MAX
MAXIMUM_SEGMENT
MERGE

MIN

MINUTE
MONTH
NATIONAL
NATURAL
NCHAR

NO

NOT

NULL
NUMERIC
OCTET_LENGTH
OF

ON

ONLY

OPEN

OR

ORDER
OUTER
PARAMETER
PLAN
POSITION
POST_EVENT
PRECISION
PRIMARY
PROCEDURE
RDB$DB_KEY
REAL
RECORD_VERSION
RECREATE
RECURSIVE
REFERENCES
RELEASE
RETURNING_VALUES
RETURNS
REVOKE
RIGHT
ROLLBACK
ROW_COUNT
ROWS
SAVEPOINT
SECOND
SELECT
SENSITIVE
SET

SIMILAR
SMALLINT
SOME
SQLCODE

241

Reserved words and keywords — full lists

SQLSTATE (2.5.1)
START
SUM
TABLE
THEN
TIME
TIMESTAMP
TO
TRAILING
TRIGGER
TRIM
UNION
UNIQUE
UPDATE
UPPER
USER
USING
VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW
WHEN
WHERE
WHILE
WITH
YEAR

Keywords

The following terms have a special meaning in Firebird 2.5 DSQL. Some of them are also reserved words,
others aren't.

I <
N

242

Reserved words and keywords — full lists

ABS
ACCENT
ACOS
ACTION
ACTIVE
ADD
ADMIN
AFTER

ALL
ALTER
ALWAYS
AND

ANY

AS

ASC
ASCENDING
ASCII_CHAR
ASCII_VAL
ASIN

AT

ATAN
ATAN2
AUTO
AUTONOMOUS
AVG
BACKUP
BEFORE
BEGIN
BETWEEN
BIGINT
BIN_AND
BIN_NOT
BIN_OR
BIN_SHL
BIN_SHR
BIN_XOR
BIT_LENGTH
BLOB
BLOCK
BOTH
BREAK

BY
CALLER
CASCADE
CASE

CAST

CEIL
CEILING

243

Reserved words and keywords — full lists

CHAR
CHAR_LENGTH
CHAR_TO_UUID
CHARACTER
CHARACTER_LENGTH
CHECK

CLOSE
COALESCE
COLLATE
COLLATION
COLUMN
COMMENT
COMMIT
COMMITTED
COMMON
COMPUTED
CONDITIONAL
CONNECT
CONSTRAINT
CONTAINING
CoSs

COSH

coT

COUNT
CREATE

CROSS

CSTRING
CURRENT
CURRENT_CONNECTION
CURRENT_DATE
CURRENT_ROLE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TRANSACTION
CURRENT_USER
CURSOR

