
© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

HANDLING THE
CLIENT REQUEST:

FORM DATA

Topics in This Chapter

• Reading individual request parameters

• Reading the entire set of request parameters

• Handling missing and malformed data

• Filtering special characters out of the request
parameters

• Automatically filling in a data object with request
parameter values

• Dealing with incomplete form submissions

95© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

4

One of the main motivations for building Web pages dynamically is so that the result
can be based upon user input. This chapter shows you how to access that input (Sec-
tions 4.1–4.4). It also shows you how to use default values when some of the expected
parameters are missing (Section 4.5), how to filter < and > out of the request data to
avoid messing up the HTML results (Section 4.6), how to create “form beans” that
can be automatically populated from the request data (Section 4.7), and how, when
required request parameters are missing, to redisplay the form with the missing val-
ues highlighted (Section 4.8).

4.1 The Role of Form Data

If you’ve ever used a search engine, visited an online bookstore, tracked stocks on the
Web, or asked a Web-based site for quotes on plane tickets, you’ve probably seen
funny-looking URLs like http://host/path?user=Marty+Hall&origin=bwi&dest=sfo.
The part after the question mark (i.e., user=Marty+Hall&origin=bwi&dest=sfo) is
known as form data (or query data) and is the most common way to get information
from a Web page to a server-side program. Form data can be attached to the end of
the URL after a question mark (as above) for GET requests; form data can also be
sent to the server on a separate line for POST requests. If you’re not familiar with

Chapter 4 ■ Handling the Client Request: Form Data96

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

HTML forms, Chapter 19 (Creating and Processing HTML Forms) gives details on
how to build forms that collect and transmit data of this sort. However, here are the
basics.

1. Use the FORM element to create an HTML form. Use the
ACTION attribute to designate the address of the servlet or JSP page
that will process the results; you can use an absolute or relative URL.
For example:
<FORM ACTION="...">...</FORM>

If ACTION is omitted, the data is submitted to the URL of the current
page.

2. Use input elements to collect user data. Place the elements
between the start and end tags of the FORM element and give each
input element a NAME. Textfields are the most common input element;
they are created with the following.

<INPUT TYPE="TEXT" NAME="...">

3. Place a submit button near the bottom of the form. For example:
<INPUT TYPE="SUBMIT">

When the button is pressed, the URL designated by the form’s
ACTION is invoked. With GET requests, a question mark and name/
value pairs are attached to the end of the URL, where the names
come from the NAME attributes in the HTML input elements and the
values come from the end user. With POST requests, the same data is
sent, but on a separate request line instead of attached to the URL.

Extracting the needed information from this form data is traditionally one of the
most tedious parts of server-side programming.

First of all, before servlets you generally had to read the data one way for GET
requests (in traditional CGI, this is usually through the QUERY_STRING environ-
ment variable) and a different way for POST requests (by reading the standard input
in traditional CGI).

Second, you have to chop the pairs at the ampersands, then separate the parame-
ter names (left of the equal signs) from the parameter values (right of the equal
signs).

Third, you have to URL-decode the values: reverse the encoding that the browser
uses on certain characters. Alphanumeric characters are sent unchanged by the
browser, but spaces are converted to plus signs and other characters are converted to
%XX, where XX is the ASCII (or ISO Latin-1) value of the character, in hex. For
example, if someone enters a value of “~hall, ~gates, and ~mcnealy” into a
textf ie ld with the name users in an HTML form, the data is sent as
“users=%7Ehall%2C+%7Egates%2C+and+%7Emcnealy”, and the server-side
program has to reconstitute the original string.

4.2 Reading Form Data from Servlets 97

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Finally, the fourth reason that it is tedious to parse form data with traditional
server-side technologies is that values can be omitted (e.g., “param1=val1&
param2=¶m3=val3”) or a parameter can appear more than once (e.g.,
“param1=val1¶m2=val2¶m1=val3”), so your parsing code needs spe-
cial cases for these situations.

Fortunately, servlets help us with much of this tedious parsing. That’s the topic of
the next section.

4.2 Reading Form Data from Servlets

One of the nice features of servlets is that all of this form parsing is handled automat-
ically. You call request.getParameter to get the value of a form parameter. You
can also call request.getParameterValues if the parameter appears more than
once, or you can call request.getParameterNames if you want a complete list of
all parameters in the current request. In the rare cases in which you need to read the
raw request data and parse it yourself, call getReader or getInputStream.

Reading Single Values: getParameter
To read a request (form) parameter, you simply call the getParameter method of
HttpServletRequest, supplying the case-sensitive parameter name as an argu-
ment. You supply the parameter name exactly as it appeared in the HTML source
code, and you get the result exactly as the end user entered it; any necessary
URL-decoding is done automatically. Unlike the case with many alternatives to serv-
let technology, you use getParameter exactly the same way when the data is sent
by GET (i.e., from within the doGet method) as you do when it is sent by POST (i.e.,
from within doPost); the servlet knows which request method the client used and
automatically uses the appropriate method to read the data. An empty String is
returned if the parameter exists but has no value (i.e., the user left the corresponding
textfield empty when submitting the form), and null is returned if there was no
such parameter.

Parameter names are case sensitive so, for example, request.get-
Parameter("Param1") and request.getParameter("param1") are not
interchangeable.

Core Warning

The values supplied to getParameter and getParameterValues are
case sensitive.

Chapter 4 ■ Handling the Client Request: Form Data98

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Reading Multiple Values: getParameterValues
If the same parameter name might appear in the form data more than once, you
should call getParameterValues (which returns an array of strings) instead of
getParameter (which returns a single string corresponding to the first occurrence
of the parameter). The return value of getParameterValues is null for nonexis-
tent parameter names and is a one-element array when the parameter has only a sin-
gle value.

Now, if you are the author of the HTML form, it is usually best to ensure that
each textfield, checkbox, or other user interface element has a unique name.
That way, you can just stick with the simpler getParameter method and avoid
getParameterValues altogether. However, you sometimes write servlets or JSP
pages that handle other people’s HTML forms, so you have to be able to deal with all
possible cases. Besides, multiselectable list boxes (i.e., HTML SELECT elements
with the MULTIPLE attribute set; see Chapter 19 for details) repeat the parameter
name for each selected element in the list. So, you cannot always avoid multiple
values.

Looking Up Parameter Names:
getParameterNames and getParameterMap

Most servlets look for a specific set of parameter names; in most cases, if the servlet
does not know the name of the parameter, it does not know what to do with it either.
So, your primary tool should be getParameter. However, it is sometimes useful to
get a full list of parameter names. The primary utility of the full list is debugging, but
you occasionally use the list for applications where the parameter names are very
dynamic. For example, the names themselves might tell the system what to do with
the parameters (e.g., row-1-col-3-value), the system might build a database
update assuming that the parameter names are database column names, or the serv-
let might look for a few specific names and then pass the rest of the names to another
application.

Use getParameterNames to get this list in the form of an Enumeration,
each entry of which can be cast to a String and used in a getParameter or
getParameterValues call. If there are no parameters in the current request,
getParameterNames returns an empty Enumeration (not null). Note that
Enumeration is an interface that merely guarantees that the actual class will have
hasMoreElements and nextElement methods: there is no guarantee that any
particular underlying data structure will be used. And, since some common data
structures (hash tables, in particular) scramble the order of the elements, you
should not count on getParameterNames returning the parameters in the order
in which they appeared in the HTML form.

4.2 Reading Form Data from Servlets 99

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Core Warning

Don’t count on getParameterNames returning the names in any
particular order.

An alternative to getParameterNames is getParameterMap. This method
returns a Map: the parameter names (strings) are the table keys and the parameter
values (string arrays as returned by getParameterNames) are the table values.

Reading Raw Form Data and Parsing Uploaded
Files: getReader or getInputStream

Rather than reading individual form parameters, you can access the query data directly
by calling getReader or getInputStream on the HttpServletRequest and
then using that stream to parse the raw input. Note, however, that if you read the data
in this manner, it is not guaranteed to be available with getParameter.

Reading the raw data is a bad idea for regular parameters since the input is nei-
ther parsed (separated into entries specific to each parameter) nor URL-decoded
(translated so that plus signs become spaces and %XX is replaced by the original
ASCII or ISO Latin-1 character corresponding to the hex value XX). However, read-
ing the raw input is of use in two situations.

