
© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

HANDLING
COOKIES

Topics in This Chapter

• Understanding the benefits and drawbacks of cookies

• Sending outgoing cookies

• Receiving incoming cookies

• Tracking repeat visitors

• Specifying cookie attributes

• Differentiating between session cookies and persistent
cookies

• Simplifying cookie usage with utility classes

• Modifying cookie values

• Remembering user preferences

229© Prentice Hall and Sun Microsystems Press. Personal use only.

Training courses from the book’s author:
http://courses.coreservlets.com/

• Personally developed and taught by Marty Hall
• Available onsite at your organization (any country)
• Topics and pace can be customized for your developers
• Also available periodically at public venues
• Topics include Java programming, beginning/intermediate servlets

and JSP, advanced servlets and JSP, Struts, JSF/MyFaces, Ajax,
GWT, Ruby/Rails and more. Ask for custom courses!

8

Cookies are small bits of textual information that a Web server sends to a browser
and that the browser later returns unchanged when visiting the same Web site or
domain. By letting the server read information it sent the client previously, the site
can provide visitors with a number of conveniences such as presenting the site the
way the visitor previously customized it or letting identifiable visitors in without their
having to reenter a password.

This chapter discusses how to explicitly set and read cookies from within servlets,
and the next chapter shows how to use the servlet session tracking API (which can
use cookies behind the scenes) to keep track of users as they move around to differ-
ent pages within your site.

8.1 Benefits of Cookies

There are four typical ways in which cookies can add value to your site. We summa-
rize these benefits below, then give details in the rest of the section.

• Identifying a user during an e-commerce session. This type of
short-term tracking is so important that another API is layered on top
of cookies for this purpose. See the next chapter for details.

Chapter 8 ■ Handling Cookies230

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• Remembering usernames and passwords. Cookies let a user log in
to a site automatically, providing a significant convenience for users of
unshared computers.

• Customizing sites. Sites can use cookies to remember user
preferences.

• Focusing advertising. Cookies let the site remember which topics
interest certain users and show advertisements relevant to those
interests.

Identifying a User During
an E-commerce Session

Many online stores use a “shopping cart” metaphor in which users select items, add
them to their shopping carts, then continue shopping. Since the HTTP connection is
usually closed after each page is sent, when a user selects a new item to add to the
cart, how does the store know that it is the same user who put the previous item in
the cart? Persistent (keep-alive) HTTP connections do not solve this problem, since
persistent connections generally apply only to requests made very close together in
time, as when a browser asks for the images associated with a Web page. Besides,
many older servers and browsers lack support for persistent connections. Cookies,
however, can solve this problem. In fact, this capability is so useful that servlets have
an API specifically for session tracking, and servlet and JSP authors don’t need to
manipulate cookies directly to take advantage of it. Session tracking is discussed in
Chapter 9.

Remembering Usernames and Passwords

Many large sites require you to register to use their services, but it is inconvenient to
remember and enter the username and password each time you visit. Cookies are a
good alternative for low-security sites. When a user registers, a cookie containing a
unique user ID is sent to him. When the client reconnects at a later date, the user ID
is returned automatically, the server looks it up, determines it belongs to a registered
user that chose autologin, and permits access without an explicit username and pass-
word. The site might also store the user’s address, credit card number, and so forth in
a database and use the user ID from the cookie as the key to retrieve the data. This
approach prevents the user from having to reenter the data each time.

For example, when Marty travels to companies to give onsite JSP and servlet
training courses, he typically checks both travelocity.com and expedia.com for flight
information. These both require usernames and passwords to search flight schedules,
but have different rules about which characters are legal in usernames and how many
characters are required for passwords. So, Marty has a difficult time remembering

8.2 Some Problems with Cookies 231

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

how to log in. Fortunately, both sites use the cookie scheme described in the preced-
ing paragraph, simplifying Marty’s access from his personal desktop or laptop
machine.

Customizing Sites
Many “portal” sites let you customize the look of the main page. They might let you
pick which weather report you want to see (yes, it is still raining in Seattle), what stock
symbols should be displayed (yes, your stock is still way down), what sports results you
care about (yes, the Orioles are still losing), how search results should be displayed
(yes, you want to see more than one result per page), and so forth. Since it would be
inconvenient for you to have to set up your page each time you visit their site, they use
cookies to remember what you wanted. For simple settings, the site could accomplish
this customization by storing the page settings directly in the cookies. For more com-
plex customization, however, the site just sends the client a unique identifier and
keeps a server-side database that associates identifiers with page settings.

Focusing Advertising
Most advertiser-funded Web sites charge their advertisers much more for displaying
“directed” (or “focused”) ads than for displaying “random” ads. Advertisers are gener-
ally willing to pay much more to have their ads shown to people that are known to
have some interest in the general product category. Sites reportedly charge advertisers
as much as 30 times more for directed ads than for random ads. For example, if you go
to a search engine and do a search on “Java Servlets,” the search site can charge an
advertiser much more for showing you an ad for a servlet development environment
than for an ad for an online travel agent specializing in Indonesia. On the other hand,
if the search had been for “Java Hotels,” the situation would be reversed.