DATA
DATABASE
DATE
DATEADD
DATEDIFF

DAY

DEC

DECIMAL
DECLARE
DECODE
DEFAULT
DELETE
DELETING

DESC
DESCENDING
DESCRIPTOR

244

Reserved words and keywords — full lists

DIFFERENCE
DISCONNECT
DISTINCT
DO
DOMAIN
DOUBLE
DROP

ELSE

END
ENTRY_POINT
ESCAPE
EXCEPTION
EXECUTE
EXISTS
EXIT

EXP
EXTERNAL
EXTRACT
FETCH

FILE
FILTER
FIRST
FIRSTNAME
FLOAT
FLOOR

FOR
FOREIGN
FREE_IT
FROM

FULL
FUNCTION
GDSCODE
GEN_ID
GEN_UUID
GENERATED
GENERATOR
GLOBAL
GRANT
GRANTED
GROUP
HASH
HAVING
HOUR

IF

IGNORE

IF

IN
INACTIVE
INDEX
INNER
INPUT_TYPE
INSENSITIVE

245

Reserved words and keywords — full lists

INSERT
INSERTING
INT
INTEGER
INTO

IS
ISOLATION
JOIN

KEY

LAST
LASTNAME
LEADING
LEAVE
LEFT
LENGTH
LEVEL
LIKE
LIMBO
LIST

LN

LOCK

LOG
LOG10
LONG
LOWER
LPAD
MANUAL
MAPPING
MATCHED
MATCHING
MAX

MAXIMUM_SEGMENT

MAXVALUE
MERGE
MIDDLENAME
MILLISECOND
MIN

MINUTE
MINVALUE
MOD
MODULE_NAME
MONTH
NAMES
NATIONAL
NATURAL
NCHAR

NEXT

NO

NOT

NULL

NULLIF
NULLS

246

Reserved words and keywords — full lists

NUMERIC
OCTET_LENGTH
OF

ON

ONLY

OPEN

OPTION

OR

ORDER

0S NAME
OUTER
OUTPUT_TYPE
OVERFLOW
OVERLAY
PAD

PAGE
PAGE_SIZE
PAGES
PARAMETER
PASSWORD

PI

PLACING
PLAN
POSITION
POST_EVENT
POWER
PRECISION
PRESERVE
PRIMARY
PRIVILEGES
PROCEDURE
PROTECTED
RAND
RDB$DB_KEY
READ

REAL
RECORD_VERSION
RECREATE
RECURSIVE
REFERENCES
RELEASE
REPLACE
REQUESTS
RESERV
RESERVING
RESTART
RESTRICT
RETAIN
RETURNING
RETURNING_VALUES
RETURNS
REVERSE

247

Reserved words and keywords — full lists

REVOKE
RIGHT

ROLE
ROLLBACK
ROUND
ROW_COUNT
ROWS

RPAD
SAVEPOINT
SCALAR_ARRAY
SCHEMA
SECOND
SEGMENT
SELECT
SENSITIVE
SEQUENCE
SET
SHADOW
SHARED
SIGN
SIMILAR

SIN
SINGULAR
SINH

SIZE

SKIP
SMALLINT
SNAPSHOT
SOME

SORT
SOURCE
SPACE
SQLCODE
SQLSTATE (2.5.1)
SQRT
STABILITY
START
STARTING
STARTS
STATEMENT
STATISTICS
SUB_TYPE
SUBSTRING
SUM
SUSPEND
TABLE

TAN

TANH
TEMPORARY
THEN

TIME
TIMEOUT

248

Reserved words and keywords — full lists

TIMESTAMP
TO

TRAILING
TRANSACTION
TRIGGER
TRIM

TRUNC
TWO_PHASE
TYPE
UNCOMMITTED
UNDO

UNION
UNIQUE
UPDATE
UPDATING
UPPER

USER

USING
UUID_TO_CHAR
VALUE
VALUES
VARCHAR
VARIABLE
VARYING
VIEW

WAIT

WEEK
WEEKDAY
WHEN

WHERE
WHILE

WITH

WORK

WRITE

YEAR
YEARDAY

249

Appendix C:
Document History

The exact file history is recorded in the manual module in our CVS tree; see http://firebird.cvs.sourceforge.

net/viewvc/firebird/manual/

Revision History
0.0 — PV Creation of the document as a copy of the Firebird 2.1 Language Ref-
erence Update with IDs, titles, version numbers etc. updated to 2.5.

1.0 12Jun 2011 PV Introduction :: Subject matter: Added “ Security and access control
statements” to first list. Changed ulink to Firebird Documentation In-
dex (both text and url).

Introduction :: Authorship: Changed percentage of included material to
2-3%.

Introduction: New section Acknowl edgments.

New chapter: New in Firebird 2.5.

Reserved words and keywords: Updated/corrected al thelistsin all
the subsections (except Possibly reserved in future versions). Also
changed/added much of the text above and below the lists.

Reserved words and keywords :: Dropped since Inter Base 6: Changed
subsection titles to No longer reserved, still keywords and No longer
reserved, not keywords, for better clarity.

Miscellaneous language el ements: New section Hexadecimal notation
for numerals.

Miscellaneous language el ements: New section Hexadecimal notation
for “ binary” strings.

Data types and subtypes :: BIGINT data type: Added information on
hex notation; added second example.

Data types and subtypes :: BLOB data type :: Text BLOB support in
functions and operators: Altered “Changed in”; edited 2nd listitem un-
der “Level of support” (CORE-3233 fixed).

Data types and subtypes :: New character sets: Added 2.5 to * Changed
in”; added new charset GB18030 and new alias WIN_1258.

Data types and subtypes :: New collations: Added 2.5 to *“ Changed
in"; added new collations GB18030_UNICODE (for GB18030) and
UNICODE_CI_AI (for UTF8). Added line on UNICODE_CI_Al to Note.
Data types and subtypes: New section SQL_NULL data type.