The first case in which you might read and parse the data yourself is when the data
comes from a custom client rather than by an HTML form. The most common cus-
tom client is an applet; applet-servlet communication of this nature is discussed in
Volume 2 of this book.

The second situation in which you might read the data yourself is when the data is
f r o m a n u p l o a d e d f i l e . H T M L s u p p o r t s a FORM e l e m e n t (<INPUT
TYPE="FILE"...>) that lets the client upload a file to the server. Unfortunately,
the servlet API defines no mechanism to read such files. So, you need a third-party
library to do so. One of the most popular ones is from the Apache Jakarta Project.
See http://jakarta.apache.org/commons/fileupload/ for details.

Reading Input in Multiple Character Sets:
setCharacterEncoding

By default, request.getParameter interprets input using the server’s current
character set. To change this default, use the setCharacterEncoding method of
ServletRequest. But, what if input could be in more than one character set? In
such a case, you cannot simply call setCharacterEncoding with a normal character

Chapter 4 ■ Handling the Client Request: Form Data100

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

set name. The reason for this restriction is that setCharacterEncoding must be
called before you access any request parameters, and in many cases you use a request
parameter (e.g., a checkbox) to determine the character set.

So, you are left with two choices: read the parameter in one character set and con-
vert it to another, or use an autodetect feature provided with some character sets.

For the first option, you would read the parameter of interest, use getBytes to
extract the raw bytes, then pass those bytes to the String constructor along with the
name of the desired character set. Here is an example that converts a parameter to
Japanese:

String firstNameWrongEncoding = request.getParameter("firstName");
String firstName =

new String(firstNameWrongEncoding.getBytes(), "Shift_JIS");

For the second option, you would use a character set that supports detection and
conversion from the default set. A full list of character sets supported in Java is avail-
able at http://java.sun.com/j2se/1.4.1/docs/guide/intl/encoding.doc.html. For
example, to allow input in either English or Japanese, you might use the following.

request.setCharacterEncoding("JISAutoDetect");
String firstName = request.getParameter("firstName");

4.3 Example: Reading
Three Parameters

Listing 4.1 presents a simple servlet called ThreeParams that reads form parame-
ters named param1, param2, and param3 and places their values in a bulleted
list. Although you are required to specify response settings (see Chapters 6 and 7)
before beginning to generate the content, you are not required to read the request
parameters at any particular place in your code. So, we read the parameters only
when we are ready to use them. Also recall that since the ThreeParams class is in
the coreservlets package, it is deployed to the coreservlets subdirectory of the
WEB-INF/classes directory of your Web application (the default Web application in
this case).

As we will see later, this servlet is a perfect example of a case that would be dra-
matically simpler with JSP. See Section 11.6 (Comparing Servlets to JSP Pages) for
an equivalent JSP version.

4.3 Example: Reading Three Parameters 101

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 4.2 shows an HTML form that collects user input and sends it to this servlet.
By using an ACTION URL beginning with a slash (/servlet/coreservlets.ThreeParams),
you can install the form anywhere in the default Web application; you can move the
HTML form to another directory or move both the HTML form and the servlet to
another machine, all without editing the HTML form or the servlet. The general
principle that form URLs beginning with slashes increases portability holds true even
when you use custom Web applications, but you have to include the Web application

Listing 4.1 ThreeParams.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Simple servlet that reads three parameters from the
 * form data.
 */

public class ThreeParams extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Reading Three Request Parameters";
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
 "\n" +
 " param1: "
 + request.getParameter("param1") + "\n" +
 " param2: "
 + request.getParameter("param2") + "\n" +
 " param3: "
 + request.getParameter("param3") + "\n" +
 "\n" +
 "</BODY></HTML>");
 }
}

Chapter 4 ■ Handling the Client Request: Form Data102

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

prefix in the URL. See Section 2.11 (Web Applications: A Preview) for details on
Web applications. There are other ways to write the URLs that also simplify portabil-
ity, but the most important point is to use relative URLs (no host name), not absolute
ones (i.e., http://host/...). If you use absolute URLs, you have to edit the forms
whenever you move the Web application from one machine to another. Since you
almost certainly develop on one machine and deploy on another, use of absolute
URLs should be strictly avoided.

Core Approach

Use form ACTION URLs that are relative, not absolute.

Recall that the location of the default Web application varies from server to server.
HTML forms go in the top-level directory or in subdirectories other than WEB-INF. If
we place the HTML page in the form-data subdirectory and access it from the local
machine, then the full installation location on the three sample servers used in the
book is as follows:

• Tomcat Location
install_dir/webapps/ROOT/form-data/ThreeParamsForm.html

• JRun Location
install_dir/servers/default/default-ear/default-war/form-data/
ThreeParamsForm.html

Listing 4.2 ThreeParamsForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>Collecting Three Parameters</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Collecting Three Parameters</H1>

<FORM ACTION="/servlet/coreservlets.ThreeParams">
 First Parameter: <INPUT TYPE="TEXT" NAME="param1">

 Second Parameter: <INPUT TYPE="TEXT" NAME="param2">

 Third Parameter: <INPUT TYPE="TEXT" NAME="param3">

 <CENTER><INPUT TYPE="SUBMIT"></CENTER>
</FORM>

</BODY></HTML>

4.3 Example: Reading Three Parameters 103

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• Resin Location
install_dir/doc/form-data/ThreeParamsForm.html

• Corresponding URL
http://localhost/form-data/ThreeParamsForm.html

Figure 4–1 shows the HTML form when the user has entered the home directory
names of three famous Internet personalities. OK, OK, only two of them are
famous,1 but the point here is that the tilde (~) is a nonalphanumeric character and
will be URL-encoded by the browser when the form is submitted. Figure 4–2 shows
the result of the servlet; note the URL-encoded values on the address line but the
original form field values in the output: getParameter always returns the values as
the end user typed them in, regardless of how they were sent over the network.

Figure 4–1 Front end to parameter-processing servlet.

Figure 4–2 Result of parameter-processing servlet: request parameters are URL-decoded
automatically.

1. Gates isn’t that famous, after all.

Chapter 4 ■ Handling the Client Request: Form Data104

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

4.4 Example: Reading
All Parameters

The previous example extracts parameter values from the form data according to
prespecified parameter names. It also assumes that each parameter has exactly one
value. Here’s an example that looks up all the parameter names that are sent and puts
their values in a table. It highlights parameters that have missing values as well as
ones that have multiple values. Although this approach is rarely used in production
servlets (if you don’t know the names of the form parameters, you probably don’t
know what to do with them), it is quite useful for debugging.

First, the servlet looks up all the parameter names with the getParameterNames
method of HttpServletRequest. This method returns an Enumeration that
contains the parameter names in an unspecified order. Next, the servlet loops
down the Enumeration in the standard manner, using hasMoreElements to
determine when to stop and using nextElement to get each parameter name.
Since nextElement returns an Object, the servlet casts the result to a String
and passes that to getParameterValues, yielding an array of strings. If that array
is one entry long and contains only an empty string, then the parameter had no values
and the servlet generates an italicized “No Value” entry. If the array is more than one
entry long, then the parameter had multiple values and the values are displayed in a
bulleted list. Otherwise, the single value is placed directly into the table.

The source code for the servlet is shown in Listing 4.3; Listing 4.4 shows the
HTML code for a front end you can use to try out the servlet. Figures 4–3 and 4–4
show the result of the HTML front end and the servlet, respectively.

Listing 4.3 ShowParameters.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Shows all the parameters sent to the servlet via either
 * GET or POST. Specially marks parameters that have
 * no values or multiple values.
 */

4.4 Example: Reading All Parameters 105

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

public class ShowParameters extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Reading All Request Parameters";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "<TABLE BORDER=1 ALIGN=CENTER>\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 "<TH>Parameter Name<TH>Parameter Value(s)");
 Enumeration paramNames = request.getParameterNames();
 while(paramNames.hasMoreElements()) {
 String paramName = (String)paramNames.nextElement();
 out.print("<TR><TD>" + paramName + "\n<TD>");
 String[] paramValues =
 request.getParameterValues(paramName);
 if (paramValues.length == 1) {
 String paramValue = paramValues[0];
 if (paramValue.length() == 0)
 out.println("<I>No Value</I>");
 else
 out.println(paramValue);
 } else {
 out.println("");
 for(int i=0; i<paramValues.length; i++) {
 out.println("" + paramValues[i]);
 }
 out.println("");
 }
 }
 out.println("</TABLE>\n</BODY></HTML>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 4.3 ShowParameters.java (continued)

Chapter 4 ■ Handling the Client Request: Form Data106

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Notice that the servlet uses a doPost method that simply calls doGet. That’s
because we want it to be able to handle both GET and POST requests. This
approach is a good standard practice if you want HTML interfaces to have some
flexibility in how they send data to the servlet. See the discussion of the service
method in Section 3.6 (The Servlet Life Cycle) for a discussion of why having
doPost call doGet (or vice versa) is preferable to overriding service directly.
The HTML form from Listing 4.4 uses POST, as should all forms that have pass-
word fields (for details, see Chapter 19, “Creating and Processing HTML Forms”).
However, the ShowParameters servlet is not specific to that particular front end,
so the source code archive site at http://www.coreservlets.com/ includes a similar
HTML form that uses GET for you to experiment with.