Without cookies, sites have to show a random ad when you first arrive and haven’t
yet performed a search, as well as when you search on something that doesn’t match
any ad categories. With cookies, they can identify your interests by remembering
your previous searches. Since this approach enables them to show directed ads on
visits to their home page as well as for their results page, it nearly doubles their
advertising revenue.

8.2 Some Problems with Cookies

Providing convenience to the user and added value to the site owner is the purpose
behind cookies. And despite much misinformation, cookies are not a serious security
threat. Cookies are never interpreted or executed in any way and thus cannot be used

Chapter 8 ■ Handling Cookies232

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

to insert viruses or attack your system. Furthermore, since browsers generally only
accept 20 cookies per site and 300 cookies total, and since browsers can limit each
cookie to 4 kilobytes, cookies cannot be used to fill up someone’s disk or launch other
denial-of-service attacks.

However, even though cookies don’t present a serious security threat, they can
present a significant threat to privacy.

FOXTROT © 1998 Bill Amend. Reprinted with permission of UNIVERSAL PRESS
SYNDICATE. All rights reserved.

First, some people don’t like the fact that search engines can remember what they
previously searched for. For example, they might search for job openings or sensitive
health data and don’t want some banner ad tipping off their coworkers or boss next
time they do a search. Besides, a search engine need not use a banner ad: a poorly
designed one could display a textarea listing your most recent queries (“Jobs any-
where except at this stupid company!”; “Will my SARS infection kill my coworkers?”;
etc.). A coworker could see this information if they visited the search engine for your
computer or if they looked over your shoulder when you visited it.

Even worse, two sites can share data on a user by each loading small images off
the same third-party site, where that third party uses cookies and shares the data with
both original sites. For example, suppose that both some-search-site.com and
some-random-site.com wanted to display directed ads from some-ad-site.com based
on what the user searched for at some-search-site.com. If the user searched for “Java
Servlets,” the search engine at some-search-site.com could return a page with the
following image link:

Since the browser will make an HTTP connection to some-ad-site.com ,
some-ad-site.com can return a persistent cookie to the browser. Next, some-ran-
dom-site.com could return an image link like this:

8.2 Some Problems with Cookies 233

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Since the browser will reconnect to some-ad-site.com—a site from which it got
cookies earlier—it will return the cookie it previously received. Assuming that
some-ad-site.com sent a unique cookie value and, in its database, associated that
cookie value with the “Java Servlets” search, some-ad-site can return a directed ban-
ner ad even though it is the user’s first visit to some-random-site. The doubleclick.net
service was the most famous early example of this technique. (Recent versions of
Netscape and Internet Explorer, however, have a nice feature that lets you refuse
cookies from sites other than that to which you connected, but without disabling
cookies altogether. See Figure 8–1.)

Figure 8–1 Cookie customization settings for Netscape (top) and Internet Explorer
(bottom).

Chapter 8 ■ Handling Cookies234

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

This trick of associating cookies with images can even be exploited through email
if you use an HTML-enabled email reader that “supports” cookies and is associated
with a browser. Thus, people could send you email that loads images, attach cookies
to those images, and then identify you (email address and all) if you subsequently
visit their Web site. Boo.

A second privacy problem occurs when sites rely on cookies for overly sensitive
data. For example, some of the big online bookstores use cookies to remember your
registration information and let you order without reentering much of your personal
information. This is not a particular problem since they don’t actually display your
complete credit card number and only let you send books to an address that was
specified when you did enter the credit card in full or use the username and pass-
word. As a result, someone using your computer (or stealing your cookie file) could
do no more harm than sending a big book order to your address, where the order
could be refused. However, other companies might not be so careful, and an attacker
who gained access to someone’s computer or cookie file could get online access to
valuable personal information. Even worse, incompetent sites might embed credit
card or other sensitive information directly in the cookies themselves, rather than
using innocuous identifiers that are linked to real users only on the server. This
embedding is dangerous, since most users don’t view leaving their computer unat-
tended in their office as being tantamount to leaving their credit card sitting on their
desk.

The point of this discussion is twofold:

1. Due to real and perceived privacy problems, some users turn off cook-
ies. So, even when you use cookies to give added value to a site, when-
ever possible your site shouldn’t depend on them. Dependence on
cookies is difficult to avoid in some situations, but if you can provide
reasonable functionality for users without cookies enabled, so much
the better.

2. As the author of servlets or JSP pages that use cookies, you should be
careful not to use cookies for particularly sensitive information, since
this would open users up to risks if somebody accessed the user’s com-
puter or cookie files.

8.3 Deleting Cookies

You will probably find it easier to experiment with the examples in this chapter if you
periodically delete your cookies (or at least the cookies that are associated with local-
host or whatever host your server is running on).