DDL statements: Removed last line from introductory text.

DDL statements. New section CHARACTER SET, with subsection ALTER
CHARACTER SET.

DDL statements:: COLLATION :: CREATE COLLATION: Added
“Changed in”; altered explanation of “UNI” in specific attributes table;
gave table body valign=top; added NUMERIC-SORT to specific at-
tributes table and added note benesth table.

DDL statements :: DATABASE :: CREATE DATABASE: New subsection
Default collation for the database.

250

http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/
http://firebird.cvs.sourceforge.net/viewvc/firebird/manual/

Document History

DDL statements .: DATABASE .. ALTER DATABASE ;. END BACKUP:
Updated URL of Firebird Documentation Index in Tip.

DDL statements:: DOMAIN :: ALTER DOMAIN: Replaced contents of
Warning with reference to RDB$VALID_BLR note.

DDL statements:: Privileges. GRANT and REVOKE: Moved to chapter
Security and access control.

DDL statements :: PROCEDURE: Changed introductory text (mentioned
executable blocks).

DDL statements:: PROCEDURE :: CREATE PROCEDURE: Altered Syn-
tax (added TYPE OF COLUMN).

DDL statements :: PROCEDURE :: CREATE PROCEDURE: New subsec-
tion TYPE OF COLUMN in parameter and variable declarations.

DDL statements :: PROCEDURE :: CREATE PROCEDURE :: Domains
supported in parameter and variable declarations: Edited and extend-
ed Description. Replaced contents of Warning with reference to RDB
$VALID_BLR note.

DDL statements :: PROCEDURE :: CREATE PROCEDURE :: NOT NULL
in variable and parameter declarations. Changed layout of Example
(first line too long for PDF).

DDL statements :: PROCEDURE :: ALTER PROCEDURE: New subsec-
tion Classic Server: Altered procedure immediately visible to other
clients.

DDL statements :: PROCEDURE :: ALTER PROCEDURE: New subsec-
tion TYPE OF COLUMN in parameter and variable declarations.

DDL statements:: TABLE :: ALTER TABLE: New subsection ALTER
COLUMN also for generated (computed) columns.

DDL statements:: TABLE :: ALTER TABLE: New subsection ALTER
COLUMN ... TYPE no longer failsif columnisused in trigger or SP.
DDL statements :: TRIGGER :: CREATE TRIGGER: New subsection
TYPE OF COLUMN in variable declarations.

DDL statements :: TRIGGER :: ALTER TRIGGER: New subsection TYPE
OF COLUMN in variable declarations.

DDL statements:: VIEW :: CREATE VIEW: Added Syntax.

DDL statements:: VIEW :: CREATE VIEW: New subsection Views can
select from stored procedures.

DDL statements:: VIEW :: CREATE VIEW: New subsection Views can
infer column names from derived tables or GROUP BY.

DDL statements:: VIEW :: CREATE VIEW :: Per-column aliases sup-
ported in view definition: Shortened partial Syntax.

DDL statements:: VIEW :: CREATE VIEW :: Full SELECT syntax sup-
ported: Altered “Changed in”. Altered Note on union views.

DDL statements :: VIEW: New sections ALTER VIEW and CREATE OR
ALTER VIEW.

DML statements :: DELETE: Improved formal syntax (val ues ->
<val ues> and added specification of latter).

DML statements :: EXECUTE BLOCK: Added 2.5to “Changed in”. Al-
tered Syntax (added TY PE OF COLUMN).

DML statements :: EXECUTE BLOCK :: Domains instead of datatypes:
Extended Description. Added Warning about collations.

DML statements :: EXECUTE BLOCK: New subsection TYPE OF COL-
UMN in parameter and variable declarations.

251

Document History

DML statements :: INSERT: Improved formal syntax (val ue ->

val ue_expr essi on) and removed erroneous space.

DML statements :: UPDATE: Improved formal syntax (val ues ->
<val ues> and added specification of latter).

DML statements :: UPDATE: New section Changed SET semantics.
PSQL statements. Changed introductory paragraph to mention exe-
cutable blocks.

PSQL statements :: DECLARE: Altered Syntax (added TY PE OF COL-
UMN). Made itemizedlist after Syntax compact.