Listing 4.4 ShowParametersPostForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>A Sample FORM using POST</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">A Sample FORM using POST</H1>
<FORM ACTION="/servlet/coreservlets.ShowParameters"
 METHOD="POST">
 Item Number: <INPUT TYPE="TEXT" NAME="itemNum">

 Description: <INPUT TYPE="TEXT" NAME="description">

 Price Each: <INPUT TYPE="TEXT" NAME="price" VALUE="$">

 <HR>
 First Name: <INPUT TYPE="TEXT" NAME="firstName">

 Last Name: <INPUT TYPE="TEXT" NAME="lastName">

 Middle Initial: <INPUT TYPE="TEXT" NAME="initial">

 Shipping Address:
 <TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

 Credit Card:

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Visa">Visa

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="MasterCard">MasterCard

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Amex">American Express

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Discover">Discover

 <INPUT TYPE="RADIO" NAME="cardType"
 VALUE="Java SmartCard">Java SmartCard

4.4 Example: Reading All Parameters 107

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 4–3 HTML form that collects data for the ShowParameters servlet.

 Credit Card Number:
 <INPUT TYPE="PASSWORD" NAME="cardNum">

 Repeat Credit Card Number:
 <INPUT TYPE="PASSWORD" NAME="cardNum">

 <CENTER><INPUT TYPE="SUBMIT" VALUE="Submit Order"></CENTER>
</FORM>
</BODY></HTML>

Listing 4.4 ShowParametersPostForm.html (continued)

Chapter 4 ■ Handling the Client Request: Form Data108

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 4–4 Result of the ShowParameters servlet.

4.5 Using Default Values When
Parameters Are Missing or Malformed

Online job services have become increasingly popular of late. A reputable site pro-
vides a useful service to job seekers by giving their skills wide exposure and provides
a useful service to employers by giving them access to a large pool of prospective
employees. This section presents a servlet that handles part of such a site: the cre-
ation of online résumés from user-submitted data. Now, the question is: what should
the servlet do when the user fails to supply the necessary information? This question
has two answers: use default values or redisplay the form (prompting the user for
missing values). This section illustrates the use of default values; Section 4.8 illus-
trates redisplay of the form.

4.5 Using Default Values When Parameters Are Missing or Malformed 109

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

When examining request parameters, you need to check for three conditions:

1. The value is null. A call to request.getParameter returns
null if the form contains no textfield or other element of the
expected name so that the parameter name does not appear in the
request at all. This can happen when the end user uses an incorrect
HTML form or when a bookmarked URL containing GET data is used
but the parameter names have changed since the URL was book-
marked. To avoid a NullPointerException, you have to check for
null before you try to call any methods on the string that results from
getParameter.

2. The value is an empty string. A call to request.getParameter
returns an empty string (i.e., "") if the associated textfield is empty
when the form is submitted. To check for an empty string, compare
the string to "" by using equals or compare the length of the string
to 0. Do not use the == operator; in the Java programming language,
== always tests whether the two arguments are the same object (at the
same memory location), not whether the two objects look similar. Just
to be safe, it is also a good idea to call trim to remove any white space
that the user may have entered, since in most scenarios you want to
treat pure white space as missing data. So, for example, a test for miss-
ing values might look like the following.

String param = request.getParameter("someName");
if ((param == null) || (param.trim().equals(""))) {

doSomethingForMissingValues(...);
} else {

doSomethingWithParameter(param);
}

3. The value is a nonempty string of the wrong format. What
defines the wrong format is application specific: you might expect cer-
tain textfields to contain only numeric values, others to have exactly
seven characters, and others to only contain single letters.

DILBERT reprinted by permission of United Feature Syndicate, Inc.

Chapter 4 ■ Handling the Client Request: Form Data110

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Note that the use of JavaScript for client-side validation does not remove the need
for also doing this type of checking on the server. After all, you are responsible for the
server-side application, and often another developer or group is responsible for the
forms. You do not want your application to crash if they fail to detect every type of
illegal input. Besides, clients can use their own HTML forms, can manually edit
URLs that contain GET data, and can disable JavaScript.

Core Approach

Design your servlets to gracefully handle parameters that are missing
(null or empty string) or improperly formatted. Test your servlets with
missing and malformed data as well as with data in the expected format.

Listing 4.5 and Figure 4–5 show the HTML form that acts as the front end to the
résumé-processing servlet. If you are not familiar with HTML forms, see Chapter 19.
The form uses POST to submit the data and it gathers values for various parameter
names. The important thing to understand here is what the servlet does with missing
and malformed data. This process is summarized in the following list. Listing 4.6
shows the complete servlet code.

• name, title, email, languages, skills
These parameters specify various parts of the résumé. Missing values
should be replaced by default values specific to the parameter. The
servlet uses a method called replaceIfMissing to accomplish this
task.

• fgColor, bgColor
These parameters give the colors of the foreground and background of
the page. Missing values should result in black for the foreground and
white for the background. The servlet again uses
replaceIfMissing to accomplish this task.

• headingFont, bodyFont
These parameters designate the font to use for headings and the main
text, respectively. A missing value or a value of “default” should result in
a sans-serif font such as Arial or Helvetica. The servlet uses a method
called replaceIfMissingOrDefault to accomplish this task.

• headingSize, bodySize
These parameters specify the point size for main headings and body
text, respectively. Subheadings will be displayed in a slightly smaller
size than the main headings. Missing values or nonnumeric values
should result in a default size (32 for headings, 18 for body). The
servlet uses a call to Integer.parseInt and a try/catch block for
NumberFormatException to handle this case.

4.5 Using Default Values When Parameters Are Missing or Malformed 111

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 4.5 SubmitResume.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>Free Resume Posting</TITLE>
 <LINK REL=STYLESHEET
 HREF="jobs-site-styles.css"
 TYPE="text/css">
</HEAD>
<BODY>
<H1>hot-computer-jobs.com</H1>
<P CLASS="LARGER">
To use our <I>free</I> resume-posting service, simply fill
out the brief summary of your skills below. Use "Preview"
to check the results, then press "Submit" once it is
ready. Your mini-resume will appear online within 24 hours.</P>
<HR>
<FORM ACTION="/servlet/coreservlets.SubmitResume"
 METHOD="POST">
<DL>
<DT>First, give some general information about the look of
your resume:
<DD>Heading font:
 <INPUT TYPE="TEXT" NAME="headingFont" VALUE="default">
<DD>Heading text size:
 <INPUT TYPE="TEXT" NAME="headingSize" VALUE=32>
<DD>Body font:
 <INPUT TYPE="TEXT" NAME="bodyFont" VALUE="default">
<DD>Body text size:
 <INPUT TYPE="TEXT" NAME="bodySize" VALUE=18>
<DD>Foreground color:
 <INPUT TYPE="TEXT" NAME="fgColor" VALUE="BLACK">
<DD>Background color:
 <INPUT TYPE="TEXT" NAME="bgColor" VALUE="WHITE">

<DT>Next, give some general information about yourself:
<DD>Name: <INPUT TYPE="TEXT" NAME="name">
<DD>Current or most recent title:
 <INPUT TYPE="TEXT" NAME="title">
<DD>Email address: <INPUT TYPE="TEXT" NAME="email">
<DD>Programming Languages:
 <INPUT TYPE="TEXT" NAME="languages">

<DT>Finally, enter a brief summary of your skills and
 experience: (use <P> to separate paragraphs.
 Other HTML markup is also permitted.)
<DD><TEXTAREA NAME="skills"
 ROWS=10 COLS=60 WRAP="SOFT"></TEXTAREA>

Chapter 4 ■ Handling the Client Request: Form Data112

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 4–5 Front end to résumé-previewing servlet.