8.3 Deleting Cookies 235

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

To delete your cookies in Internet Explorer, start at the Tools menu and select
Internet Options. To delete all cookies, press Delete Cookies. To selectively delete
cookies, press Settings, then View Files (cookie files have names that begin with
Cookie:, but it is easier to find them if you choose Delete Files before View Files).
See Figure 8–2.

To delete your cookies in Netscape, start at the Edit menu, then choose Prefer-
ences, Privacy and Security, and Cookies. Press the Manage Stored Cookies button
to view or delete any or all of your cookies. Again, see Figure 8–2.

Figure 8–2 Deleting cookies in Internet Explorer and Netscape.

Chapter 8 ■ Handling Cookies236

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

8.4 Sending and Receiving Cookies

To send cookies to the client, a servlet should use the Cookie constructor to create
one or more cookies with designated names and values, set any optional attributes
with cookie.setXxx (readable later by cookie.getXxx), and insert the cookies
into the HTTP response headers with response.addCookie.

To read incoming cookies, a servlet should call request.getCookies, which
returns an array of Cookie objects corresponding to the cookies the browser has
associated with your site (null if there are no cookies in the request). In most cases,
the servlet should then loop down this array calling getName on each cookie until it
finds the one whose name matches the name it was searching for, then call
getValue on that Cookie to see the value associated with the name. Each of these
topics is discussed in more detail in the following subsections.

Sending Cookies to the Client
Sending cookies to the client involves three steps (summarized below with details in
the following subsections).

1. Creating a Cookie object. You call the Cookie constructor with a
cookie name and a cookie value, both of which are strings.

2. Setting the maximum age. If you want the browser to store
the cookie on disk instead of just keeping it in memory, you use
setMaxAge to specify how long (in seconds) the cookie should be
valid.

3. Placing the Cookie into the HTTP response headers. You use
response.addCookie to accomplish this. If you forget this step, no
cookie is sent to the browser!

Creating a Cookie Object
You create a cookie by calling the Cookie constructor, which takes two strings: the
cookie name and the cookie value. Neither the name nor the value should contain
white space or any of the following characters:

 [] () = , " / ? @ : ;

For example, to create a cookie named userID with a value a1234, you would
use the following.

Cookie c = new Cookie("userID", "a1234");

8.4 Sending and Receiving Cookies 237

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Setting the Maximum Age
If you create a cookie and send it to the browser, by default it is a session-level
cookie: a cookie that is stored in the browser’s memory and deleted when the user
quits the browser. If you want the browser to store the cookie on disk, use setMax-
Age with a time in seconds, as below.

c.setMaxAge(60*60*24*7); // One week

Since you could use the session-tracking API (Chapter 9) to simplify most tasks
for which you use session-level cookies, you almost always use the setMaxAge
method when using the Cookie API.

Setting the maximum age to 0 instructs the browser to delete the cookie.

Core Approach

When you create a Cookie object, you should normally call
setMaxAge before sending the cookie to the client.

Note that setMaxAge is not the only Cookie characteristic that you can modify.
The other, less frequently used characteristics are discussed in Section 8.6 (Using
Cookie Attributes).

Placing the Cookie in the Response Headers
By creating a Cookie object and calling setMaxAge, all you have done is manipu-
late a data structure in the server’s memory. You haven’t actually sent anything to the
browser. If you don’t send the cookie to the client, it has no effect. This may seem
obvious, but a common mistake by beginning developers is to create and manipulate
Cookie objects but fail to send them to the client.

Core Warning

Creating and manipulating a Cookie object has no effect on
the client. You must explicitly send the cookie to the client with
response.addCookie.

To send the cookie, insert it into a Set-Cookie HTTP response header by means
of the addCookie method of HttpServletResponse. The method is called
addCookie, not setCookie, because any previously specified Set-Cookie headers

Chapter 8 ■ Handling Cookies238

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

are left alone and a new header is set. Also, remember that the response headers
must be set before any document content is sent to the client.

Here is an example:

Cookie userCookie = new Cookie("user", "uid1234");
userCookie.setMaxAge(60*60*24*365); // Store cookie for 1 year
response.addCookie(userCookie);

Reading Cookies from the Client
To send a cookie to the client, you create a Cookie, set its maximum age (usually),
then use addCookie to send a Set-Cookie HTTP response header. To read the
cookies that come back from the client, you should perform the following two tasks,
which are summarized below and then described in more detail in the following sub-
sections.

1. Call request.getCookies. This yields an array of Cookie objects.
2. Loop down the array, calling getName on each one until you

find the cookie of interest. You then typically call getValue and
use the value in some application-specific way.

Call request.getCookies
To obtain the cookies that were sent by the browser, you call getCookies on the
HttpServletRequest. This call returns an array of Cookie objects correspond-
ing to the values that came in on the Cookie HTTP request headers. If the request
contains no cookies, getCookies should return null. Note, however, that an old
version of Apache Tomcat (version 3.x) had a bug whereby it returned a zero-length
array instead of null.