PSQL statements :: DECLARE :: DECLARE with DOMAIN instead of
datatype: Extended Description. Replaced contents of Warning with
reference to RDB$VALID_BLR note.

PSQL statements :: DECLARE: New subsection TYPE OF COLUMN in
variable declaration.

PSQL statements :: EXECUTE STATEMENT: Added “Changed in”. Al-
tered Description. Added Syntax. Added para introducing following
subsections.

PSQL statements :: EXECUTE STATEMENT :: Any number of data rows
returned: Improved Syntax block. Removed spaces inside parentheses
in Example.

PSQL statements :: EXECUTE STATEMENT: New section Improved per-
formance.

PSQL statements :: EXECUTE STATEMENT: New section WITH
{AUTONOMOUS COMMON} TRANSACTION.

PSQL statements :: EXECUTE STATEMENT: New section WITH CALLER
PRIVILEGES.

PSQL statements :: EXECUTE STATEMENT: New section ON EXTERNAL
[DATA SOURCE].

PSQL statements :: EXECUTE STATEMENT: New section ASUSER,
PASSWORD and ROLE.

PSQL statements :: EXECUTE STATEMENT: New section Parameterized
statements.

PSQL statements :: EXECUTE STATEMENT :: Caveats with EXECUTE
STATEMENT: Edited item 3 (performance). Removed items 4 and 6.
Edited final paragraph (less negative).

PSOQL statements: New section IN AUTONOMOUS TRANSACTION.
PSQL statements: New section Subqueries as PSQL expressions.

New chapter: Security and access control.

Security and access control: New section ALTER ROLE.

Security and access control :: GRANT and REVOKE: Moved here from
DDL chapter. Changed id.

Security and access control :: GRANT and REVOKE: New section
GRANTED BY.

Security and access control :: GRANT and REVOKE: New section RE-
VOKE ALL ON ALL.

Security and access control :: GRANT and REVOKE :: REVOKE ADMIN
OPTION: Changed id.

Security and access control: New section The RDBSADMIN role.
Security and access control: New section AUTO ADMIN MAPPING.
Security and access control: New section SQL user management com-
mands.

Operators and predicates. New section SMILAR TO.

252

Document History

Aggregate functions :: LIST(): Added “Changed in” formalpara. Edited
second Syntax note (about separator). Removed Warning about trunca-
tionbugin2.1-2.1.3.

Internal functions:: ASCII_VAL(): Edited listitem about bug (mentioned
2.5.x versions).

Internal functions:: ATAN2(): Edited 3rd Syntax note (mentioned error
raised in Fb 3).

Internal functions:: CAST(): Added 2.5 to “Changed in”. Altered
Syntax (added TYPE OF COLUMN). Added formalpara Casting to a
column's type.

Internal functions. New section CHAR TO_UUID().

Internal functions :: DATEADD(): WEEK unit added and sub-DAY units
allowed with DATESs. Added “Changed in”. Edited Description, Syntax,
2nd listitem after Syntax, and added additional example.

Internal functions :: DATEDIFF(): WEEK unit added and sub-DAY units
allowed with DATESs. Added “Changed in”. Edited Description, Syntax,
and 2nd listitem after Syntax.

Internal functions:: EXTRACT(): Corrected millisecond range in table
(0.0000 -> 0.0).

Internal functions:: EXTRACT() :: MILLISECOND: Removed Bug alert
for2.1-2.1.1.

Internal functions:: GEN_UUID(): Added Example. Added links to new
UUID functions.

Internal functions:: LOG(): Added “Changed in”. Edited al the lis-
titems under Syntax.

Internal functions:: LOG10(): Added “Changed in”. Edited listitem un-
der Syntax.

Internal functions:: LOWER(): Replaced Important after Syntax with
Note, with different text.

Internal functions:: LPAD(): Added “Changed in”. Altered result type.
Altered 2nd listitem after Syntax. Changed Tip to Note and edited text.
Internal functions :: OVERLAY(): Changed 1st word of Description
(“Replaces’ -> “Overwrites’). Shortened 1<t listitem after Syntax: re-
moved description of 2.1-specific bug.

Internal functions:: RDB$GET_CONTEXT(): Added ENG NE_VERSI ON
context var (added in 2.1).

Internal functions:: RIGHT(): Edited 1st listitem after Syntax, about
CORE-3228.