</DL>
 <CENTER>
 <INPUT TYPE="SUBMIT" NAME="previewButton" Value="Preview">
 <INPUT TYPE="SUBMIT" NAME="submitButton" Value="Submit">
 </CENTER>
</FORM>
<HR>
<P CLASS="TINY">See our privacy policy
here.</P>
</BODY></HTML>

Listing 4.5 SubmitResume.html (continued)

4.5 Using Default Values When Parameters Are Missing or Malformed 113

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 4.6 SubmitResume.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Servlet that handles previewing and storing resumes
 * submitted by job applicants.
 */

public class SubmitResume extends HttpServlet {
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 if (request.getParameter("previewButton") != null) {
 showPreview(request, out);
 } else {
 storeResume(request);
 showConfirmation(request, out);
 }
 }

 /** Shows a preview of the submitted resume. Takes
 * the font information and builds an HTML
 * style sheet out of it, then takes the real
 * resume information and presents it formatted with
 * that style sheet.
 */

 private void showPreview(HttpServletRequest request,
 PrintWriter out) {
 String headingFont = request.getParameter("headingFont");
 headingFont = replaceIfMissingOrDefault(headingFont, "");
 int headingSize =
 getSize(request.getParameter("headingSize"), 32);
 String bodyFont = request.getParameter("bodyFont");
 bodyFont = replaceIfMissingOrDefault(bodyFont, "");
 int bodySize =
 getSize(request.getParameter("bodySize"), 18);
 String fgColor = request.getParameter("fgColor");
 fgColor = replaceIfMissing(fgColor, "BLACK");
 String bgColor = request.getParameter("bgColor");

Chapter 4 ■ Handling the Client Request: Form Data114

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 bgColor = replaceIfMissing(bgColor, "WHITE");
 String name = request.getParameter("name");
 name = replaceIfMissing(name, "Lou Zer");
 String title = request.getParameter("title");
 title = replaceIfMissing(title, "Loser");
 String email = request.getParameter("email");
 email =
 replaceIfMissing(email, "contact@hot-computer-jobs.com");
 String languages = request.getParameter("languages");
 languages = replaceIfMissing(languages, "<I>None</I>");
 String languageList = makeList(languages);
 String skills = request.getParameter("skills");
 skills = replaceIfMissing(skills, "Not many, obviously.");
 out.println
 (ServletUtilities.DOCTYPE + "\n" +
 "<HTML><HEAD><TITLE>Resume for " + name + "</TITLE>\n" +
 makeStyleSheet(headingFont, headingSize,
 bodyFont, bodySize,
 fgColor, bgColor) + "\n" +
 "</HEAD>\n" +
 "<BODY>\n" +
 "<CENTER>\n"+
 "" + name + "
\n" +
 "" + title + "
\n" +
 "" + email +
 "\n" +
 "</CENTER>

\n" +
 "Programming Languages" +
 "\n" +
 makeList(languages) + "

\n" +
 "Skills and Experience" +
 "

\n" +
 skills + "\n" +
 "</BODY></HTML>");
 }

 /** Builds a cascading style sheet with information
 * on three levels of headings and overall
 * foreground and background cover. Also tells
 * Internet Explorer to change color of mailto link
 * when mouse moves over it.
 */

Listing 4.6 SubmitResume.java (continued)

4.5 Using Default Values When Parameters Are Missing or Malformed 115

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 private String makeStyleSheet(String headingFont,
 int heading1Size,
 String bodyFont,
 int bodySize,
 String fgColor,
 String bgColor) {
 int heading2Size = heading1Size*7/10;
 int heading3Size = heading1Size*6/10;
 String styleSheet =
 "<STYLE TYPE=\"text/css\">\n" +
 "<!--\n" +
 ".HEADING1 { font-size: " + heading1Size + "px;\n" +
 " font-weight: bold;\n" +
 " font-family: " + headingFont +
 "Arial, Helvetica, sans-serif;\n" +
 "}\n" +
 ".HEADING2 { font-size: " + heading2Size + "px;\n" +
 " font-weight: bold;\n" +
 " font-family: " + headingFont +
 "Arial, Helvetica, sans-serif;\n" +
 "}\n" +
 ".HEADING3 { font-size: " + heading3Size + "px;\n" +
 " font-weight: bold;\n" +
 " font-family: " + headingFont +
 "Arial, Helvetica, sans-serif;\n" +
 "}\n" +
 "BODY { color: " + fgColor + ";\n" +
 " background-color: " + bgColor + ";\n" +
 " font-size: " + bodySize + "px;\n" +
 " font-family: " + bodyFont +
 "Times New Roman, Times, serif;\n" +
 "}\n" +
 "A:hover { color: red; }\n" +
 "-->\n" +
 "</STYLE>";
 return(styleSheet);
 }

 /** Replaces null strings (no such parameter name) or
 * empty strings (e.g., if textfield was blank) with
 * the replacement. Returns the original string otherwise.
 */

Listing 4.6 SubmitResume.java (continued)

Chapter 4 ■ Handling the Client Request: Form Data116

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 private String replaceIfMissing(String orig,
 String replacement) {
 if ((orig == null) || (orig.trim().equals(""))) {
 return(replacement);
 } else {
 return(orig);
 }
 }

 // Replaces null strings, empty strings, or the string
 // "default" with the replacement.
 // Returns the original string otherwise.

 private String replaceIfMissingOrDefault(String orig,
 String replacement) {
 if ((orig == null) ||
 (orig.trim().equals("")) ||
 (orig.equals("default"))) {
 return(replacement);
 } else {
 return(orig + ", ");
 }
 }

 // Takes a string representing an integer and returns it
 // as an int. Returns a default if the string is null
 // or in an illegal format.

 private int getSize(String sizeString, int defaultSize) {
 try {
 return(Integer.parseInt(sizeString));
 } catch(NumberFormatException nfe) {
 return(defaultSize);
 }
 }

 // Given "Java,C++,Lisp", "Java C++ Lisp" or
 // "Java, C++, Lisp", returns
 // "
 // Java
 // C++
 // Lisp
 // "

Listing 4.6 SubmitResume.java (continued)

4.5 Using Default Values When Parameters Are Missing or Malformed 117

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Once the servlet has meaningful values for each of the font and color parameters, it
builds a cascading style sheet out of them. Style sheets are a standard way of specifying
the font faces, font sizes, colors, indentation, and other formatting information in an
HTML 4.0 Web page. Style sheets are usually placed in a separate file so that several

 private String makeList(String listItems) {
 StringTokenizer tokenizer =
 new StringTokenizer(listItems, ", ");
 String list = "\n";
 while(tokenizer.hasMoreTokens()) {
 list = list + " " + tokenizer.nextToken() + "\n";
 }
 list = list + "";
 return(list);
 }

 /** Shows a confirmation page when the user clicks the
 * "Submit" button.
 */

 private void showConfirmation(HttpServletRequest request,
 PrintWriter out) {
 String title = "Submission Confirmed.";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY>\n" +
 "<H1>" + title + "</H1>\n" +
 "Your resume should appear online within\n" +
 "24 hours. If it doesn't, try submitting\n" +
 "again with a different email address.\n" +
 "</BODY></HTML>");
 }

 /** Why it is bad to give your email address to
 * untrusted sites.
 */

 private void storeResume(HttpServletRequest request) {
 String email = request.getParameter("email");
 putInSpamList(email);
 }

 private void putInSpamList(String emailAddress) {
 // Code removed to protect the guilty.
 }
}

Listing 4.6 SubmitResume.java (continued)

Chapter 4 ■ Handling the Client Request: Form Data118

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Web pages at a site can share the same style sheet, but in this case it is more convenient
to embed the style information directly in the page by use of the STYLE element. For
more information on style sheets, see http://www.w3.org/TR/REC-CSS1.

After creating the style sheet, the servlet places the job applicant’s name, job title,
and email address centered under each other at the top of the page. The heading
font is used for these lines, and the email address is placed inside a mailto: hyper-
text link so that prospective employers can contact the applicant directly by clicking
on the address. The programming languages specified in the languages parameter
are parsed by StringTokenizer (assuming spaces or commas are used to separate
the language names) and placed in a bulleted list beneath a “Programming Lan-
guages” heading. Finally, the text from the skills parameter is placed at the bot-
tom of the page beneath a “Skills and Experience” heading.