Loop Down the Cookie Array
Once you have the array of cookies, you typically loop down it, calling getName on
each Cookie until you find one matching the name you have in mind. Remember
that cookies are specific to your host (or domain), not your servlet (or JSP page). So,
although your servlet might send a single cookie, you could get many irrelevant cook-
ies back. Once you find the cookie of interest, you typically call getValue on it and
finish with some processing specific to the resultant value. For example:

String cookieName = "userID";
Cookie[] cookies = request.getCookies();
if (cookies != null) {
for(int i=0; i<cookies.length; i++) {
Cookie cookie = cookies[i];
if (cookieName.equals(cookie.getName())) {

8.5 Using Cookies to Detect First-Time Visitors 239

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

doSomethingWith(cookie.getValue());

}

}

}

This is such a common process that, in Section 8.8, we present two utilities that
simplify retrieving a cookie or cookie value that matches a designated cookie name.

8.5 Using Cookies to Detect
First-Time Visitors

Suppose that, at your site, you want to display a prominent banner to first-time visi-
tors, telling them to register. But, you don’t want to clutter up the display showing a
useless banner to return visitors.

A cookie is the perfect way to differentiate first-timers from repeat visitors. Check
for the existence of a uniquely named cookie; if it is there, the client is a repeat visi-
tor. If the cookie is not there, the visitor is a newcomer, and you should set an outgo-
ing “this user has been here before” cookie.

Although this is a straightforward idea, there is one important point to note: you
cannot determine if the user is a newcomer by the mere existence of entries in the
cookie array. Many beginning servlet programmers erroneously use the following
approach.

Cookie[] cookies = request.getCookies();

if (cookies == null) {

doStuffForNewbie(); // Correct.

} else {

doStuffForReturnVisitor(); // Incorrect.

}

Wrong! Sure, if the cookie array is null, the client is a newcomer (at least as far as
you can tell—he could also have deleted or disabled cookies). But, if the array is
non-null, it merely shows that the client has been to your site (or domain—see
setDomain in the next section), not that they have been to your servlet. Other serv-
lets, JSP pages, and non-Java Web applications can set cookies, and any of those
cookies could get returned to your browser, depending on the path settings (see
setPath in the next section).

Listing 8.1 illustrates the correct approach: checking for a specific cookie. Figures
8–3 and 8–4 show the results of initial and subsequent visits.

Chapter 8 ■ Handling Cookies240

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 8.1 RepeatVisitor.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that says "Welcome aboard" to first-time
 * visitors and "Welcome back" to repeat visitors.
 * Also see RepeatVisitor2 for variation that uses
 * cookie utilities from later in this chapter.
 */

public class RepeatVisitor extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 boolean newbie = true;
 Cookie[] cookies = request.getCookies();
 if (cookies != null) {
 for(int i=0; i<cookies.length; i++) {
 Cookie c = cookies[i];
 if ((c.getName().equals("repeatVisitor")) &&
 // Could omit test and treat cookie name as a flag
 (c.getValue().equals("yes"))) {
 newbie = false;
 break;
 }
 }
 }
 String title;
 if (newbie) {
 Cookie returnVisitorCookie =
 new Cookie("repeatVisitor", "yes");
 returnVisitorCookie.setMaxAge(60*60*24*365); // 1 year
 response.addCookie(returnVisitorCookie);
 title = "Welcome Aboard";
 } else {
 title = "Welcome Back";
 }
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";

8.6 Using Cookie Attributes 241

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 8–3 First visit by a client to the RepeatVisitor servlet.

Figure 8–4 Subsequent visits by a client to the RepeatVisitor servlet.

8.6 Using Cookie Attributes

Before adding the cookie to the outgoing headers, you can set various characteristics
of the cookie by using the following setXxx methods, where Xxx is the name of the
attribute you want to specify.

Although each setXxx method has a corresponding getXxx method to retrieve
the attribute value, note that the attributes are part of the header sent from the
server to the browser; they are not part of the header returned by the browser to the

 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
 "</BODY></HTML>");
 }
}

Listing 8.1 RepeatVisitor.java (continued)

Chapter 8 ■ Handling Cookies242

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

server. Thus, except for name and value, the cookie attributes apply only to outgoing
cookies from the server to the client; they aren’t set on cookies that come from the
browser to the server. So, don’t expect these attributes to be available in the cookies
you get by means of request.getCookies. This means that you can’t implement
continually changing cookie values merely by setting a maximum age on a cookie
once, sending it out, finding the appropriate cookie in the incoming array on the next
request, reading the value, modifying it, and storing it back in the Cookie. You have
to call setMaxAge again each time (and, of course, pass the Cookie to
response.addCookie).