Internal functions:: RPAD(): Added “Changed in”. Altered result type.
Altered 2nd listitem after Syntax. Changed Tip to Note and edited text.
Internal functions:: SUBSTRING(): Added 2.1.5 and 2.5.1 to “Changed
in”. Noted fixing of first bugin2.1.5 and 2.5.1.

Internal functions. New section UUID_TO_CHAR().

External functions :: addWeek: Added “Better alternative’. Removed
“The DATEADD alternative” formalpara.

External functions:: | ower : Dropped last sentence from Description.
Altered first paragraph after Declaration block and removed comment.
External functions:: r ound, i 64r ound: Removed bug alert (fixed be-
fore 2.5).

External functions:: t runcat e, i 64t r uncat e: Removed bug alert
(fixed before 2.5).

253

Document History

11

8 Oct 2011

PV

Notes: New section The RDB$VALID_BLR field. This note contains the
(heavily edited and extended!) text previously contained in the Warn-
ingsin ALTER DOMAIN, CREATE PROCEDURE :: Domains supported in
parameter and variable declarations and DECLARE :: DECLARE with
DOMAIN instead of datatype.

New appendix: Reserved words and keywords — full lists.

Document history: Link to CV'S changed, points directly to manual
module now.

License Notice: Copyright end year 2011.

First publication, based on the Firebird 2.1 Language Reference Up-
date with the above changes for 2.5 added (adding 25-30% to the size).

articl ei nf o and Introduction :: Versions covered: Added 2.5.1 to
covered versions.

New in Firebird 2.5: Edited first para (mentioned 2.5.1).

New in Firebird 2.5: Started all 10 subsections with “ Changed since
Firebird 2.1", for clarity.

New in Firebird 2.5 :: Reserved words and keywords: Added SQL-
STATE to “Newly reserved words’. Changed “New keywords’ to “New
non-reserved keywords’.

New in Firebird 2.5 :: Context variables: New subsection.

Reserved words and keywords :: Added since InterBase 6 :: Newly re-
served words; Added SQLSTATE.

Reserved words and keywords :: Added since InterBase 6 :: New key-
words. Renamed this section to New non-reserved keywords.
Miscellaneous language elements :: Shorthand casts: Renamed Short-
hand datetime casts.

Miscellaneous language elements :: Shorthand datetime casts: Added
Note warning that value stays the same as long as the statement re-
mains prepared.

DDL statements :: PROCEDURE :: CREATE PROCEDURE: Shortened
r el name.col nane tor el .col in Syntax, to keep line length within
bounds for PDF.

DDL statements :: PROCEDURE :: CREATE PROCEDURE :: TYPE OF
COLUMN in parameter and variable declarations: Moved title “Warn-
ings’ from itemizedlist to parent warning, where it belongs.

PSQL statements :: EXECUTE STATEMENT :: ON EXTERNAL

[DATA SOURCE] :: Exception handling: isc_eds connection,

isc_eds statement -> eds_connection, eds_statement.

Context variables :: CURRENT _TI ME: Edited second Note to warn
againgt shorthand syntax.

Context variables :: CURRENT _TI MESTAMP: Edited second Note to
warn against shorthand syntax.

Context variables :: GDSCODE: Rewrote Description in light of new, so
far undocumented behaviour since Firebird 2.0 (!). Corrected Example:
after WHEN GDSCODE a symbolic name must follow, not a number.
Added notice after Example to explain same.

Context variables :: ' NOW : Edited the two existing Notes and in-
serted one about the freeze effect of the shorthand syntax. In the last
Note, removed the link elements from around CURRENT _TI ME and
CURRENT_TI MESTAMP.

Context variables :: SQLCODE: Added “Changed in” and “ Deprecated
in” formalparas. Rewrote Description in light of new, so far undocu-

254

Document History

mented behaviour since Firebird 2.0 (!). Added Notice at the end (also
about the deprecation).

Context variables :: SQLSTATE: New section (variable implemented in
2.5.1).

Internal functions:: CAST(): Added natice that when using the short-
hand syntax, the value stays the same as long as the statement remains
prepared.

Reserved words and keywords — full lists: Added SQLSTATE to both
Reserved words and Keywords.

255

Appendix D:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this License. Copies of the Li-
cense are available at http://www.firebirdsgl.org/pdf manual/pdl.pdf (PDF) and http://www.firebirdsgl.org/man-
ual/pdl.html (HTML).