Figures 4–6 and 4–7 show results when the required data is supplied and omitted,
respectively. Figure 4–8 shows the result of clicking Submit instead of Preview.

Figure 4–6 Preview of a résumé submission that contained the required form data.

4.5 Using Default Values When Parameters Are Missing or Malformed 119

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 4–7 Preview of a submission that was missing much of the required data: default
values replace the omitted values.

Figure 4–8 Result of submitting the résumé to the database.

Chapter 4 ■ Handling the Client Request: Form Data120

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

4.6 Filtering Strings for
HTML-Specific Characters

Normally, when a servlet wants to generate HTML that will contain characters like <
or >, it simply uses < or >, the standard HTML character entities. Similarly,
if a servlet wants a double quote or an ampersand to appear inside an HTML
attribute value, it uses " or &. Failing to make these substitutions results
in malformed HTML code, since < or > will often be interpreted as part of an
HTML markup tag, a double quote in an attribute value may be interpreted as the
end of the value, and ampersands are just plain illegal in attribute values. In most
cases, it is easy to note the special characters and use the standard HTML replace-
ments. However, there are two cases in which it is not so easy to make this substitu-
tion manually.

The first case in which manual conversion is difficult occurs when the string is
derived from a program excerpt or another source in which it is already in some stan-
dard format. Going through manually and changing all the special characters can be
tedious in such a case, but forgetting to convert even one special character can result
in your Web page having missing or improperly formatted sections.

The second case in which manual conversion fails is when the string is derived
from HTML form data. Here, the conversion absolutely must be performed at run-
time, since of course the query data is not known at compile time. If the user acci-
dentally or deliberately enters HTML tags, the generated Web page will contain
spurious HTML tags and can have completely unpredictable results (the HTML
specification tells browsers what to do with legal HTML; it says nothing about what
they should do with HTML containing illegal syntax).

Core Approach

If you read request parameters and display their values in the resultant
page, you should filter out the special HTML characters. Failing to do so
can result in output that has missing or oddly formatted sections.

Failing to do this filtering for externally accessible Web pages also lets your page
become a vehicle for the cross-site scripting attack. Here, a malicious programmer
embeds GET parameters in a URL that refers to one of your servlets (or any other
server-side program). These GET parameters expand to HTML tags (usually <SCRIPT>
elements) that exploit known browser bugs. So, an attacker could embed the code in a
URL that refers to your site and distribute only the URL, not the malicious Web page
itself. That way, the attacker can remain undiscovered more easily and can also exploit

4.6 Filtering Strings for HTML-Specific Characters 121

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

trusted relationships to make users think the scripts are coming from a trusted source
(your organization). For more details on this issue, see http://www.cert.org/advisories/
CA-2000-02.html and http://www.microsoft.com/technet/security/topics/
ExSumCS.asp.

Code for Filtering
Replacing <, >, ", and & in strings is a simple matter, and a number of different
approaches can accomplish the task. However, it is important to remember that Java
strings are immutable (i.e., can’t be modified), so repeated string concatenation
involves copying and then discarding many string segments. For example, consider
the following two lines:

String s1 = "Hello";
String s2 = s1 + " World";

Since s1 cannot be modified, the second line makes a copy of s1 and appends
"World" to the copy, then the copy is discarded. To avoid the expense of generating
and copying these temporary objects, whenever you perform repeated concatenation
within a loop, you should use a mutable data structure; and StringBuffer is the
natural choice.

Core Approach

If you do string concatenation from within a loop, use StringBuffer,
not String.

Listing 4.7 shows a static filter method that uses a StringBuffer to effi-
ciently copy characters from an input string to a filtered version, replacing the four
special characters along the way.

Listing 4.7 ServletUtilities.java (Excerpt)

package coreservlets;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {
...

/** Replaces characters that have special HTML meanings
 * with their corresponding HTML character entities.
 */

Chapter 4 ■ Handling the Client Request: Form Data122

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 // Note that Javadoc is not used for the more detailed
 // documentation due to the difficulty of making the
 // special chars readable in both plain text and HTML.
 //
 // Given a string, this method replaces all occurrences of
 // '<' with '<', all occurrences of '>' with
 // '>', and (to handle cases that occur inside attribute
 // values), all occurrences of double quotes with
 // '"' and all occurrences of '&' with '&'.
 // Without such filtering, an arbitrary string
 // could not safely be inserted in a Web page.

 public static String filter(String input) {
 if (!hasSpecialChars(input)) {
 return(input);
 }
 StringBuffer filtered = new StringBuffer(input.length());
 char c;
 for(int i=0; i<input.length(); i++) {
 c = input.charAt(i);
 switch(c) {
 case '<': filtered.append("<"); break;
 case '>': filtered.append(">"); break;
 case '"': filtered.append("""); break;
 case '&': filtered.append("&"); break;
 default: filtered.append(c);
 }
 }
 return(filtered.toString());
 }

 private static boolean hasSpecialChars(String input) {
 boolean flag = false;
 if ((input != null) && (input.length() > 0)) {
 char c;
 for(int i=0; i<input.length(); i++) {
 c = input.charAt(i);
 switch(c) {
 case '<': flag = true; break;
 case '>': flag = true; break;
 case '"': flag = true; break;
 case '&': flag = true; break;
 }
 }
 }
 return(flag);
 }
}

Listing 4.7 ServletUtilities.java (Excerpt) (continued)

4.6 Filtering Strings for HTML-Specific Characters 123

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Example: A Servlet That
Displays Code Snippets

As an example, consider the HTML form of Listing 4.8 that gathers a snippet of the
Java programming language and sends it to the servlet of Listing 4.9 for display.

Now, when the user enters normal input, the result is fine, as illustrated by Figure
4–9. However, as shown in Figure 4–10, the result can be unpredictable when the
input contains special characters like < and >. Different browsers can give different
results since the HTML specification doesn’t say what to do in this case, but most
browsers think that the “<b” in “if (a<b) {” starts an HTML tag. But, since the
characters after the b are unrecognized, browsers ignore them until the next >, which
is at the end of the </PRE> tag. Thus, not only does most of the code snippet disap-
pear, but the browser does not interpret the </PRE> tag, so the text after the code
snippet is improperly formatted, with a fixed-width font and line wrapping disabled.

Listing 4.10 shows a servlet that works exactly like the previous one except that it
filters the special characters from the request parameter value before displaying it.
Listing 4.11 shows an HTML form that sends data to it (except for the ACTION URL,
this form is identical to that shown in Listing 4.8). Figure 4–11 shows the result of
the input that failed for the previous servlet: no problem here.

Listing 4.8 CodeForm1.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>Submit Code Sample</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1 ALIGN="CENTER">Submit Code Sample</H1>
<FORM ACTION="/servlet/coreservlets.BadCodeServlet">
 Code:

 <TEXTAREA ROWS="6" COLS="40" NAME="code"></TEXTAREA><P>
 <INPUT TYPE="SUBMIT" VALUE="Submit Code">
</FORM>
</CENTER></BODY></HTML>

Chapter 4 ■ Handling the Client Request: Form Data124

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 4.9 BadCodeServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that reads a code snippet from the request
 * and displays it inside a PRE tag. Fails to filter
 * the special HTML characters.
 */

public class BadCodeServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Code Sample";
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
 "<PRE>\n" +
 getCode(request) +
 "</PRE>\n" +
 "Now, wasn't that an interesting sample\n" +
 "of code?\n" +
 "</BODY></HTML>");
 }

 protected String getCode(HttpServletRequest request) {
 return(request.getParameter("code"));
 }
}

4.6 Filtering Strings for HTML-Specific Characters 125

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 4–9 BadCodeServlet: result is fine when request parameters contain no
special characters.

Figure 4–10 BadCodeServlet: result has missing and incorrectly formatted sections
when request parameters contain special characters.

Chapter 4 ■ Handling the Client Request: Form Data126

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 4–11 GoodCodeServlet: result is fine even when request parameters contain
special characters.