Here are the methods that set the cookie attributes.

public void setComment(String comment)
public String getComment()
These methods specify or look up a comment associated with the cookie. With
version 0 cookies (see the upcoming entry on setVersion and getVersion),
the comment is used purely for informational purposes on the server; it is not
sent to the client.

public void setDomain(String domainPattern)
public String getDomain()
These methods set or retrieve the domain to which the cookie applies.
Normally, the browser returns cookies only to the exact same hostname
that sent the cookies. For instance, cookies sent from a servlet at
bali.vacations.com would not normally get returned by the browser to pages
at queensland.vacations.com. If the site wanted this to happen, the servlets
could specify cookie.setDomain(".vacations.com"). To prevent
servers from setting cookies that apply to hosts outside their domain, the
specified domain must meet the following requirements: it must start with a
dot (e.g., .coreservlets.com); it must contain two dots for noncountry
domains like .com, .edu, and .gov; and it must contain three dots for coun-
try domains like .co.uk and .edu.es.

public void setMaxAge(int lifetime)
public int getMaxAge()
These methods tell how much time (in seconds) should elapse before the
cookie expires. A negative value, which is the default, indicates that the cookie
will last only for the current browsing session (i.e., until the user quits the
browser) and will not be stored on disk. See the LongLivedCookie class
(Listing 8.4), which defines a subclass of Cookie with a maximum age auto-
matically set one year in the future. Specifying a value of 0 instructs the
browser to delete the cookie.

8.6 Using Cookie Attributes 243

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

public String getName()
The getName method retrieves the name of the cookie. The name and the
value are the two pieces you virtually always care about. However, since the
name is supplied to the Cookie constructor, there is no setName method;
you cannot change the name once the cookie is created. On the other hand,
getName is used on almost every cookie received by the server. Since the
getCookies method of HttpServletRequest returns an array of Cookie
objects, a common practice is to loop down the array, calling getName until
you have a particular name, then to check the value with getValue. For an
encapsulation of this process, see the getCookieValue method shown in
Listing 8.3.

public void setPath(String path)
public String getPath()
These methods set or get the path to which the cookie applies. If you don’t
specify a path, the browser returns the cookie only to URLs in or below the
directory containing the page that sent the cookie. For example, if the
server sent the cookie from http://ecommerce.site.com/toys/specials.html,
the browser would send the cookie back when connecting to
http:// ecommerce.site.com/toys/bikes/beginners.html, but not to
http://ecommerce.site.com/cds/classical.html. The setPath method can
specify something more general. For example, cookie.setPath("/")
specifies that all pages on the server should receive the cookie. The path
specified must include the current page; that is, you may specify a more
general path than the default, but not a more specific one. So, for example,
a servlet at http://host/store/cust-service/request could specify a path
of /store/ (since /store/ includes /store/cust-service/) but not a path of
/store/cust-service/returns/ (since this directory does not include /store/
cust-service/).

Core Approach

To specify that a cookie apply to all URLs on your site, use
cookie.setPath("/").

public void setSecure(boolean secureFlag)
public boolean getSecure()
This pair of methods sets or gets the boolean value indicating whether the
cookie should only be sent over encrypted (i.e., SSL) connections. The default
is false; the cookie should apply to all connections.

Chapter 8 ■ Handling Cookies244

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

public void setValue(String cookieValue)
public String getValue()

The setValue method specifies the value associated with the cookie;
getValue looks it up. Again, the name and the value are the two parts of a
cookie that you almost always care about, although in a few cases, a name is
used as a boolean flag and its value is ignored (i.e., the existence of a cookie
with the designated name is all that matters). However, since the cookie value
is supplied to the Cookie constructor, setValue is typically reserved for
cases when you change the values of incoming cookies and then send them
back out. For an example, see Section 8.10 (Modifying Cookie Values: Tracking
User Access Counts).

public void setVersion(int version)
public int getVersion()

These methods set and get the cookie protocol version with which the cookie
complies. Version 0, the default, follows the original Netscape specification
(http://wp.netscape.com/newsref/std/cookie_spec.html). Version 1, not yet
widely supported, adheres to RFC 2109 (retrieve RFCs from the archive sites
listed at http://www.rfc-editor.org/).

8.7 Differentiating Session Cookies
from Persistent Cookies

This section illustrates the use of the cookie attributes by contrasting the behavior of
cookies with and without a maximum age. Listing 8.2 shows the CookieTest serv-
let, a servlet that performs two tasks:

1. First, the servlet sets six outgoing cookies. Three have no explicit age
(i.e., have a negative value by default), meaning that they should apply
only in the current browsing session—until the user restarts the
browser. The other three use setMaxAge to stipulate that the
browser should write them to disk and that they should persist for the
next hour, regardless of whether the user restarts the browser or
reboots the computer to initiate a new browsing session.

2. Second, the servlet uses request.getCookies to find all the
incoming cookies and display their names and values in an HTML
table.

8.7 Differentiating Session Cookies from Persistent Cookies 245

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 8–5 shows the result of the initial visit, Figure 8–6 shows a visit immedi-
ately after that, and Figure 8–7 shows the result of a visit after the user restarts the
browser.