The Original Documentation istitled Firebird 2.5 Language Reference Update.

The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.

Copyright (C) 2008-2011. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writersand Editors of included PDL -licensed material (the“al.”) are: J. Beesley, Helen Borrie, Arno Brinkman,
Frank Ingermann, Vlad Khorsun, Alex Peshkov, Nickolay Samofatov, Adriano dos Santos Fernandes, Dmitry

Y emanov.

Included portions are Copyright (C) 2001-2010 by their respective authors. All Rights Reserved.

256

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 2.5 Language Reference Update
	Table of Contents
	Introduction
	Subject matter
	Versions covered
	Authorship
	Acknowledgments

	New in Firebird 2.5
	Reserved words and keywords
	Miscellany
	Data types and subtypes
	Data Definition Language (DDL)
	Data Manipulation Language (DML)
	PSQL statements
	Security and access control
	Context variables
	Operators and predicates
	Aggregate functions
	Internal functions

	Reserved words and keywords
	Added since InterBase 6
	Newly reserved words
	New non-reserved keywords

	Dropped since InterBase 6
	No longer reserved, still keywords
	No longer reserved, not keywords

	Possibly reserved in future versions

	Miscellaneous language elements
	-- (single-line comment)
	Hexadecimal notation for numerals
	Hexadecimal notation for “binary” strings
	Shorthand datetime casts
	CASE construct
	Simple CASE
	Searched CASE

	Data types and subtypes
	BIGINT data type
	BLOB data type
	Text BLOB support in functions and operators
	Various enhancements

	SQL_NULL data type
	Rationale
	Use in practice

	New character sets
	Character set NONE handling changed
	New collations
	Unicode collations for all character sets

	DDL statements
	CHARACTER SET
	ALTER CHARACTER SET

	COLLATION
	CREATE COLLATION
	DROP COLLATION

	COMMENT
	DATABASE
	CREATE DATABASE
	16 Kb page size supported, 1 and 2 Kb deprecated
	Default collation for the database
	DIFFERENCE FILE parameter

	ALTER DATABASE
	BEGIN BACKUP
	END BACKUP
	ADD DIFFERENCE FILE
	DROP DIFFERENCE FILE

	DOMAIN
	CREATE DOMAIN
	Context variables as defaults

	ALTER DOMAIN
	Rename domain
	SET DEFAULT to any context variable

	EXCEPTION
	CREATE EXCEPTION
	Message length increased

	CREATE OR ALTER EXCEPTION
	RECREATE EXCEPTION

	EXTERNAL FUNCTION
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	ALTER EXTERNAL FUNCTION

	FILTER
	DECLARE FILTER

	INDEX
	CREATE INDEX
	UNIQUE indices now allow NULLs
	Indexing on expressions
	Maximum index key length increased
	Maximum number of indices per table increased

	PROCEDURE
	CREATE PROCEDURE
	TYPE OF COLUMN in parameter and variable declarations
	Domains supported in parameter and variable
 declarations
	COLLATE in variable and parameter declarations
	NOT NULL in variable and parameter declarations
	Default argument values
	BEGIN ... END blocks may be empty

	ALTER PROCEDURE
	Default argument values
	Classic Server: Altered procedure immediately visible
 to other clients
	COLLATE in variable and parameter declarations
	Domains supported in parameter and variable
 declarations
	NOT NULL in variable and parameter declarations
	Restriction on altering used procedures
	TYPE OF COLUMN in parameter and variable declarations

	CREATE OR ALTER PROCEDURE
	DROP PROCEDURE
	Restriction on dropping used procedures

	RECREATE PROCEDURE
	Restriction on recreating used procedures

	SEQUENCE or GENERATOR
	CREATE SEQUENCE
	CREATE GENERATOR
	CREATE SEQUENCE preferred
	Maximum number of generators significantly raised