Listing 4.10 GoodCodeServlet.java

package coreservlets;

import javax.servlet.http.*;

/** Servlet that reads a code snippet from the request and displays
 * it inside a PRE tag. Filters the special HTML characters.
 */

public class GoodCodeServlet extends BadCodeServlet {
 protected String getCode(HttpServletRequest request) {
 return(ServletUtilities.filter(super.getCode(request)));
 }
}

Listing 4.11 CodeForm2.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>Submit Code Sample</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1 ALIGN="CENTER">Submit Code Sample</H1>
<FORM ACTION="/servlet/coreservlets.GoodCodeServlet">
 Code:

 <TEXTAREA ROWS="6" COLS="40" NAME="code"></TEXTAREA><P>
 <INPUT TYPE="SUBMIT" VALUE="Submit Code">
</FORM>
</CENTER></BODY></HTML>

4.7 Automatically Populating Java Objects from Request Parameters 127

4.7 Automatically Populating Java
Objects from Request
Parameters: Form Beans

The getParameter method makes it easy to read incoming request parameters:
you use the same method from doGet as from doPost, and the value returned is
automatically URL-decoded (i.e., in the format that the end user typed it in, not nec-
essarily in the format in which it was sent over the network). Since the return value of
getParameter is String, however, you have to parse the value yourself (checking for
missing or malformed data, of course) if you want other types of values. For example, if
you expect int or double values, you have to pass the result of getParameter to
Integer.parseInt or Double.parseDouble and enclose the code inside a
try/catch block that looks for NumberFormatException. If you have many
request parameters, this procedure can be quite tedious.

For example, suppose that you have a data object with three String fields, two
int fields, two double fields, and a boolean. Filling in the object based on a form
submission would require eight separate calls to getParameter, two calls each to
Integer.parseInt and Double.parseDouble, and some special-purpose code
to set the boolean flag. It would be nice to do this work automatically.

Now, in JSP, you can use the JavaBeans component architecture to greatly simplify
the process of reading request parameters, parsing the values, and storing the results
in Java objects. This process is discussed in detail in Chapter 14 (Using JavaBeans
Components in JSP Documents). If you are unfamiliar with the idea of beans, refer
to that chapter for details. The gist, though, is that an ordinary Java object is consid-
ered to be a bean if the class uses private fields and has methods that follow the get/
set naming convention. The names of the methods (minus the word “get” or “set”
and with the first character in lower case) are called properties. For example, an arbi-
trary Java class with a getName and setName method is said to define a bean that
has a property called name.

As discussed in Chapter 14, there is special JSP syntax (property="*" in a
jsp:setProperty call) that you can use to populate a bean in one fell swoop. Spe-
cifically, this setting indicates that the system should examine all incoming request
parameters and pass them to bean properties that match the request parameter
name. In particular, if the request parameter is named param1, the parameter is
passed to the setParam1 method of the object. Furthermore, simple type conver-
sions are performed automatically. For instance, if there is a request parameter
called numOrdered and the object has a method called setNumOrdered that
expects an int (i.e., the bean has a numOrdered property of type int), the
numOrdered request parameter is automatically converted to an int and the result-
ing value is automatically passed to the setNumOrdered method.

Chapter 4 ■ Handling the Client Request: Form Data128

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Now, if you can do this in JSP, you would think you could do it in servlets as well.
After all, as discussed in Chapter 10, JSP pages are really servlets in disguise: each
JSP page gets translated into a servlet, and it is the servlet that runs at request time.
Furthermore, as we see in Chapter 15 (Integrating Servlets and JSP: The Model
View Controller (MVC) Architecture), in complicated scenarios it is often best to
combine servlets and JSP pages in such a way that the servlets do the programming
work and the JSP pages do the presentation work. So, it is really more important for
servlets to be able to read request parameters easily than it is for JSP pages to do so.
Surprisingly, however, the servlet specification provides no such capability: the code
behind the property="*" JSP process is not exposed through a standard API.

Fortunately, the widely used Jakarta Commons package (see http://jakarta.apache.org/
commons/) from The Apache Software Foundation contains classes that make it easy
to build a utility to automatically associate request parameters with bean properties
(i.e., with setXxx methods). The next subsection provides information on obtaining
the Commons packages, but the important point here is that a static populateBean
method takes a bean (i.e., a Java object with at least some methods that follow the get/
set naming convention) and a Map as input and passes all Map values to the bean prop-
erty that matches the associated Map key name. This utility also does type conversion
automatically, using default values (e.g., 0 for numeric values) instead of throwing
exceptions when the corresponding request parameter is malformed. If the bean has
no property matching the name, the Map entry is ignored; again, no exception is
thrown.

Listing 4.12 presents a utility that uses the Jakarta Commons utility to automati-
cally populate a bean according to incoming request parameters. To use it, simply
pass the bean and the request object to BeanUtilities.populateBean. That’s
it! You want to put two request parameters into a data object? No problem: one
method call is all that’s needed. Fifteen request parameters plus type conversion?
Same one method call.

Listing 4.12 BeanUtilities.java

package coreservlets.beans;

import java.util.*;
import javax.servlet.http.*;
import org.apache.commons.beanutils.BeanUtils;

/** Some utilities to populate beans, usually based on
 * incoming request parameters. Requires three packages
 * from the Apache Commons library: beanutils, collections,
 * and logging. To obtain these packages, see
 * http://jakarta.apache.org/commons/. Also, the book's
 * source code archive (see http://www.coreservlets.com/)

4.7 Automatically Populating Java Objects from Request Parameters 129

 * contains links to all URLs mentioned in the book, including
 * to the specific sections of the Jakarta Commons package.
 * <P>
 * Note that this class is in the coreservlets.beans package,
 * so must be installed in .../coreservlets/beans/.
 */

public class BeanUtilities {
 /** Examines all of the request parameters to see if
 * any match a bean property (i.e., a setXxx method)
 * in the object. If so, the request parameter value
 * is passed to that method. If the method expects
 * an int, Integer, double, Double, or any of the other
 * primitive or wrapper types, parsing and conversion
 * is done automatically. If the request parameter value
 * is malformed (cannot be converted into the expected
 * type), numeric properties are assigned zero and boolean
 * properties are assigned false: no exception is thrown.
 */

 public static void populateBean(Object formBean,
 HttpServletRequest request) {
 populateBean(formBean, request.getParameterMap());
 }

 /** Populates a bean based on a Map: Map keys are the
 * bean property names; Map values are the bean property
 * values. Type conversion is performed automatically as
 * described above.
 */

 public static void populateBean(Object bean,
 Map propertyMap) {
 try {
 BeanUtils.populate(bean, propertyMap);
 } catch(Exception e) {
 // Empty catch. The two possible exceptions are
 // java.lang.IllegalAccessException and
 // java.lang.reflect.InvocationTargetException.
 // In both cases, just skip the bean operation.
 }
 }
}

Listing 4.12 BeanUtilities.java (continued)

Chapter 4 ■ Handling the Client Request: Form Data130

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Putting BeanUtilities to Work

Listing 4.13 shows a servlet that gathers insurance information about an employee,
presumably to use it to determine available insurance plans and associated costs.
To perform this task, the servlet needs to fill in an insurance information data
object (InsuranceInfo.java, Listing 4.14) with information on the employee’s name
and ID (both of type String), number of children (int), and whether or not
the employee is married (boolean). Since this object is represented as a bean,
BeanUtilities.populateBean can be used to fill in the required information
with a single method call. Listing 4.15 shows the HTML form that gathers the data;
Figures 4–12 and 4–13 show typical results.