Listing 8.2 CookieTest.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Creates a table of the cookies associated with
 * the current page. Also sets six cookies: three
 * that apply only to the current session
 * (regardless of how long that session lasts)
 * and three that persist for an hour (regardless
 * of whether the browser is restarted).
 */

public class CookieTest extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 for(int i=0; i<3; i++) {
 // Default maxAge is -1, indicating cookie
 // applies only to current browsing session.
 Cookie cookie = new Cookie("Session-Cookie-" + i,
 "Cookie-Value-S" + i);
 response.addCookie(cookie);
 cookie = new Cookie("Persistent-Cookie-" + i,
 "Cookie-Value-P" + i);
 // Cookie is valid for an hour, regardless of whether
 // user quits browser, reboots computer, or whatever.
 cookie.setMaxAge(3600);
 response.addCookie(cookie);
 }
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Active Cookies";

Chapter 8 ■ Handling Cookies246

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 8–5 Result of initial visit to the CookieTest servlet. This is the same result as
when visiting the servlet, quitting the browser, waiting an hour, and revisiting the servlet.

 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
 "<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 " <TH>Cookie Name\n" +
 " <TH>Cookie Value");
 Cookie[] cookies = request.getCookies();
 if (cookies == null) {
 out.println("<TR><TH COLSPAN=2>No cookies");
 } else {
 Cookie cookie;
 for(int i=0; i<cookies.length; i++) {
 cookie = cookies[i];
 out.println("<TR>\n" +
 " <TD>" + cookie.getName() + "\n" +
 " <TD>" + cookie.getValue());
 }
 }
 out.println("</TABLE></BODY></HTML>");
 }
}

Listing 8.2 CookieTest.java (continued)

8.7 Differentiating Session Cookies from Persistent Cookies 247

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 8–6 Result of revisiting the CookieTest servlet within an hour of the original
visit, in the same browser session (browser stayed open between the original visit and the
visit shown here).

Figure 8–7 Result of revisiting the CookieTest servlet within an hour of the original
visit, in a different browser session (browser was restarted between the original visit and
the visit shown here).

Chapter 8 ■ Handling Cookies248

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

8.8 Basic Cookie Utilities

This section presents some simple but useful utilities for dealing with cookies.

Finding Cookies with Specified Names

Listing 8.3 shows two static methods in the CookieUtilities class that simplify the
retrieval of a cookie or cookie value, given a cookie name. The getCookieValue
method loops through the array of available Cookie objects, returning the value of
any Cookie whose name matches the input. If there is no match, the designated
default value is returned. So, for example, our typical approach for dealing with cook-
ies is as follows:

String color =
CookieUtilities.getCookieValue(request, "color", "black");

String font =

CookieUtilities.getCookieValue(request, "font", "Arial");

The getCookie method also loops through the array comparing names but
returns the actual Cookie object instead of just the value. That method is for cases
when you want to do something with the Cookie other than just read its value. The
getCookieValue method is more commonly used, but, for example, you might use
getCookie in lieu of getCookieValue if you wanted to put a new value into the
cookie and send it back out again. Just don’t forget that if you use this approach, you
have to respecify any cookie attributes such as date, path, and domain: these
attributes are not set for incoming cookies.

Listing 8.3 CookieUtilities.java

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

/** Two static methods for use in cookie handling. */

public class CookieUtilities {

8.8 Basic Cookie Utilities 249

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 /** Given the request object, a name, and a default value,
 * this method tries to find the value of the cookie with
 * the given name. If no cookie matches the name,
 * the default value is returned.
 */

 public static String getCookieValue
 (HttpServletRequest request,
 String cookieName,
 String defaultValue) {
 Cookie[] cookies = request.getCookies();
 if (cookies != null) {
 for(int i=0; i<cookies.length; i++) {
 Cookie cookie = cookies[i];
 if (cookieName.equals(cookie.getName())) {
 return(cookie.getValue());
 }
 }
 }
 return(defaultValue);
 }

 /** Given the request object and a name, this method tries
 * to find and return the cookie that has the given name.
 * If no cookie matches the name, null is returned.
 */

 public static Cookie getCookie(HttpServletRequest request,
 String cookieName) {
 Cookie[] cookies = request.getCookies();
 if (cookies != null) {
 for(int i=0; i<cookies.length; i++) {
 Cookie cookie = cookies[i];
 if (cookieName.equals(cookie.getName())) {
 return(cookie);
 }
 }
 }
 return(null);
 }
}

Listing 8.3 CookieUtilities.java (continued)

Chapter 8 ■ Handling Cookies250

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Creating Long-Lived Cookies
Listing 8.4 shows a small class that you can use instead of Cookie if you want your
cookie to automatically persist for a year when the client quits the browser. This class
(LongLivedCookie) merely extends Cookie and calls setMaxAge automatically.