	ALTER SEQUENCE
	SET GENERATOR
	DROP SEQUENCE
	DROP GENERATOR

	TABLE
	CREATE TABLE
	Global Temporary Tables (GTTs)
	GENERATED ALWAYS AS
	CHECK accepts NULL outcome
	Context variables as column defaults
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive
 access
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TABLE
	ADD column: Context variables as defaults
	ALTER COLUMN also for generated (computed) columns
	ALTER COLUMN ... TYPE no longer fails if column is
 used in trigger or SP
	ALTER COLUMN: DROP DEFAULT
	ALTER COLUMN: SET DEFAULT
	ALTER COLUMN: POSITION now 1-based
	CHECK accepts NULL outcome
	FOREIGN KEY without target column references PK
	FOREIGN KEY creation no longer requires exclusive
 access
	GENERATED ALWAYS AS
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	RECREATE TABLE

	TRIGGER
	CREATE TRIGGER
	SQL-2003-compliant syntax for relation triggers
	Database triggers
	TYPE OF COLUMN in variable declarations
	Domains instead of datatypes
	COLLATE in variable declarations
	NOT NULL in variable declarations
	Multi-action triggers
	BEGIN ... END blocks may be empty
	CREATE TRIGGER no longer increments table change
 count
	PLAN allowed in trigger code

	ALTER TRIGGER
	Database triggers
	TYPE OF COLUMN in variable declarations
	Domains instead of datatypes
	COLLATE in variable declarations
	NOT NULL in variable declarations
	Multi-action triggers
	Restriction on altering used triggers
	PLAN allowed in trigger code
	ALTER TRIGGER no longer increments table change count

	CREATE OR ALTER TRIGGER
	DROP TRIGGER
	Restriction on dropping used triggers
	DROP TRIGGER no longer increments table change count

	RECREATE TRIGGER
	Restriction on recreating used triggers

	VIEW
	CREATE VIEW
	Views can select from stored procedures
	Views can infer column names from derived tables or
 GROUP BY
	Per-column aliases supported in view definition
	Full SELECT syntax supported
	PLAN subclause disallowed in 1.5, reallowed in 2.0
	Triggers on updatable views block auto-writethrough
	View with non-participating NOT NULL columns in base
 table can be made insertable

	ALTER VIEW
	CREATE OR ALTER VIEW
	RECREATE VIEW

	DML statements
	DELETE
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	RETURNING
	ROWS

	EXECUTE BLOCK
	COLLATE in variable and parameter declarations
	NOT NULL in variable and parameter declarations
	Domains instead of datatypes
	TYPE OF COLUMN in parameter and variable declarations

	EXECUTE PROCEDURE
	INSERT
	INSERT ... DEFAULT VALUES
	RETURNING clause
	UNION allowed in feeding SELECT

	MERGE
	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside
 subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	COLLATE subclause for text BLOB columns
	Common Table Expressions (“WITH ... AS ... SELECT”)
	Recursive CTEs

	Derived tables (“SELECT FROM SELECT”)
	FIRST and SKIP
	GROUP BY
	Grouping by alias, position and expressions

	HAVING: Stricter rules
	JOIN
	Ambiguous field names rejected
	CROSS JOIN
	Named colums JOIN
	Natural JOIN

	ORDER BY
	Order by colum alias
	Ordering by column position causes * expansion
	Ordering by expressions
	NULLs placement
	Stricter ordering rules with aggregate statements

	PLAN
	Handling of user PLANs improved
	ORDER with INDEX
	PLAN must include all tables

	Relation alias makes real name unavailable
	ROWS
	UNION
	UNIONs in subqueries
	UNION DISTINCT

	WITH LOCK

	UPDATE
	Changed SET semantics
	COLLATE subclause for text BLOB columns
	ORDER BY
	PLAN
	Relation alias makes real name unavailable
	RETURNING
	ROWS

	UPDATE OR INSERT

	Transaction control statements
	RELEASE SAVEPOINT
	ROLLBACK
	ROLLBACK RETAIN
	ROLLBACK TO SAVEPOINT

	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	SET TRANSACTION
	IGNORE LIMBO
	LOCK TIMEOUT
	NO AUTO UNDO

	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	CLOSE cursor
	DECLARE
	DECLARE ... CURSOR
	DECLARE [VARIABLE] with initialization
	DECLARE with DOMAIN instead of datatype
	TYPE OF COLUMN in variable declaration
	COLLATE in variable declaration
	NOT NULL in variable declaration

	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Improved performance
	WITH {AUTONOMOUS|COMMON} TRANSACTION
	WITH CALLER PRIVILEGES
	ON EXTERNAL [DATA SOURCE]
	AS USER, PASSWORD and ROLE
	Parameterized statements
	Caveats with EXECUTE STATEMENT