Listing 4.13 SubmitInsuranceInfo.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import coreservlets.beans.*;

/** Example of simplified form processing. Illustrates the
 * use of BeanUtilities.populateBean to automatically fill
 * in a bean (Java object with methods that follow the
 * get/set naming convention) from request parameters.
 */

public class SubmitInsuranceInfo extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 InsuranceInfo info = new InsuranceInfo();
 BeanUtilities.populateBean(info, request);
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Insurance Info for " + info.getName();
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<CENTER>\n" +
 "<H1>" + title + "</H1>\n" +

4.7 Automatically Populating Java Objects from Request Parameters 131

 "\n" +
 " Employee ID: " +
 info.getEmployeeID() + "\n" +
 " Number of children: " +
 info.getNumChildren() + "\n" +
 " Married?: " +
 info.isMarried() + "\n" +
 "</CENTER></BODY></HTML>");
 }
}

Listing 4.14 InsuranceInfo.java

package coreservlets.beans;

import coreservlets.*;

/** Simple bean that represents information needed to
 * calculate an employee's insurance costs. Has String,
 * int, and boolean properties. Used to demonstrate
 * automatically filling in bean properties from request
 * parameters.
 */

public class InsuranceInfo {
 private String name = "No name specified";
 private String employeeID = "No ID specified";
 private int numChildren = 0;
 private boolean isMarried = false;

 public String getName() {
 return(name);
 }

 /** Just in case user enters special HTML characters,
 * filter them out before storing the name.
 */

 public void setName(String name) {
 this.name = ServletUtilities.filter(name);
 }

 public String getEmployeeID() {
 return(employeeID);
 }

Listing 4.13 SubmitInsuranceInfo.java (continued)

Chapter 4 ■ Handling the Client Request: Form Data132

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 /** Just in case user enters special HTML characters,
 * filter them out before storing the name.
 */

 public void setEmployeeID(String employeeID) {
 this.employeeID = ServletUtilities.filter(employeeID);
 }

 public int getNumChildren() {
 return(numChildren);
 }

 public void setNumChildren(int numChildren) {
 this.numChildren = numChildren;
 }

 /** Bean convention: name getter method "isXxx" instead
 * of "getXxx" for boolean methods.
 */

 public boolean isMarried() {
 return(isMarried);
 }

 public void setMarried(boolean isMarried) {
 this.isMarried = isMarried;
 }
}

Listing 4.15 InsuranceForm.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>Employee Insurance Signup</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6">
<CENTER>
<H1>Employee Insurance Signup</H1>

<FORM ACTION="/servlet/coreservlets.SubmitInsuranceInfo">
 Name: <INPUT TYPE="TEXT" NAME="name">

 Employee ID: <INPUT TYPE="TEXT" NAME="employeeID">

 Number of Children: <INPUT TYPE="TEXT" NAME="numChildren">

 <INPUT TYPE="CHECKBOX" NAME="married" VALUE="true">Married?

 <CENTER><INPUT TYPE="SUBMIT"></CENTER>
</FORM>

</CENTER></BODY></HTML>

Listing 4.14 InsuranceInfo.java (continued)

4.7 Automatically Populating Java Objects from Request Parameters 133

Figure 4–12 Front end to insurance-processing servlet.

Figure 4–13 Insurance-processing servlet: the gathering of request data is greatly
simplified by use of BeanUtilities.populateBean.

Obtaining and Installing the
Jakarta Commons Packages

Most of the work of our BeanUtilities class is done by the Jakarta Commons
BeanUtils component. This component performs the reflection (determination of
what writable bean properties—setXxx methods—the object has) and the type con-
version (parsing a String as an int, double, boolean, or other primitive or wrap-
per type). So, BeanUtilities will not work unless you install the Jakarta

Chapter 4 ■ Handling the Client Request: Form Data134

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Commons BeanUtils. However, since BeanUtils depends on two other Jakarta
Commons components—Collections and Logging—you have to download and
install all three.

To download these components, start at http://jakarta.apache.org/commons/,
look for the “Components Repository” heading in the left column, and, for each of
the three components, download the JAR file for the latest version. (Our code is
based on version 1.5 of the BeanUtils, but it is likely that any recent version will
work identically.) Perhaps the easiest way to download the components is to go to
http://www.coreservlets.com/, go to Chapter 4 of the source code archive, and look
for the direct links to the three JAR files.

The most portable way to install the components is to follow the standard
approach:

• For development, list the three JAR files in your CLASSPATH.
• For deployment, put the three JAR files in the WEB-INF/lib directory

of your Web application.

When dealing with JAR files like these—used in multiple Web applications—
many developers use server-specific features that support sharing of JAR files across
Web applications. For example, Tomcat permits common JAR files to be placed in
tomcat_install_dir/common/lib. Another shortcut that many people use on their
development machines is to drop the three JAR files into sdk_install_dir/jre/lib/ext.
Doing so makes the JAR files automatically accessible both to the development envi-
ronment and to the locally installed server. These are both useful tricks as long as you
remember that your-web-app/WEB-INF/lib is the only standardized location on the
deployment server.

4.8 Redisplaying the Input Form
When Parameters Are Missing
or Malformed

It sometimes makes sense to use default values when the user fails to fill in certain
form fields. Other times, however, there are no reasonable default values to use, and
the form should be redisplayed to the user. Two desirable capabilities make the use
of a normal HTML form impossible in this scenario:

• Users should not have to reenter values that they already supplied.
• Missing form fields should be marked prominently.

4.8 Redisplaying the Input Form When Parameters Are Missing or Malformed 135

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Redisplay Options

So, what can be done to implement these capabilities? Well, a full description of the
possible approaches is a bit complicated and requires knowledge of several tech-
niques (e.g., Struts, JSTL) that are not covered in Volume 1 of this book. So, you
should refer to Volume 2 for details, but here is a quick preview.

• Have the same servlet present the form, process the data, and
present the results. The servlet first looks for incoming request data:
if it finds none, it presents a blank form. If the servlet finds partial
request data, it extracts the partial data, puts it back into the form,
and marks the other fields as missing. If the servlet finds the full
complement of required data, it processes the request and displays
the results. The form omits the ACTION attribute so that form
submissions automatically go to the same URL as the form itself. This
is the only approach for which we have already covered all of the
necessary techniques, so this is the approach illustrated in this section.

• Have one servlet present the form; have a second servlet
process the data and present the results. This option is better
than the first since it divides up the labor and keeps each servlet
smaller and more manageable. However, using this approach requires
two techniques we have not yet covered: how to transfer control from
one servlet to another and how to access user-specific data in one
servlet that was created in another. Transferring from one servlet to
another can be done with response.sendRedirect (see Chapter
6, “Generating the Server Response: HTTP Status Codes”) or the
forward method of RequestDispatcher (see Chapter 15,
“Integrating Servlets and JSP: The Model View Controller (MVC)
Architecture”). The easiest way to pass the data from the processing
servlet back to the form-display servlet is to store it in the
HttpSession object (see Chapter 9, “Session Tracking”).

• Have a JSP page “manually” present the form; have a servlet or
JSP page process the data and present the results. This is an
excellent option, and it is widely used. However, it requires knowledge
of JSP in addition to knowledge of the two techniques mentioned in
the previous bullet (how to transfer the user from the data-processing
servlet to the form page and how to use session tracking to store
user-specific data). In particular, you need to know how to use JSP
expressions (see Chapter 11, “Invoking Java Code with JSP Scripting
Elements”) or jsp:getProperty (see Chapter 14, “Using
JavaBeans Components in JSP Documents”) to extract the partial data
from the data object and put it into the HTML form.

Chapter 4 ■ Handling the Client Request: Form Data136

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• Have a JSP page present the form, automatically filling in the
fields with values obtained from a data object. Have a servlet
or JSP page process the data and present the results. This is
perhaps the best option of all. But, in addition to the techniques
described in the previous bullet, it requires custom JSP tags that
mimic HTML form elements but use designated values automatically.
You can write these tags yourself or you can use ready-made versions
such as those that come with JSTL or Apache Struts (see Volume 2 for
coverage of custom tags, JSTL, and Struts).

A Servlet That Processes Auction Bids
To illustrate the first of the form-redisplay options, consider a servlet that processes
bids at an auction site. Figures 4–14 through 4–16 show the desired outcome: the
servlet initially displays a blank form, redisplays the form with missing data marked
when partial data is submitted, and processes the request when complete data is
submitted.

To accomplish this behavior, the servlet (Listing 4.16) performs the following
steps.

1. Fills in a BidInfo object (Listing 4.17) from the request data, using
BeanUtilities.populateBean (see Section 4.7, “Automatically
Populating Java Objects from Request Parameters: Form Beans”) to
automatically match up request parameter names with bean proper-
ties and to perform simple type conversion.

2. Checks whether that BidInfo object is completely empty (no fields
changed from the default). If so, it calls showEntryForm to display
the initial input form.

3. Checks whether the BidInfo object is partially empty (some, but not
all, fields changed from the default). If so, it calls showEntryForm to
display the input form with a warning message and with the missing
fields highlighted. Fields in which the user already entered data keep
their previous values.

4. Checks whether the BidInfo object is completely filled in. If so, it
calls showBid to process the data and present the result.

4.8 Redisplaying the Input Form When Parameters Are Missing or Malformed 137

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 4–14 Original form of servlet: it presents a form to collect data about a bid at an
auction.