8.9 Putting the Cookie
Utilities into Practice

Listing 8.5 redoes the RepeatVisitor servlet of Listing 8.1. The new version
(RepeatVisitor2) has the same functionality as the old version: it says “Welcome
Aboard” to first-time visitors and “Welcome Back” to repeat visitors. However, it uses
the cookie utilities of Section 8.8 to simplify the code in two ways:

1. Instead of calling request.getCookies and looping
down that array examining each name, it merely calls
CookieUtilities.getCookieValue.

2. Instead of creating a Cookie object, calculating the number of
seconds in a year, and then calling setMaxAge, it merely creates
a LongLivedCookie object.

Figures 8–8 and 8–9 show the results.

Listing 8.4 LongLivedCookie.java

package coreservlets;

import javax.servlet.http.*;

/** Cookie that persists 1 year. Default Cookie doesn't
 * persist past current browsing session.
 */

public class LongLivedCookie extends Cookie {
 public static final int SECONDS_PER_YEAR = 60*60*24*365;

 public LongLivedCookie(String name, String value) {
 super(name, value);
 setMaxAge(SECONDS_PER_YEAR);
 }
}

8.9 Putting the Cookie Utilities into Practice 251

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 8.5 RepeatVisitor2.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** A variation of the RepeatVisitor servlet that uses
 * CookieUtilities.getCookieValue and LongLivedCookie
 * to simplify the code.
 */

public class RepeatVisitor2 extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 boolean newbie = true;
 String value =
 CookieUtilities.getCookieValue(request, "repeatVisitor2",
 "no");
 if (value.equals("yes")) {
 newbie = false;
 }
 String title;
 if (newbie) {
 LongLivedCookie returnVisitorCookie =
 new LongLivedCookie("repeatVisitor2", "yes");
 response.addCookie(returnVisitorCookie);
 title = "Welcome Aboard";
 } else {
 title = "Welcome Back";
 }
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
 "</BODY></HTML>");
 }
}

Chapter 8 ■ Handling Cookies252

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 8–8 First visit by a client to the RepeatVisitor2 servlet.

Figure 8–9 Subsequent visit by a client to the RepeatVisitor2 servlet.

8.10 Modifying Cookie Values:
Tracking User Access Counts

In the previous examples, we sent a cookie to the user only on the first visit. Once the
cookie had a value, we never changed it. This approach of a single cookie value is sur-
prisingly common since cookies frequently contain nothing but unique user identifi-
ers: all the real user data is stored in a database—the user identifier is merely the
database key.

But what if you want to periodically change the value of a cookie? How do you do
so?

• To replace a previous cookie value, send the same cookie name with a
different cookie value. If you actually use the incoming Cookie
objects, don’t forget to do response.addCookie; merely calling
setValue is not sufficient. You also need to reapply any relevant
cookie attributes by calling setMaxAge, setPath, etc.—cookie
attributes are not specified for incoming cookies. Reapplying these
attributes means that reusing the incoming Cookie objects saves you
little, so many developers don’t bother.

8.10 Modifying Cookie Values: Tracking User Access Counts 253

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

• To instruct the browser to delete a cookie, use setMaxAge to assign a
maximum age of 0.

Listing 8.6 presents a servlet that keeps track of how many times each client has
visited the page. It does this by making a cookie whose name is accessCount and
whose value is the actual count. To accomplish this task, the servlet needs to repeat-
edly replace the cookie value by resending a cookie with the identical name.

Figure 8–10 shows some typical results.

Listing 8.6 ClientAccessCounts.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that prints per-client access counts. */

public class ClientAccessCounts extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String countString =
 CookieUtilities.getCookieValue(request,
 "accessCount",
 "1");
 int count = 1;
 try {
 count = Integer.parseInt(countString);
 } catch(NumberFormatException nfe) { }
 LongLivedCookie c =
 new LongLivedCookie("accessCount",
 String.valueOf(count+1));
 response.addCookie(c);
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Access Count Servlet";
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";

Chapter 8 ■ Handling Cookies254

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 8–10 Users each see their own access count. Also, Internet Explorer and Netscape
maintain cookies separately, so the same user sees independent access counts with the
two browsers.

 out.println(docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<CENTER>\n" +
 "<H1>" + title + "</H1>\n" +
 "<H2>This is visit number " +
 count + " by this browser.</H2>\n" +
 "</CENTER></BODY></HTML>");
 }
}

Listing 8.6 ClientAccessCounts.java (continued)

8.11 Using Cookies to Remember User Preferences 255

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

8.11 Using Cookies to Remember
User Preferences

One of the most common applications of cookies is to use them to “remember” user
preferences. For simple user settings, as here, the preferences can be stored directly
in the cookies. For more complex applications, the cookie typically contains a unique
user identifier and the preferences are stored in a database.

Listing 8.7 presents a servlet that creates an input form with the following charac-
teristics.