	EXIT
	FETCH cursor
	FOR EXECUTE STATEMENT ... DO
	FOR SELECT ... INTO ... DO
	AS CURSOR clause

	IN AUTONOMOUS TRANSACTION
	LEAVE
	OPEN cursor
	PLAN allowed in trigger code
	Subqueries as PSQL expressions
	UDFs callable as void functions
	WHERE CURRENT OF valid again for view cursors

	Security and access control
	ALTER ROLE
	GRANT and REVOKE
	GRANTED BY
	REVOKE ALL ON ALL
	REVOKE ADMIN OPTION

	The RDB$ADMIN role
	In normal databases
	Granting the RDB$ADMIN role in a normal database
	Using the RDB$ADMIN role in a normal database

	In the security database
	Granting the RDB$ADMIN role in the security database
	Using the RDB$ADMIN role in the security database

	AUTO ADMIN MAPPING
	In normal databases
	In the security database

	SQL user management commands
	CREATE USER
	ALTER USER
	DROP USER

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	NEW
	'NOW'
	OLD
	ROW_COUNT
	SQLCODE
	SQLSTATE
	UPDATING

	Operators and predicates
	NULL literals allowed as operands
	|| (string concatenator)
	Text BLOB concatenation
	Result type VARCHAR or BLOB
	Overflow checking

	ALL
	NULL literals allowed
	UNION as subselect

	ANY / SOME
	NULL literals allowed
	UNION as subselect

	IN
	NULL literals allowed
	UNION as subselect

	IS [NOT] DISTINCT FROM
	NEXT VALUE FOR
	SIMILAR TO
	Building regular expressions
	Characters
	Wildcards
	Character classes
	Quantifiers
	OR-ing terms
	Subexpressions
	Escaping special characters

	SOME

	Aggregate functions
	LIST()
	MAX()
	MIN()

	Internal functions
	ABS()
	ACOS()
	ASCII_CHAR()
	ASCII_VAL()
	ASIN()
	ATAN()
	ATAN2()
	BIN_AND()
	BIN_OR()
	BIN_SHL()
	BIN_SHR()
	BIN_XOR()
	BIT_LENGTH()
	CAST()
	CEIL(), CEILING()
	CHAR_LENGTH(), CHARACTER_LENGTH()
	CHAR_TO_UUID()
	COALESCE()
	COS()
	COSH()
	COT()
	DATEADD()
	DATEDIFF()
	DECODE()
	EXP()
	EXTRACT()
	MILLISECOND
	WEEK

	FLOOR()
	GEN_ID()
	GEN_UUID()
	HASH()
	IIF()
	LEFT()
	LN()
	LOG()
	LOG10()
	LOWER()
	LPAD()
	MAXVALUE()
	MINVALUE()
	MOD()
	NULLIF()
	OCTET_LENGTH()
	OVERLAY()
	PI()
	POSITION()
	POWER()
	RAND()
	RDB$GET_CONTEXT()
	RDB$SET_CONTEXT()
	REPLACE()
	REVERSE()
	RIGHT()
	ROUND()
	RPAD()
	SIGN()
	SIN()
	SINH()
	SQRT()
	SUBSTRING()
	TAN()
	TANH()
	TRIM()
	TRUNC()
	UPPER()
	UUID_TO_CHAR()

	External functions (UDFs)
	abs
	acos
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	ascii_val
	asin
	atan
	atan2
	bin_and
	bin_or
	bin_xor
	ceiling
	cos
	cosh
	cot
	dow
	dpower
	floor
	getExactTimestamp
	i64round
	i64truncate
	ln
	log
	log10
	lower
	lpad
	ltrim
	mod
	*nullif
	*nvl
	pi
	rand
	right
	round, i64round
	rpad
	rtrim
	sdow
	sign
	sin
	sinh
	sqrt
	srand
	sright
	string2blob
	strlen
	substr
	substrlen
	tan
	tanh
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters
	Passing NULL to UDFs in Firebird 2
	“Upgrading” ib_udf functions in an existing database

	Maximum number of indices in different Firebird
 versions
	The RDB$VALID_BLR field

	B. Reserved words and keywords – full lists
	Reserved words
	Keywords

	C. Document History
	D. License notice