Figure 4–15 Bid servlet with incomplete data. If the user submits a form that is not fully
filled in, the bid servlet redisplays the form. The user’s previous partial data is maintained,
and missing fields are highlighted.

Chapter 4 ■ Handling the Client Request: Form Data138

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 4–16 Bid servlet with complete data: it presents the results.

Listing 4.16 BidServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import coreservlets.beans.*;

/** Example of simplified form processing. Shows two features:
 *
 * Automatically filling in a bean based on the
 * incoming request parameters.
 * Using the same servlet both to generate the input
 * form and to process the results. That way, when
 * fields are omitted, the servlet can redisplay the
 * form without making the user reenter previously
 * entered values.
 *
 */

4.8 Redisplaying the Input Form When Parameters Are Missing or Malformed 139

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

public class BidServlet extends HttpServlet {

 /** Try to populate a bean that represents information
 * in the form data sent by the user. If this data is
 * complete, show the results. If the form data is
 * missing or incomplete, display the HTML form
 * that gathers the data.
 */

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 BidInfo bid = new BidInfo();
 BeanUtilities.populateBean(bid, request);
 if (bid.isComplete()) {
 // All required form data was supplied: show result.
 showBid(request, response, bid);
 } else {
 // Form data was missing or incomplete: redisplay form.
 showEntryForm(request, response, bid);
 }
 }

 /** All required data is present: show the results page. */

 private void showBid(HttpServletRequest request,
 HttpServletResponse response,
 BidInfo bid)
 throws ServletException, IOException {
 submitBid(bid);
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Bid Submitted";
 out.println
 (DOCTYPE +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\"><CENTER>\n" +
 "<H1>" + title + "</H1>\n" +
 "Your bid is now active. If your bid is successful,\n" +
 "you will be notified within 24 hours of the close\n" +
 "of bidding.\n" +
 "<P>\n" +
 "<TABLE BORDER=1>\n" +
 " <TR><TH BGCOLOR=\"BLACK\">" +
 bid.getItemName() + "\n" +
 " <TR><TH>Item ID: " +

Listing 4.16 BidServlet.java (continued)

Chapter 4 ■ Handling the Client Request: Form Data140

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 bid.getItemID() + "\n" +
 " <TR><TH>Name: " +
 bid.getBidderName() + "\n" +
 " <TR><TH>Email address: " +
 bid.getEmailAddress() + "\n" +
 " <TR><TH>Bid price: $" +
 bid.getBidPrice() + "\n" +
 " <TR><TH>Auto-increment price: " +
 bid.isAutoIncrement() + "\n" +
 "</TABLE></CENTER></BODY></HTML>");
 }

 /** If the required data is totally missing, show a blank
 * form. If the required data is partially missing,
 * warn the user, fill in form fields that already have
 * values, and prompt user for missing fields.
 */

 private void showEntryForm(HttpServletRequest request,
 HttpServletResponse response,
 BidInfo bid)
 throws ServletException, IOException {
 boolean isPartlyComplete = bid.isPartlyComplete();
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title =
 "Welcome to Auctions-R-Us. Please Enter Bid.";
 out.println
 (DOCTYPE +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\"><CENTER>\n" +
 "<H1>" + title + "</H1>\n" +
 warning(isPartlyComplete) +
 "<FORM>\n" +
 inputElement("Item ID", "itemID",
 bid.getItemID(), isPartlyComplete) +
 inputElement("Item Name", "itemName",
 bid.getItemName(), isPartlyComplete) +
 inputElement("Your Name", "bidderName",
 bid.getBidderName(), isPartlyComplete) +
 inputElement("Your Email Address", "emailAddress",
 bid.getEmailAddress(), isPartlyComplete) +
 inputElement("Amount Bid", "bidPrice",
 bid.getBidPrice(), isPartlyComplete) +

Listing 4.16 BidServlet.java (continued)

4.8 Redisplaying the Input Form When Parameters Are Missing or Malformed 141

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 checkbox("Auto-increment bid to match other bidders?",
 "autoIncrement", bid.isAutoIncrement()) +
 "<INPUT TYPE=\"SUBMIT\" VALUE=\"Submit Bid\">\n" +
 "</CENTER></BODY></HTML>");
 }

 private void submitBid(BidInfo bid) {
 // Some application-specific code to record the bid.
 // The point is that you pass in a real object with
 // properties populated, not a bunch of strings.
 }

 private String warning(boolean isFormPartlyComplete) {
 if(isFormPartlyComplete) {
 return("<H2>Required Data Missing! " +
 "Enter and Resubmit.</H2>\n");
 } else {
 return("");
 }
 }

 /** Create a textfield for input, prefaced by a prompt.
 * If this particular textfield is missing a value but
 * other fields have values (i.e., a partially filled form
 * was submitted), then add a warning telling the user that
 * this textfield is required.
 */

 private String inputElement(String prompt,
 String name,
 String value,
 boolean shouldPrompt) {
 String message = "";
 if (shouldPrompt && ((value == null) || value.equals(""))) {
 message = "Required field! ";
 }
 return(message + prompt + ": " +
 "<INPUT TYPE=\"TEXT\" NAME=\"" + name + "\"" +
 " VALUE=\"" + value + "\">
\n");
 }

 private String inputElement(String prompt,
 String name,
 double value,
 boolean shouldPrompt) {

Listing 4.16 BidServlet.java (continued)

Chapter 4 ■ Handling the Client Request: Form Data142

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 String num;
 if (value == 0.0) {
 num = "";
 } else {
 num = String.valueOf(value);
 }
 return(inputElement(prompt, name, num, shouldPrompt));
 }

 private String checkbox(String prompt,
 String name,
 boolean isChecked) {
 String result =
 prompt + ": " +
 "<INPUT TYPE=\"CHECKBOX\" NAME=\"" + name + "\"";
 if (isChecked) {
 result = result + " CHECKED";
 }
 result = result + ">
\n";
 return(result);
 }

 private final String DOCTYPE =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
}

Listing 4.17 BidInfo.java

package coreservlets.beans;

import coreservlets.*;

/** Bean that represents information about a bid at
 * an auction site. Used to demonstrate redisplay of forms
 * that have incomplete data.
 */

public class BidInfo {
 private String itemID = "";
 private String itemName = "";
 private String bidderName = "";
 private String emailAddress = "";
 private double bidPrice = 0;
 private boolean autoIncrement = false;

Listing 4.16 BidServlet.java (continued)

4.8 Redisplaying the Input Form When Parameters Are Missing or Malformed 143

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public String getItemName() {
 return(itemName);
 }

 public void setItemName(String itemName) {
 this.itemName = ServletUtilities.filter(itemName);
 }

 public String getItemID() {
 return(itemID);
 }

 public void setItemID(String itemID) {
 this.itemID = ServletUtilities.filter(itemID);
 }

 public String getBidderName() {
 return(bidderName);
 }

 public void setBidderName(String bidderName) {
 this.bidderName = ServletUtilities.filter(bidderName);
 }

 public String getEmailAddress() {
 return(emailAddress);
 }

 public void setEmailAddress(String emailAddress) {
 this.emailAddress = ServletUtilities.filter(emailAddress);
 }

 public double getBidPrice() {
 return(bidPrice);
 }

 public void setBidPrice(double bidPrice) {
 this.bidPrice = bidPrice;
 }

 public boolean isAutoIncrement() {
 return(autoIncrement);
 }

Listing 4.17 BidInfo.java (continued)

Chapter 4 ■ Handling the Client Request: Form Data144

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 public void setAutoIncrement(boolean autoIncrement) {
 this.autoIncrement = autoIncrement;
 }

 /** Has all the required data been entered? Everything except
 autoIncrement must be specified explicitly (autoIncrement
 defaults to false).
 */

 public boolean isComplete() {
 return(hasValue(getItemID()) &&
 hasValue(getItemName()) &&
 hasValue(getBidderName()) &&
 hasValue(getEmailAddress()) &&
 (getBidPrice() > 0));
 }

 /** Has any of the data been entered? */

 public boolean isPartlyComplete() {
 boolean flag =
 (hasValue(getItemID()) ||
 hasValue(getItemName()) ||
 hasValue(getBidderName()) ||
 hasValue(getEmailAddress()) ||
 (getBidPrice() > 0) ||
 isAutoIncrement());
 return(flag);
 }

 private boolean hasValue(String val) {
 return((val != null) && (!val.equals("")));
 }
}

Listing 4.17 BidInfo.java (continued)