• The form is redisplayed if it is incomplete when submitted. The
form sends data to a second servlet (Listing 8.8) that checks whether
any of the designated request parameters is missing, then stores the
parameter values in cookies. If no parameter is missing, the second
servlet displays the parameter values. If a parameter is missing, the
second servlet redirects the user to the original servlet so that the form
can be redisplayed. The original servlet maintains the user’s previously
entered values by extracting them from the cookies.

• The form remembers previous entries. The fields are
prepopulated with whatever values the user entered on the most
recent request.

Figures 8–11 through 8–13 show some typical results.

Listing 8.7 RegistrationForm.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that displays an HTML form to collect user's
 * first name, last name, and email address. Uses cookies
 * to determine the initial values of each of those
 * form fields.
 */

Chapter 8 ■ Handling Cookies256

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

public class RegistrationForm extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String actionURL =
 "/servlet/coreservlets.RegistrationServlet";
 String firstName =
 CookieUtilities.getCookieValue(request, "firstName", "");
 String lastName =
 CookieUtilities.getCookieValue(request, "lastName", "");
 String emailAddress =
 CookieUtilities.getCookieValue(request, "emailAddress",
 "");
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Please Register";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<CENTER>\n" +
 "<H1>" + title + "</H1>\n" +
 "<FORM ACTION=\"" + actionURL + "\">\n" +
 "First Name:\n" +
 " <INPUT TYPE=\"TEXT\" NAME=\"firstName\" " +
 "VALUE=\"" + firstName + "\">
\n" +
 "Last Name:\n" +
 " <INPUT TYPE=\"TEXT\" NAME=\"lastName\" " +
 "VALUE=\"" + lastName + "\">
\n" +
 "Email Address: \n" +
 " <INPUT TYPE=\"TEXT\" NAME=\"emailAddress\" " +
 "VALUE=\"" + emailAddress + "\"><P>\n" +
 "<INPUT TYPE=\"SUBMIT\" VALUE=\"Register\">\n" +
 "</FORM></CENTER></BODY></HTML>");
 }
}

Listing 8.7 RegistrationForm.java (continued)

8.11 Using Cookies to Remember User Preferences 257

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Listing 8.8 RegistrationServlet.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Servlet that processes a registration form containing
 * a user's first name, last name, and email address.
 * If all the values are present, the servlet displays the
 * values. If any of the values are missing, the input
 * form is redisplayed. Either way, the values are put
 * into cookies so that the input form can use the
 * previous values.
 */

public class RegistrationServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 boolean isMissingValue = false;
 String firstName = request.getParameter("firstName");
 if (isMissing(firstName)) {
 firstName = "Missing first name";
 isMissingValue = true;
 }
 String lastName = request.getParameter("lastName");
 if (isMissing(lastName)) {
 lastName = "Missing last name";
 isMissingValue = true;
 }
 String emailAddress = request.getParameter("emailAddress");
 if (isMissing(emailAddress)) {
 emailAddress = "Missing email address";
 isMissingValue = true;
 }
 Cookie c1 = new LongLivedCookie("firstName", firstName);
 response.addCookie(c1);
 Cookie c2 = new LongLivedCookie("lastName", lastName);
 response.addCookie(c2);
 Cookie c3 = new LongLivedCookie("emailAddress",
 emailAddress);
 response.addCookie(c3);
 String formAddress =
 "/servlet/coreservlets.RegistrationForm";
 if (isMissingValue) {
 response.sendRedirect(formAddress);

Chapter 8 ■ Handling Cookies258

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

 } else {
 PrintWriter out = response.getWriter();
 String docType =
 "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
 "Transitional//EN\">\n";
 String title = "Thanks for Registering";
 out.println
 (docType +
 "<HTML>\n" +
 "<HEAD><TITLE>" + title + "</TITLE></HEAD>\n" +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<CENTER>\n" +
 "<H1 ALIGN>" + title + "</H1>\n" +
 "\n" +
 " First Name: " +
 firstName + "\n" +
 " Last Name: " +
 lastName + "\n" +
 " Email address: " +
 emailAddress + "\n" +
 "\n" +
 "</CENTER></BODY></HTML>");
 }
 }

 /** Determines if value is null or empty. */

 private boolean isMissing(String param) {
 return((param == null) ||
 (param.trim().equals("")));
 }
}

Listing 8.8 RegistrationServlet.java (continued)

8.11 Using Cookies to Remember User Preferences 259

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 8–11 Initial result of RegistrationForm servlet.

Figure 8–12 When the input form is incompletely filled in (top), the
RegistrationServlet redirects the user to the RegistrationForm
(bottom). The RegistrationForm uses cookies to determine the values
of the form fields that were already filled in.

Chapter 8 ■ Handling Cookies260

© Prentice Hall and Sun Microsystems Press. Personal use only.

J2EE training from the author: http://courses.coreservlets.com/

Figure 8–13 When the input form is completely filled in (top), the
RegistrationServlet (bottom) simply displays the request parameter values.
The input form shown here (top) is also representative of how the form will look
when the user revisits the input form at some later date: form is prepopulated with
the most recently used values.

