CS145 L ecture Notes #15
I ntroduction to OQL

History

e Object-oriented DBMS (OODBMS) vendors hoped to take market
share from traditional relationa DBMS (RDBMYS) vendors by offer-
ing object-based data management

— Extend OO languages (C++, Small Talk) with support for persis-
tent objects

e RDBMS vendors responded by adding object support to relational
systems (i.e., ORDBMYS) and largely kept their customers

e OODBMS vendors have survived in another market niche: software
systems that need some of their data to be persistent (e.g., CAD)

Recall:

e ODMG: Object Database Management Group

e ODL: Object Definition Language

e OQL: Object Query Language

Query-Related Features of ODL

Example: a student can take many courses but may TA at most one

interface Student (extent Students, key SID) {
attribute integer SID;
attribute string name;
attribute integer age;
attribute float GPA
rel ati onshi p Set <Cour se> takeCourses
i nverse Course::students;
rel ati onshi p Course assi st Course
i nverse Course:: TAs;
b
interface Course (extent Courses, key CID) {
attribute string Cl D
attribute string title;
rel ati onshi p Set<Student> students
i nverse Student::takeCourses;
rel ati onshi p Set <Student> TAs
i nverse Student::assi st Course;

Jun Yang 1 CS145 Spring 1999

e For every class we can declare an extent, which is used to refer to the
current collection of al objects of that class
e \We can also declare methods written in the host language

Basic SELECT Statement in OQL

Example: find CID and title of the course assisted by Lisa

SELECT s. assistCourse.CID, s.assistCourse.title
FROM Students s
VWHERE s.nane = "Lisa";

~» |In the FROMclause, remember to refer to the extent St udent s, not
the class name St udent ,

~» “s” isavariable that ranges over the objectsin St udent s
~» In path expressions, “. ” is used to access any property (either an
attribute or arelationship) of an object
Example: find CID and title of the courses taken by Lisa

[* WRONG */
SELECT s.takeCourses.ClD, s.takeCourses.title
FROM Students s
WHERE s.nane = "Lisa";

~» Problem: “. ” must be applied to asingle object, never to a collection

of objects
~» Solution: use correlated variables in the FROMclause

Example: find CID and title of courses taken by either Bart or Lisa; or-
der the result by CID and rename the result attributes to Cour sel D and
CourseTitle

~» Without DI STI NCT, the query result has type:

Bag<Struct {integer CourselD, string CourseTitle}>
~» With DI STI NCT, the query result has type:

Set <Struct {integer CourselD, string CourseTitle}>
~» ORDER BY works just likein SQL

Jun Yang 2 CS145 Spring 1999

~» Operationa semantics of the above SELECT query:

For each ¢ in Cour ses, foreachs inc. student s:
If s. nane isBart or Lisa, add to the output bag:
Struct (Coursel D:c. CI D, CourseTitle:c.title);
Sort the output bag according to Cour sel D;
Eliminate duplicates from the bag and output the result set

Subqueriesin OQL
Subqueriesin FROMClause

Example: classmates of CS145 students

Subqueriesin WHERE Clause

EXI STS objectvar | N collection: condition
~» Returnstrueif condition istrue for at least one object in collection
Example: find courses that enroll some student with GPA higher than 4.0

FORALL objectvar | N collection: condition
~ Returnstrue if condition istrue for all objectsin collection
Example: find students with higher GPA than all their TA’s

Other Featuresof OQL

e SQL-style EXI STS, | N subqueries

SQL -style quantifiers: ALL, ANY (= SOVE in OQL)
Aggregates, GROUP BY, and HAVI NG

Set/bag operations: UNI ON, EXCEPT, and | NTERSECT
Set/bag inclusion tests: e.g., Set (1, 2, 3)<Set (3,4, 2, 1)

Jun Yang 3 CS145 Spring 1999

| nteracting With an OODBM S

e “Navigational access’ directly through the host language
— Database classes are also classes in the host language
— Database objects are manipulated in the usual way (including
via methods) through the host language
— Data and changes are persistent
e “Declarative access’ through OQL
— Similar to embedded SQL only much less awkward
— OQL does not have data modification statements, so all modifi-
cations must be navigational
Example:

/1 processing collection results:
Bag<Student > cs145Students =
SELECT s
FROM Students s
VHERE EXI STS ¢ I N s.takeCourses:
c.Cl D = "CS145"
ORDER BY s. nane;
cout << "CSl145 Students:" << "\n"
for (int i=1; i<=COUNT(csl145Students); i++) {
cout << csl45Students[i].SID << " "
<< csl45Students[i].nanme << "\n"

}

/1 processing singleton results:
string student123Nane =
ELEVENT(SELECT s. nane
FROM Students s
WHERE s.SID = 123);

~» Inreality, the syntax could be much more complicated

Jun Yang 4 CS145 Spring 1999

